Introduction to Efficient Estimation

• Goal

MLE is asymptotically efficient estimator under some regularity conditions.
• **Basic setting**

Suppose X_1, \ldots, X_n are i.i.d from P_{θ_0} in the model \mathcal{P}.

(A0). $\theta \neq \theta^*$ implies $P_{\theta} \neq P_{\theta^*}$ (identifiability).

(A1). P_{θ} has a density function p_{θ} with respect to a dominating σ-finite measure μ.

(A2). The set $\{x : p_{\theta}(x) > 0\}$ does not depend on θ.
• **MLE definition**

\[
L_n(\theta) = \prod_{i=1}^{n} p_\theta(X_i), \quad l_n(\theta) = \sum_{i=1}^{n} \log p_\theta(X_i).
\]

\(L_n(\theta)\) and \(l_n(\theta)\) are called the *likelihood function* and the *log-likelihood function* of \(\theta\), respectively.

An estimator \(\hat{\theta}_n\) of \(\theta_0\) is the maximum likelihood estimator (MLE) of \(\theta_0\) if it maximizes the likelihood function \(L_n(\theta)\).
[comments]
Ad Hoc Arguments

\[\sqrt{n}(\hat{\theta}_n - \theta_0) \to_d N(0, I(\theta_0)^{-1}) \]

- Consistency: \(\hat{\theta}_n \to \theta_0 \) (no asymptotic bias)

- Efficiency: asymptotic variance attains efficiency bound \(I(\theta_0)^{-1} \).
[comments]
• Consistency

Definition 5.1 Let P be a probability measure and let Q be another measure on (Ω, \mathcal{A}) with densities p and q with respect to a σ-finite measure μ ($\mu = P + Q$ always works). $P(\Omega) = 1$ and $Q(\Omega) \leq 1$. Then the *Kullback-Leibler information* $K(P, Q)$ is

$$K(P, Q) = E_P[\log \frac{p(X)}{q(X)}].$$
Proposition 5.1 $K(P, Q)$ is well-defined, and $K(P, Q) \geq 0$. $K(P, Q) = 0$ if and only if $P = Q$.

Proof

By the Jensen’s inequality,

$$K(P, Q) = E_P[- \log \frac{q(X)}{p(X)}] \geq - \log E_P[\frac{q(X)}{p(X)}] = - \log Q(\Omega) \geq 0.$$

The equality holds if and only if $p(x) = Mq(x)$ almost surely with respect to P and $Q(\Omega) = 1$

$\Rightarrow P = Q$.
[comments]
• Why is the MLE consistent?

\(\hat{\theta}_n \) maximizes \(l_n(\theta) \),

\[
\frac{1}{n} \sum_{i=1}^{n} p_{\hat{\theta}_n}(X_i) \geq \frac{1}{n} \sum_{i=1}^{n} p_{\theta_0}(X_i).
\]

Suppose \(\hat{\theta}_n \to \theta^* \). Then we would expect both sides to converge to

\[
E_{\theta_0}[p_{\theta^*}(X)] \geq E_{\theta_0}[p_{\theta_0}(X)],
\]

which implies \(K(\theta^*, \theta_0) \leq 0 \).

From Prop. 5.1, \(\theta^* = \theta_0 \). From A0, \(\theta^* = \theta_0 \). That is, \(\hat{\theta}_n \) converges to \(\theta_0 \).
[comments]
• Why is MLE efficient?

Suppose \(\hat{\theta}_n \to \theta_0 \). \(\hat{\theta}_n \) solves the following likelihood (or score) equations

\[
i_n(\hat{\theta}_n) = \sum_{i=1}^{n} i_{\hat{\theta}_n}(X_i) = 0.
\]

Taylor expansion at \(\theta_0 \):

\[- \sum_{i=1}^{n} i_{\theta_0}(X_i) = - \sum_{i=1}^{n} \dot{i}_{\hat{\theta}}(X_i)(\hat{\theta} - \theta_0),\]

where \(\theta^* \) is between \(\theta_0 \) and \(\hat{\theta} \).

\[
\sqrt{n}(\hat{\theta} - \theta_0) = - \frac{1}{\sqrt{n}} \left\{ n^{-1} \sum_{i=1}^{n} \ddot{i}_{\theta}(X_i) \right\} \left\{ \sum_{i=1}^{n} i_{\theta_0}(X_i) \right\}.
\]
$\sqrt{n}(\hat{\theta}_n - \theta_0)$ is asymptotically equivalent to

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} I(\theta_0)^{-1} i_{\theta_0}(X_i).$$

Then $\hat{\theta}_n$ is an asymptotically linear estimator of θ_0 with influence function $I(\theta_0)^{-1} i_{\theta_0} = \tilde{l}(\cdot, P_{\theta_0} | \theta, \mathcal{P}).$
Consistency Results

Theorem 5.1 Consistency with dominating function

Suppose that
(a) Θ is compact.
(b) $\log p_\theta(x)$ is continuous in θ for all x.
(c) There exists a function $F(x)$ such that
$E_{\theta_0}[F(X)] < \infty$ and $|\log p_\theta(x)| \leq F(x)$ for all x and θ.

