A new technology is developed to accurately measure the tumor cell secretion level in cancer patients. However, even so, there is a lower limit detection bound, denoted by \(\tau \), a positive constant; that is, if the level is less than \(\tau \), the technology will not be able to measure it. Suppose that we take measurements from \(n \) i.i.d patients and find that \(m \) patients of them have detectable levels with values \(X_1, \ldots, X_m \). For the rest of \((n - m) \) patients, their levels \(X_{m+1}, \ldots, X_n \) are below \(\tau \) so undetectable. Moreover, we assume that each \(X_i, \ i = 1, \ldots, n \), follows an exponential distribution with rate \(1/\lambda \), i.e., the density is \(\lambda e^{-x/\lambda}, x > 0 \). Our goal is to estimate \(\lambda \).

Likelihood function

1(a) (5 points) The observed data can be expressed as

\[X_1, \ldots, X_m, I(X_{m+1} < \tau), \ldots, I(X_n < \tau). \]

Write down the observed likelihood function of \(\lambda \) based on these observations.

Method of moments

2(a) (5 points) Note that \(m \), the number of the patients whose levels are detectable, is random. What is the distribution of \(m \)?

2(b) (5 points) Show \(E[m] = ne^{-\tau/\lambda} \). Thus, a simple estimator for \(\lambda \), denoted by \(\hat{\lambda}_1 \), can be obtained by solving the following equation

\[m = ne^{-\tau/\lambda}. \]

Show \(\hat{\lambda}_1 \) is consistent and derive the asymptotic distribution of \(\hat{\lambda}_1 \).

Complete data analysis

3(a) (5 points) In this approach, we only use the data from the patients whose levels are detectable, i.e., \(X_1, \ldots, X_m \). Then the likelihood function should be

\[f(X_1|X_1 \geq \tau) \times \cdots \times f(X_m|X_m \geq \tau), \]

where \(f \) denotes the conditional density. Explain why the likelihood function should be like this and explicitly write out the above expression.

(ATTN: more questions on the back of this page)
3(b) (5 points) Using the above likelihood function and conditional on $X_1 \geq \tau, \ldots, X_m \geq \tau$ and m, find the UMVUE for λ, denoted by $\hat{\lambda}_2$, and calculate its conditional variance.

3(c) (5 points) Does the UMVUE attain the Cramer-Rao bound, conditional on $X_1 \geq \tau, \ldots, X_m \geq \tau$ and m?

3(d) (5 points) What is the asymptotic distribution of $\hat{\lambda}_2$? The asymptotic distribution should be unconditional.

Maximum likelihood estimation

4(a) (10 points) We aim to obtain the maximum likelihood estimator for λ, denoted by $\hat{\lambda}_3$, using all the observations from n patients. Since the last $(n - m)$ patients have undetectable levels, the EM algorithm can be used to calculate $\hat{\lambda}_3$. Write out the E-step and M-step explicitly.

4(b) (5 points) What is the asymptotic distribution of $\hat{\lambda}_3$?

4(c) (5 points) Construct an asymptotic 95%-confidence interval for λ based on $\hat{\lambda}_3$.

4(d) (5 points) What are the asymptotic relative efficiencies of $\hat{\lambda}_1$ vs $\hat{\lambda}_3$ and $\hat{\lambda}_2$ vs $\hat{\lambda}_3$?