Matrix_eQTL_main {MatrixEQTL} | R Documentation |
Matrix_eQTL_engine
function tests association of every row of the snps
dataset with every row of the gene
dataset using a linear regression model defined by the useModel
parameter (see below).
The testing procedure accounts for extra covariates in cvrt
parameter.
The errorCovariance
parameter can be set to the error variance-covariance matrix to account for heteroskedastic and/or correlated errors.
Associations significant at pvOutputThreshold
(pvOutputThreshold.cis
) levels are saved to output_file_name
(output_file_name.cis
), with corresponding estimates of effect size (slope coefficient), test statistics, p-values, and q-values (false discovery rate).
Matrix eQTL can perform separate analysis for local (cis) and distant (trans) eQTLs.For such analysis one has to set the cis-analysis specific parameters pvOutputThreshold.cis > 0
, cisDist
, snpspos
and genepos in the call of Matrix_eQTL_main
function.A gene-SNP pair is considered local if the distance between them is less or equal to cisDist
.The genomic location of genes and SNPs is defined by data frames snpspos
and genepos.Depending on p-value thresholds pvOutputThreshold
and pvOutputThreshold.cis
Matrix eQTL runs in one of three different modes:
Set pvOutputThreshold > 0
and pvOutputThreshold.cis = 0
(or use Matrix_eQTL_engine
) to perform eQTL analysis without using gene/SNP locations. Associations significant at the pvOutputThreshold
level are be recorded in output_file_name
and in the returned object.
Set pvOutputThreshold = 0
and pvOutputThreshold.cis > 0
to perform eQTL analysis for local gene-SNP pairs only. Local associations significant at pvOutputThreshold.cis
level will be recorded in output_file_name.cis
and in the returned object.
Set pvOutputThreshold > 0
and pvOutputThreshold.cis > 0
to perform eQTL analysis with separate p-value thresholds for local and distant eQTLs. Distant and local associations significant at corresponding thresholds are recorded in output_file_name
and output_file_name.cis
respectively and in the returned object. In this case the false discovery rate is calculated separately for these two sets of eQTLs.
Matrix_eQTL_engine
is a wrapper for Matrix_eQTL_main
for eQTL analysis without regard to gene/SNP location and provided for compatibility with the previous versions of the package.
The parameter pvalue.hist
allows to record information sufficient to create a histogram or QQ-plot of all the p-values (see plot
).
Matrix_eQTL_main( snps, gene, cvrt = SlicedData$new(), output_file_name = "", pvOutputThreshold = 1e-5, useModel = modelLINEAR, errorCovariance = numeric(), verbose = TRUE, output_file_name.cis = "", pvOutputThreshold.cis = 0, snpspos = NULL, genepos = NULL, cisDist = 1e6, pvalue.hist = FALSE, min.pv.by.genesnp = FALSE, noFDRsaveMemory = FALSE) Matrix_eQTL_engine(snps, gene, cvrt = SlicedData$new(), output_file_name, pvOutputThreshold = 1e-5, useModel = modelLINEAR, errorCovariance = numeric(), verbose = TRUE, pvalue.hist = FALSE, min.pv.by.genesnp = FALSE, noFDRsaveMemory = FALSE)
snps |
| |||||||||||||||||
gene |
| |||||||||||||||||
cvrt |
| |||||||||||||||||
output_file_name |
| |||||||||||||||||
output_file_name.cis |
| |||||||||||||||||
pvOutputThreshold |
| |||||||||||||||||
pvOutputThreshold.cis |
| |||||||||||||||||
useModel |
| |||||||||||||||||
errorCovariance |
| |||||||||||||||||
verbose |
| |||||||||||||||||
snpspos |
| |||||||||||||||||
genepos |
| |||||||||||||||||
cisDist |
| |||||||||||||||||
pvalue.hist |
| |||||||||||||||||
min.pv.by.genesnp |
| |||||||||||||||||
noFDRsaveMemory |
|
Note that the columns of gene
, snps
, and cvrt
must match.If they do not match in the input files, use ColumnSubsample
method to subset and/or reorder them.