Then $\hat{\theta}_n \rightarrow_{a.s.} \theta_0$.
[comments]
Proof

For any sample \(\omega \in \Omega \), \(\hat{\theta}_n \) is compact. By choosing a subsequence, \(\hat{\theta}_n \to \theta^* \).

If \(\frac{1}{n} \sum_{i=1}^{n} l_{\hat{\theta}_n}(X_i) \to E_{\theta_0}[l_{\theta^*}(X)] \), then since

\[
\frac{1}{n} \sum_{i=1}^{n} l_{\hat{\theta}_n}(X_i) \geq \frac{1}{n} \sum_{i=1}^{n} l_{\theta_0}(X_i),
\]

\(\Rightarrow E_{\theta_0}[l_{\theta^*}(X)] \geq E_{\theta_0}[l_{\theta_0}(X)]. \)

\(\Rightarrow \theta^* = \theta_0. \) Done!

It remains to show \(P_n[l_{\hat{\theta}_n}(X)] = \frac{1}{n} \sum_{i=1}^{n} l_{\hat{\theta}_n}(X_i) \to E_{\theta_0}[l_{\theta^*}(X)]. \)

It suffices to show

\[
|P_n[l_{\hat{\theta}}(X)] - E_{\theta_0}[l_{\hat{\theta}}(X)]| \to 0.
\]
We can even prove the following uniform convergence result

$$\sup_{\theta \in \Theta} |P_n[l_\theta(X)] - E_{\theta_0}[l_\theta(X)]| \to 0.$$

Define

$$\psi(x, \theta, \rho) = \sup_{|\theta' - \theta| < \rho} (l_{\theta'}(x) - E_{\theta_0}[l_{\theta'}(X)]).$$

Since l_θ is continuous, $\psi(x, \theta, \rho)$ is measurable and by the DCT, $E_{\theta_0}[\psi(X, \theta, \rho)]$ decreases to $E_{\theta_0}[l_\theta(x) - E_{\theta_0}[l_\theta(X)]] = 0$.

\Rightarrow for any $\epsilon > 0$, and any $\theta \in \Theta$, there exists a $\rho_\theta > 0$ such that

$$E_{\theta_0}[\psi(X, \theta, \rho_\theta)] < \epsilon.$$
The union of \(\{ \theta' : |\theta' - \theta| < \rho_\theta \} \) covers \(\Theta \). By the compactness of \(\Theta \), there exists a finite number of \(\theta_1, \ldots, \theta_m \) such that

\[
\Theta \subset \bigcup_{i=1}^{m} \{ \theta' : |\theta' - \theta_i| < \rho_{\theta_i} \}.
\]

\[\Rightarrow\]

\[
\sup_{\theta \in \Theta} \left\{ P_n[l_\theta(X)] - E_{\theta_0}[l_\theta(X)] \right\} \leq \sup_{1 \leq i \leq m} P_n[\psi(X, \theta_i, \rho_{\theta_i})].
\]

\[
\limsup_n \sup_{\theta \in \Theta} \left\{ P_n[l_\theta(X)] - E_{\theta_0}[l_\theta(X)] \right\} \leq \sup_{1 \leq i \leq m} P_\theta[\psi(X, \theta_i, \rho_{\theta_i})] \leq \epsilon.
\]

\[\Rightarrow\]

\[
\limsup_n \sup_{\theta \in \Theta} \left\{ P_n[l_\theta(X)] - E_{\theta_0}[l_\theta(X)] \right\} \leq 0. \text{ Similarly,} \quad \limsup_n \sup_{\theta \in \Theta} \left\{ P_n[l_\theta(X)] - E_{\theta_0}[l_\theta(X)] \right\} \geq 0.
\]

\[\Rightarrow\]

\[
\limsup_n \sup_{\theta \in \Theta} |P_n[l_\theta(X)] - E_{\theta_0}[l_\theta(X)]| \to 0.
\]
[comments]
Theorem 5.2 Wald’s Consistency \(\Theta \) is compact. Suppose \(\theta \mapsto l_\theta(x) = \log p_\theta(x) \) is upper-semicontinuous for all \(x \), in the sense \(\limsup_{\theta' \to \theta} l_{\theta'}(x) \leq l_\theta(x) \). Suppose for every sufficient small ball \(U \subset \Theta \),

\[E_{\theta_0}[\sup_{\theta' \in U} l_{\theta'}(X)] < \infty. \]

Then \(\hat{\theta}_n \to_p \theta_0 \).
Proof

$E_{\theta_0}[l_{\theta_0}(X)] > E_{\theta_0}[l_{\theta'}(X)]$ for any $\theta' \neq \theta_0$

