BIOS 663: Intermediate Linear Models

Instructor:

Wei Sun
4115E McGavran_Greenberg Hall
Email: weisun@email.unc.edu
Tel: 919-966-7266
Hours: TR 10:00 am - 11:45am, MC 1304

Lab: M 2:00-3:00pm, MC 2306
TA: Ting-Huei Chen (thchen@email.unc.edu)

Texts:

• Muller and Fetterman, Regression and ANOVA: An Integrated Approach Using SAS Software (required)

BIOS663 offers a matrix-based treatment of regression, one-way and two-way ANOVA, and ANCOVA, with applications in the health sciences. Emphasis is placed on the general linear model and hypothesis testing, diagnostics, and model building, as well as on interpretation and communication of statistical results. The course begins with a review of matrix algebra and concludes with introductions to longitudinal data analysis and generalized linear models.
In BIOS663, students will

1. learn to analyze and interpret univariate linear models,

2. gain a basic understanding of the associated theory of linear models in order to know when not to apply the methods and how to extend the theory to non-standard situations,

3. gain exposure to more advanced models, including generalized linear models and mixed effects models, and

4. learn to communicate statistical results to subject-area collaborators (including public health professionals, physicians, and other scientists and researchers) in non-statistical language so that the results can be understood.

Course Prerequisites: The following prerequisite skills are assumed.

- Working knowledge of calculus and matrix algebra (through MATH 547)
- Working knowledge of probability and inference (through BIOS 550/660)
- General applied statistics knowledge (at the level of BIOS 662)
- Working knowledge of SAS (at the level of BIOS 511)

Students are responsible for ensuring they have the necessary prerequisites. Violations of assumptions will likely lead to frustration on the part of the student! BIOS 663 is primarily for students in the biostatistics department, though quantitative-minded students from other departments are welcome (if you are such a student, see me if you have questions about your mathematical background). The department also offers two other courses in linear models: BIOS 762 is an advanced theoretical treatment of linear models, and BIOS 545 is a basic applied course in linear models. Students without the necessary prerequisites (MATH 547, BIOS 511, BIOS 550 or BIOS 660, BIOS 662) should consider other courses in the BIOS department or in the school.

Copies of slides used in class will be available online at

http://blackboard.unc.edu

These slides cover some material not contained in the texts and do not cover all material in the texts so that the assigned readings are very important. You are encouraged to print the slides and bring them with you to class.
Graded Work: Grades will be determined as follows:

- Classroom partition and Lab partition: 10%
- Homework assignments and data analysis project: 30%
- Midterm exam: 30%
- Final exam: 30%

Graduate courses in the School of Public Health use the following grading system.

- H: Clear excellence
- P: Entirely satisfactory
- L: Low passing
- F: Fail

All assignments are cumulative. The SPH grading system is designed so that the mode of the grading distribution is P.

Descriptions of Graded Work:

- **Homework and data analysis project** Homework problems and data analysis project are designed to ensure that the text and readings have been read and understood and that material from the text and course notes has been mastered. Homework will be given biweekly, and students are encouraged to talk about ideas and approaches to problems in groups, though students should “write up” assignments independently. The project data analysis project will consist of applying concepts learned in this class to data of your own choosing.

- **Exams** There will be one in-class midterm exam (March 1st) and one take home final (due May 3rd 5pm). The exams are designed to test your mastery of the material presented, your ability to conduct statistical analyses on your own, and your ability to interpret the results of analyses in language that subject-area investigators can easily understand. Students will not be allowed to work together for both exams.

The Student Honor Code: Students are encouraged to work together on homework, but copying someone else’s work always creates an honor code violation. Students are never allowed to discuss or work together on exams while they are being given. Expulsion from the university is possible if the honor code is violated, and receiving 0% on the assignment in question is a certainty.