The detected eQTLs are saved in output_file_name
and/or output_file_name.cis
if they are not NULL
.The method also returns a list with a summary of the performed analysis.
param | Keeps all input parameters and also records the number of degrees of freedom for the full model. |
time.in.sec | Time difference between the start and the end of the analysis (in seconds). |
all | Information about all detected eQTLs. |
cis | Information about detected local eQTLs. |
trans | Information about detected distant eQTLs. |
The elements all
, cis
, and trans
may contain the following components
ntests
Total number of tests performed. This is used for FDR calculation.
eqtls
Data frame with recorded significant associations. Not available if noFDRsaveMemory=FALSE
neqtls
Number of significant associations recorded.
hist.bins
Histogram bins used for recording p-value distribution. See pvalue.hist
parameter.
hist.counts
Number of p-value that fell in each histogram bin. See pvalue.hist
parameter.
min.pv.snps
Vector with the best p-value for each SNP. See min.pv.by.genesnp
parameter.
min.pv.gene
Vector with the best p-value for each gene. See min.pv.by.genesnp
parameter.
Andrey Shabalin ashabalin@vcu.edu
The package website: http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
The code below is the sample code for eQTL analysis NOT using gene/SNP locations.
See MatrixEQTL_cis_code
for sample code for eQTL analysis that separates local and distant tests.
# Matrix eQTL by Andrey A. Shabalin # http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/ # # Be sure to use an up to date version of R and Matrix eQTL. # source("Matrix_eQTL_R/Matrix_eQTL_engine.r"); library(MatrixEQTL) ## Location of the package with the data files. base.dir = find.package('MatrixEQTL'); ## Settings # Linear model to use, modelANOVA, modelLINEAR, or modelLINEAR_CROSS useModel = modelLINEAR; # modelANOVA, modelLINEAR, or modelLINEAR_CROSS # Genotype file name SNP_file_name = paste(base.dir, "/data/SNP.txt", sep=""); # Gene expression file name expression_file_name = paste(base.dir, "/data/GE.txt", sep=""); # Covariates file name # Set to character() for no covariates covariates_file_name = paste(base.dir, "/data/Covariates.txt", sep=""); # Output file name output_file_name = tempfile(); # Only associations significant at this level will be saved pvOutputThreshold = 1e-2; # Error covariance matrix # Set to numeric() for identity. errorCovariance = numeric(); # errorCovariance = read.table("Sample_Data/errorCovariance.txt"); ## Load genotype data snps = SlicedData$new(); snps$fileDelimiter = "\t"; # the TAB character snps$fileOmitCharacters = "NA"; # denote missing values; snps$fileSkipRows = 1; # one row of column labels snps$fileSkipColumns = 1; # one column of row labels snps$fileSliceSize = 2000; # read file in slices of 2,000 rows snps$LoadFile(SNP_file_name); ## Load gene expression data gene = SlicedData$new(); gene$fileDelimiter = "\t"; # the TAB character gene$fileOmitCharacters = "NA"; # denote missing values; gene$fileSkipRows = 1; # one row of column labels gene$fileSkipColumns = 1; # one column of row labels gene$fileSliceSize = 2000; # read file in slices of 2,000 rows gene$LoadFile(expression_file_name); ## Load covariates cvrt = SlicedData$new(); cvrt$fileDelimiter = "\t"; # the TAB character cvrt$fileOmitCharacters = "NA"; # denote missing values; cvrt$fileSkipRows = 1; # one row of column labels cvrt$fileSkipColumns = 1; # one column of row labels if(length(covariates_file_name)>0) { cvrt$LoadFile(covariates_file_name); } ## Run the analysis me = Matrix_eQTL_engine( snps = snps, gene = gene, cvrt = cvrt, output_file_name = output_file_name, pvOutputThreshold = pvOutputThreshold, useModel = useModel, errorCovariance = errorCovariance, verbose = TRUE, pvalue.hist = TRUE, min.pv.by.genesnp = FALSE, noFDRsaveMemory = FALSE); unlink(output_file_name); ## Results: cat('Analysis done in: ', me$time.in.sec, ' seconds', '\n'); cat('Detected eQTLs:', '\n'); show(me$all$eqtls) ## Plot the histogram of all p-values plot(me)