\Rightarrow there exists a ball $U_{\theta'}$ containing θ' such that

$$E_{\theta_0}[l_{\theta_0}(X)] > E_{\theta_0}[\sup_{\theta^* \in U_{\theta'}} l_{\theta^*}(X)].$$

Otherwise, there exists a sequence $\theta^*_m \to \theta'$ but $E_{\theta_0}[l_{\theta_0}(X)] \leq E_{\theta_0}[l_{\theta^*_m}(X)]$. Since $l_{\theta^*_m}(x) \leq \sup_{U'} l_{\theta'}(X)$ where U' is the ball satisfying the condition,

$$\limsup_{m} E_{\theta_0}[l_{\theta^*_m}(X)] \leq E_{\theta_0}[\limsup_{m} l_{\theta^*_m}(X)] \leq E_{\theta_0}[l_{\theta'}(X)].$$

$\Rightarrow E_{\theta_0}[l_{\theta_0}(X)] \leq E_{\theta_0}[l_{\theta'}(X)]$ contradiction!
For any ϵ, the balls $\cup_{\theta'} U_{\theta'}$ cover the compact set $\Theta \cap \{ |\theta' - \theta_0 | > \epsilon \}$ \Rightarrow there exists a finite covering of balls, $U_1, ..., U_m$.

\[
P(|\hat{\theta}_n - \theta_0 | > \epsilon) \leq P(\sup_{|\theta' - \theta_0| > \epsilon} P_n[l_{\theta'}(X)] \geq P_n[l_{\theta_0}(X)]) \]

\[
\leq P(\max_{1 \leq i \leq m} P_n[\sup_{\theta' \in U_i} l_{\theta'}(X)] \geq P_n[l_{\theta_0}(X)]) \]

\[
\leq \sum_{i=1}^{m} P(P_n[\sup_{\theta' \in U_i} l_{\theta'}(X)] \geq P_n[l_{\theta_0}(X)]) .
\]

Since

\[
P_n[\sup_{\theta' \in U_i} l_{\theta'}(X)] \to_{a.s.} E_{\theta_0}[\sup_{\theta' \in U_i} l_{\theta'}(X)] < E_{\theta_0}[l_{\theta_0}(X)],
\]

the right-hand side converges to zero. \Rightarrow $\hat{\theta}_n \to_p \theta_0$.

Asymptotic Efficiency Result

Theorem 5.3 Suppose that the model \(\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \} \) is Hellinger differentiable at an inner point \(\theta_0 \) of \(\Theta \subset \mathbb{R}^k \). Furthermore, suppose that there exists a measurable function \(F \) with \(E_{\theta_0}[F^2] < \infty \) such that for every \(\theta_1 \) and \(\theta_2 \) in a neighborhood of \(\theta_0 \),

\[
| \log p_{\theta_1}(x) - \log p_{\theta_2}(x) | \leq F(x)|\theta_1 - \theta_2|.
\]

If the Fisher information matrix \(I(\theta_0) \) is nonsingular and \(\hat{\theta}_n \) is consistent, then

\[
\sqrt{n}(\hat{\theta}_n - \theta_0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} I(\theta_0)^{-1} i_{\theta_0}(X_i) + o_{p_{\theta_0}}(1).
\]

In particular, \(\sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow_d N(0, I(\theta_0)^{-1}) \).
[comments]
Proof

For any $h_n \to h$, by the Hellinger differentiability,

$$W_n = 2 \left(\sqrt{\frac{p_{\theta_0+h_n}/\sqrt{n}}{p_{\theta_0}}} - 1 \right) \to h^T i_{\theta_0}, \text{ in } L_2(P_{\theta_0}).$$

$$\Rightarrow$$

$$\sqrt{n}(\log p_{\theta_0+h_n}/\sqrt{n} - \log p_{\theta_0}) = 2\sqrt{n} \log(1 + W_n/2) \to_p h^T i_{\theta_0}. $$

$$\Rightarrow$$

$$E_{\theta_0} \left[\sqrt{n}(P_n - P)[\sqrt{n}(\log p_{\theta_0+h_n}/\sqrt{n} - \log p_{\theta_0}) - h^T i_{\theta_0}] \right] \to 0$$

$$Var_{\theta_0} \left[\sqrt{n}(P_n - P)[\sqrt{n}(\log p_{\theta_0+h_n}/\sqrt{n} - \log p_{\theta_0}) - h^T i_{\theta_0}] \right] \to 0. $$

$$\Rightarrow$$

$$\sqrt{n}(P_n - P)[\sqrt{n}(\log p_{\theta_0+h_n}/\sqrt{n} - \log p_{\theta_0}) - h^T i_{\theta_0}] \to_p 0.$$
From Step I in proving Theorem 4.1,
\[
\log \prod_{i=1}^{n} \frac{\log p_{\theta_0 + h_n/\sqrt{n}}}{\log p_{\theta_0}} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} h^T \dot{l}_{\theta_0}(X_i) - \frac{1}{2} h^T I(\theta_0) h + o_{p_{\theta_0}} (1).
\]
\[nE_{\theta_0} [\log p_{\theta_0 + h_n/\sqrt{n}} - \log p_{\theta_0}] \rightarrow -h^T I(\theta_0) h/2.\]

\[\Rightarrow\]
\[nP_n [\log p_{\theta_0 + h_n/\sqrt{n}} - \log p_{\theta_0}] = -\frac{1}{2} h_n^T I(\theta_0) h_n + h_n \sqrt{n} (P_n - P) [\dot{l}_{\theta_0}] + o_{p_{\theta_0}} (1).\]

Choose \(h_n = \sqrt{n}(\hat{\theta}_n - \theta_0) \) and \(h_n = I(\theta_0)^{-1} \sqrt{n}(P_n - P) [\dot{l}_{\theta_0}] \). \(\Rightarrow\)
\[nP_n [\log p_{\hat{\theta}_n} - \log p_{\theta_0}] = \frac{1}{2} \{\sqrt{n}(P_n - P) [\dot{l}_{\theta_0}]\}^T I(\theta_0)^{-1} \{\sqrt{n}(P_n - P) [\dot{l}_{\theta_0}]\} + o_{p_{\theta_0}} (1).\]
Comparing the above two equations:

\[
-\frac{1}{2} \left\{ \sqrt{n}(\hat{\theta}_n - \theta_0) + I(\theta_0)^{-1} \sqrt{n}(P_n - P)[\hat{\theta}_0] \right\}^T I(\theta_0)
\times \left\{ \sqrt{n}(\hat{\theta}_n - \theta_0) + I(\theta_0)^{-1} \sqrt{n}(P_n - P)[\hat{\theta}_0] \right\}
+ o_{p_{\theta_0}}(1) \geq 0.
\]

\[\Rightarrow\]

\[\sqrt{n}(\hat{\theta}_n - \theta_0) = -I(\theta_0)^{-1} \sqrt{n}(P_n - P)[\hat{\theta}_0] + o_{p_{\theta_0}}(1).\]
Theorem 5.4 For each θ in an open subset of Euclidean space. Let $\theta \mapsto \dot{l}_\theta(x) = \log p_\theta(x)$ be twice continuously differentiable for every x. Suppose $E_{\theta_0}[\ddot{l}_{\theta_0}] < \infty$ and $E[\dot{l}_{\theta_0}]$ exists and is nonsingular. Assume that the second partial derivative of $\dot{l}_\theta(x)$ is dominated by a fixed integrable function $F(x)$ for every θ in a neighborhood of θ_0. Suppose $\hat{\theta}_n \rightarrow_p \theta_0$. Then

$$\sqrt{n}(\hat{\theta}_n - \theta_0) = -(E_{\theta_0}[\ddot{l}_{\theta_0}])^{-1} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{l}_{\theta_0}(X_i) + o_{p_{\theta_0}}(1).$$
[comments]
Proof

\[\hat{\theta}_n \text{ solves } 0 = \sum_{i=1}^{n} \dot{i}_{\hat{\theta}}(X_i). \]

\[\Rightarrow \]

\[0 = \sum_{i=1}^{n} i_{\theta_0}(X_i) + \sum_{i=1}^{n} \ddot{i}_{\theta_0}(\hat{\theta}_n - \theta_0) + \frac{1}{2}(\hat{\theta}_n - \theta_0)^T \left\{ \sum_{i=1}^{n} l_{\hat{\theta}_n}^{(3)} \right\} (\hat{\theta}_n - \theta_0). \]

\[\Rightarrow \]

\[| \left\{ \frac{1}{n} \sum_{i=1}^{n} \ddot{i}_{\theta_0}(X_i) \right\} (\hat{\theta}_n - \theta_0) + \frac{1}{n} \sum_{i=1}^{n} i_{\theta_0}(X_i) | \leq \frac{1}{n} \sum_{i=1}^{n} |F(X_i)| O_p \left(\|\hat{\theta}_n - \theta_0\|^2 \right). \]

Using the fact that \((\hat{\theta}_n - \theta_0) = o_p(1),\)

\[\Rightarrow \]

\[\left\{ -\frac{1}{n} \sum_{i=1}^{n} \ddot{i}_{\theta_0}(X_i) + o_p(1) \right\} \sqrt{n}(\hat{\theta}_n - \theta_0) = -\frac{1}{\sqrt{n}} \sum_{i=1}^{n} l_{\theta_0}(X_i) + o_P \left(\sqrt{n}\|\hat{\theta}_n - \theta_0\| \right). \]
Computation of MLE

- Solve likelihood equation

\[\sum_{i=1}^{n} \hat{l}_{\theta}(X_i) = 0. \]

- Newton-Raphson iteration: at kth iteration,

\[\theta^{(k+1)} = \theta^{(k)} - \left\{ \frac{1}{n} \sum_{i=1}^{n} \hat{l}_{\theta^{(k)}}(X_i) \right\}^{-1} \left\{ \frac{1}{n} \sum_{i=1}^{n} \hat{l}_{\theta^{(k)}}(X_i) \right\}. \]

- Note \(- \frac{1}{n} \sum_{i=1}^{n} \hat{l}_{\theta^{(k)}}(X_i) \approx I(\theta^{(k)}). \Rightarrow \text{Fisher scoring algorithm:} \)

\[\theta^{(k+1)} = \theta^{(k)} + I(\theta^{(k)})^{-1} \left\{ \frac{1}{n} \sum_{i=1}^{n} \hat{l}_{\theta^{(k)}}(X_i) \right\}. \]
• Optimize the likelihood function

optimum search algorithm: grid search, quasi-Newton method (gradient decent algorithm), MCMC, simulated annealing
EM Algorithm of Missing Data

When part of data is missing or some mis-measured data is observed, a commonly used algorithm is called the *expectation-maximization* (EM) algorithm.

- **Framework of EM algorithm**
 - $Y = (Y_{mis}, Y_{obs})$.
 - R is a vector of 0/1 indicating which subjects are missing/not missing. Then $Y_{obs} = RY$.
 - the density function for the observed data (Y_{obs}, R)
 $$\int_{Y_{mis}} f(Y; \theta) P(R|Y) dY_{mis}.$$
[comments]
• **Missing mechanism**

Missing at random assumption (MAR): $P(R|Y) = P(R|Y_{obs})$ and $P(R|Y)$ does not depend on θ; i.e., the missing probability only depends on the observed data and it is informative about θ.

Under MAR,

$$\int_{Y_{mis}} f(Y; \theta)dY_{mis} P(R|Y).$$

We maximize

$$\int_{Y_{mis}} f(Y; \theta)dY_{mis} \quad \text{or} \quad \log \int_{Y_{mis}} f(Y; \theta)dY_{mis}$$
Details of EM algorithm

We start from any initial value of $\theta^{(1)}$ and use the following iterations. The kth iteration consists of both an E-step and an M-step:

E-step. We evaluate the conditional expectation

$$E \left[\log f(Y; \theta) | Y_{obs}, \theta^{(k)} \right].$$

$$E \left[\log f(Y; \theta) | Y_{obs}, \theta^{(k)} \right] = \frac{\int_{Y_{mis}} \left[\log f(Y; \theta) \right] f(Y; \theta^{(k)}) dY_{mis}}{\int_{Y_{mis}} f(Y; \theta^{(k)}) dY_{mis}}.$$
\textit{M-step.} We obtain \(\theta^{(k+1)} \) by maximizing

\[
E \left[\log f (Y; \theta) | Y_{\text{obs}}, \theta^{(k)} \right].
\]

We then iterate until convergence of \(\theta \); i.e., the difference between \(\theta^{(k+1)} \) and \(\theta^{(k)} \) is less than a given criteria.
• Rationale why EM works

Theorem 5.5 At each iteration of the EM algorithm,

\[
\log f(Y_{obs}; \theta^{(k+1)}) \geq \log f(Y_{obs}, \theta^{(k)})
\]

and the equality holds if and only if \(\theta^{(k+1)} = \theta^{(k)} \).
Proof

\[
E \left[\log f(Y; \theta^{(k+1)}) | Y_{obs}, \theta^{(k)} \right] \geq E \left[\log f(Y; \theta^{(k)}) | Y_{obs}, \theta^{(k)} \right].
\]

⇒

\[
E \left[\log f(Y_{mis} | Y_{obs}; \theta^{(k+1)}) | Y_{obs}, \theta^{(k)} \right] + \log f(Y_{obs}; \theta^{(k+1)})
\geq E \left[\log f(Y_{mis} | Y_{obs}, \theta^{(k)}) | Y_{obs}, \theta^{(k)} \right] + \log f(Y_{obs}; \theta^{(k)}).
\]

⇒ \log f(Y_{obs}; \theta^{(k+1)}) \geq \log f(Y_{obs}, \theta^{(k)}). \text{ Equality implies}

\[
\log f(Y_{mis} | Y_{obs}, \theta^{(k+1)}) = \log f(Y_{mis} | Y_{obs}, \theta^{(k)}),
\]

⇒ \log f(Y; \theta^{(k+1)}) = \log f(Y; \theta^{(k)}).
• **Incorporating Newton-Raphson in EM**

E-step. We evaluate the conditional expectation

\[
E\left[\frac{\partial}{\partial \theta} \log f(Y; \theta)|Y_{obs}, \theta^{(k)} \right]
\]

and

\[
E\left[\frac{\partial^2}{\partial \theta^2} \log f(Y; \theta)|Y_{obs}, \theta^{(k)} \right]
\]
[comments]
M-step. We obtain \(\theta^{(k+1)} \) by solving

\[
0 = E \left[\frac{\partial}{\partial \theta} \log f(Y; \theta) | Y_{obs}, \theta^{(k)} \right]
\]

using one-step Newton-Raphson iteration:

\[
\theta^{(k+1)} = \theta^{(k)} - \left\{ E \left[\frac{\partial^2}{\partial \theta^2} \log f(Y; \theta) | Y_{obs}, \theta^{(k)} \right] \right\}^{-1} \\
\times E \left[\frac{\partial}{\partial \theta} \log f(Y; \theta) | Y_{obs}, \theta^{(k)} \right] \bigg|_{\theta = \theta^{(k)}}.
\]
• Example

Suppose a random vector \(Y \) has a multinomial distribution with \(n = 197 \) and

\[
p = \left(\frac{1}{2} + \frac{\theta}{4}, \frac{1 - \theta}{4}, \frac{1 - \theta}{4}, \frac{\theta}{4} \right).
\]

Then the probability for \(Y = (y_1, y_2, y_3, y_4) \) is given by

\[
\frac{n!}{y_1!y_2!y_3!y_4!} \left(\frac{1}{2} + \frac{\theta}{4} \right)^{y_1} \left(\frac{1 - \theta}{4} \right)^{y_2} \left(\frac{1 - \theta}{4} \right)^{y_3} \left(\frac{\theta}{4} \right)^{y_4}.
\]

Suppose we observe \(Y = (125, 18, 20, 34) \). If we start with \(\theta^{(1)} = 0.5 \), after the convergence in the Newton-Raphson iteration, we obtain \(\theta^{(k)} = 0.6268215 \).
[comments]
EM algorithm: the full data is X has a multivariate normal distribution with n and the
\[p = (1/2, \theta/4, (1 - \theta)/4, (1 - \theta)/4, \theta/4). \]
\[Y = (X_1 + X_2, X_3, X_4, X_5). \]
The score equation for the complete data X is simple
\[
0 = \frac{X_2 + X_5}{\theta} - \frac{X_3 + X_4}{1 - \theta}.
\]

M-step of the EM algorithm needs to solve the equation
\[
0 = E \left[\frac{X_2 + X_5}{\theta} - \frac{X_3 + X_4}{1 - \theta} \mid Y, \theta^{(k)} \right];
\]
while the E-step evaluates the above expectation.

\[
E[X \mid Y, \theta^{(k)}] = (Y_1 \frac{1/2}{1/2 + \theta^{(k)}/4}, Y_1 \frac{\theta^{(k)}/4}{1/2 + \theta^{(k)}/4}, Y_2, Y_3, Y_4).
\]

\[
\theta^{(k+1)} = \frac{E[X_2 + X_5 \mid Y, \theta^{(k)}]}{E[X_2 + X_5 + X_3 + X_4 \mid Y, \theta^{(k)}]} = \frac{Y_1 \frac{\theta^{(k)}/4}{1/2 + \theta^{(k)}/4} + Y_4}{Y_1 \frac{\theta^{(k)}/4}{1/2 + \theta^{(k)}/4} + Y_2 + Y_3 + Y_4}.
\]

We start form $\theta^{(1)} = 0.5$.
<table>
<thead>
<tr>
<th>k</th>
<th>$\theta^{(k+1)}$</th>
<th>$\theta^{(k+1)} - \theta^{(k)}$</th>
<th>$\frac{\theta^{(k+1)} - \hat{\theta}_n}{\theta^{(k)} - \hat{\theta}_n}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.5000000000</td>
<td>.126821498</td>
<td>.1465</td>
</tr>
<tr>
<td>1</td>
<td>.608247423</td>
<td>.018574075</td>
<td>.1346</td>
</tr>
<tr>
<td>2</td>
<td>.624321051</td>
<td>.002500447</td>
<td>.1330</td>
</tr>
<tr>
<td>3</td>
<td>.626488879</td>
<td>.000332619</td>
<td>.1328</td>
</tr>
<tr>
<td>4</td>
<td>.626777323</td>
<td>.000044176</td>
<td>.1328</td>
</tr>
<tr>
<td>5</td>
<td>.626815632</td>
<td>.000005866</td>
<td>.1328</td>
</tr>
<tr>
<td>6</td>
<td>.626820719</td>
<td>.00000779</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>.626821395</td>
<td>.00000104</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.626821484</td>
<td>.00000014</td>
<td></td>
</tr>
</tbody>
</table>
• Conclusions

– the EM converges and the result agrees with what is obtained form the Newton-Raphson iteration;

– the EM convergence is linear as
\[(\theta^{(k+1)} - \hat{\theta}_n)/(\theta^{(k)} - \hat{\theta}_n)\] becomes a constant at convergence;

– the convergence in the Newton-Raphson iteration is quadratic in the sense
\[(\theta^{(k+1)} - \hat{\theta}_n)/(\theta^{(k)} - \hat{\theta}_n)^2\] becomes a constant at convergence;

– the EM is much less complex than the Newton-Raphson iteration and this is the advantage of using the EM algorithm.
Another example

- the example of exponential mixture model: Suppose $Y \sim P_\theta$ where P_θ has density

$$p_\theta(y) = \left\{ p \lambda e^{-\lambda y} + (1 - p) \mu e^{-\mu y} \right\} I(y > 0)$$

and $\theta = (p, \lambda, \mu) \in (0, 1) \times (0, \infty) \times (0, \infty)$. Consider estimation of θ based on Y_1, \ldots, Y_n i.i.d $p_\theta(y)$. Solving the likelihood equation using the Newton-Raphson is very computationally involved.
EM algorithm: the complete data $X = (Y, \Delta) \sim p_\theta(x)$ where

$$p_\theta(x) = p_\theta(y, \delta) = (pye^{-\lambda y})^\delta ((1 - p)\mu e^{-\mu y})^{1-\delta}.$$

This is natural from the following mechanism: Δ is a Bernoulli variable with $P(\Delta = 1) = p$ and we generate Y from $\text{Exp}(\lambda)$ if $\Delta = 1$ and from $\text{Exp}(\mu)$ if $\Delta = 0$. Thus, Δ is missing. The score equation for θ based on X is equal to

$$0 = \hat{l}_p(X_1, \ldots, X_n) = \sum_{i=1}^{n} \left\{ \frac{\Delta_i}{p} - \frac{1 - \Delta_i}{1 - p} \right\},$$

$$0 = \hat{l}_\lambda(X_1, \ldots, X_n) = \sum_{i=1}^{n} \Delta_i \left(\frac{1}{\lambda} - Y_i \right),$$

$$0 = \hat{l}_\mu(X_1, \ldots, X_n) = \sum_{i=1}^{n} (1 - \Delta_i) \left(\frac{1}{\mu} - Y_i \right).$$
M-step solves the equations

\[0 = \sum_{i=1}^{n} E \left[\left\{ \frac{\Delta_i}{p} - \frac{1 - \Delta_i}{1 - p} \right\} | Y_1, \ldots, Y_n, p^{(k)}, \lambda^{(k)}, \mu^{(k)} \right] \]

\[= \sum_{i=1}^{n} E \left[\left\{ \frac{\Delta_i}{p} - \frac{1 - \Delta_i}{1 - p} \right\} | Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)} \right], \]

\[0 = \sum_{i=1}^{n} E \left[\Delta_i \left(\frac{1}{\lambda} - Y_i \right) | Y_1, \ldots, Y_n, p^{(k)}, \lambda^{(k)}, \mu^{(k)} \right] \]

\[= \sum_{i=1}^{n} E \left[\Delta_i \left(\frac{1}{\lambda} - Y_i \right) | Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)} \right], \]

\[0 = \sum_{i=1}^{n} E \left[(1 - \Delta_i) \left(\frac{1}{\mu} - Y_i \right) | Y_1, \ldots, Y_n, p^{(k)}, \lambda^{(k)}, \mu^{(k)} \right] \]

\[= \sum_{i=1}^{n} E \left[(1 - \Delta_i) \left(\frac{1}{\mu} - Y_i \right) | Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)} \right]. \]
This immediately gives

\[p^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} E[\Delta_i|Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)}], \]

\[\lambda^{(k+1)} = \frac{\sum_{i=1}^{n} E[\Delta_i|Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)}]}{\sum_{i=1}^{n} Y_i E[\Delta_i|Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)}]}, \]

\[\mu^{(k+1)} = \frac{\sum_{i=1}^{n} E[(1 - \Delta_i)|Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)}]}{\sum_{i=1}^{n} Y_i E[(1 - \Delta_i)|Y_i, p^{(k)}, \lambda^{(k)}, \mu^{(k)}]}. \]

The conditional expectation

\[E[\Delta|Y, \theta] = \frac{p\lambda e^{-\lambda Y}}{p\lambda e^{-\lambda Y} + (1 - p)\mu e^{-\mu Y}}. \]

As seen above, the EM algorithm facilitates the computation.
[comments]
Information Calculation in EM

- Notation
 - i_c as the score function for θ in the full data;
 - $i_{mis|obs}$ as the score for θ in the conditional distribution of Y_{mis} given Y_{obs};
 - i_{obs} as the score for θ in the distribution of Y_{obs}.

$$i_c = i_{mis|obs} + i_{obs}.$$

$$Var(i_c) = Var(E[i_c|Y_{obs}]) + E[Var(i_c|Y_{obs})].$$
[comments]
• **Information in the EM algorithm**

We obtain the following Louis formula

\[I_c(\theta) = I_{obs}(\theta) + E[I_{mis|obs}(\theta, Y_{obs})]. \]

Thus, the complete information is the summation of the observed information and the missing information.

One can even show that when the EM converges, the convergence rate is linear, i.e., \((\theta^{(k+1)} - \hat{\theta}_n)/(\theta^{(k)} - \hat{\theta}_n)\) approximates \(1 - I_{obs}(\hat{\theta}_n)/I_c(\hat{\theta}_n)\).
Nonparametric Maximum Likelihood Estimation

• **First example**

Let $X_1, ..., X_n$ be i.i.d random variables with common distribution F, where F is any unknown distribution function. The likelihood function for F is given by

$$L_n(F) = \prod_{i=1}^{n} f(X_i),$$

where $f(X_i)$ is the density function of F with respect to some dominating measure.

However, the maximum of $L_n(F)$ does not exists.
We instead maximize an alternative function

$$\tilde{L}_n(F) = \prod_{i=1}^{n} F\{X_i\},$$

where $F\{X_i\}$ denotes the value $F(X_i) - F(X_i-)$.
• Second example

Suppose $X_1, ..., X_n$ are i.i.d F and $Y_1, ..., Y_n$ are i.i.d G. We observe i.i.d pairs $(Z_1, \Delta_1), ..., (Z_n, \Delta_n)$, where $Z_i = \min(X_i, Y_i)$ and $\Delta_i = I(X_i \leq Y_i)$. We can think X_i as survival time and Y_i as censoring time. Then it is easy to calculate the joint distributions for (Z_i, Δ_i), $i = 1, ..., n$, yielding

$$L_n(F, G') = \prod_{i=1}^{n} \left\{ f(Z_i)(1 - G(Z_i)) \right\}^{\Delta_i} \left\{ (1 - F(Z_i))g(Z_i) \right\}^{1-\Delta_i}$$

$L_n(F, G')$ does not have a maximum so we consider an alternative function

$$\prod_{i=1}^{n} \left\{ F\{Z_i\}(1 - G(Z_i)) \right\}^{\Delta_i} \left\{ (1 - F(Z_i))G\{Z_i\} \right\}^{1-\Delta_i}.$$
[comments]
• Third example

Suppose T is survival time and Z is a covariate. Assume $T|Z$ has a conditional hazard function

$$\lambda(t|Z) = \lambda(t)e^{\theta^T Z}.$$

Then the likelihood function from n i.i.d (T_i, Z_i), $i = 1, ..., n$, is given by

$$L_n(\theta, \Lambda) = \prod_{i=1}^{n} \left\{ \lambda(T_i) \exp\{-\Lambda(T_i)e^{\theta^T Z_i}\} f(Z_i) \right\}.$$

Note $f(Z_i)$ is not informative about θ and λ so we can discard it from the likelihood function. Again, we replace
\(\lambda \{ T_i \} \) by \(\Lambda \{ T_i \} \) and obtain a modified function

\[
\tilde{L}_n(\theta, \Lambda) = \prod_{i=1}^{n} \left\{ \Lambda \{ T_i \} \exp \left\{ -\Lambda (T_i) e^{\theta^T Z_i} \right\} \right\}.
\]

Let \(p_i = \Lambda \{ T_i \} \) and maximize

\[
\prod_{i=1}^{n} \left\{ p_i \exp \left\{ -\left(\sum_{Y_j \leq Y_i} p_j \right) e^{\theta^T Z_i} \right\} \right\}
\]

or its logarithm as

\[
\sum_{i=1}^{n} \left\{ \theta^T Z_i - \exp \{ \theta^T Z_i \} \sum_{Y_j \leq Y_i} p_j + \log p_j \right\}.
\]
[comments]
Fourth example

We consider X_1, \ldots, X_n are i.i.d F and Y_1, \ldots, Y_n are i.i.d G. We only observe (Y_i, Δ_i) where $\Delta_i = I(X_i \leq Y_i)$ for $i = 1, \ldots, n$. This data is one type of interval censored data (or current status data). The likelihood for the observations is

$$\prod_{i=1}^{n} \left\{ F(Y_i)^{\Delta_i} (1 - F(Y_i))^{1-\Delta_i} g(Y_i) \right\}.$$

To derive the NPMLE for F and G, we instead maximize

$$\prod_{i=1}^{n} \left\{ P_i^{\Delta_i} (1 - P_i)^{1-\Delta_i} q_i \right\},$$

subject to the constraint that $\sum q_i = 1$ and $0 \leq P_i \leq 1$ increases with Y_i.

Clearly, \(\hat{q}_i = 1/n \) (suppose \(Y_i \) are all different). This constrained maximization turns out to be solved by the following steps:

(i) Plot the points \((i, \sum_{j \leq Y_i} \Delta_j), i = 1, ..., n \). This is called the cumulative sum diagram.

(ii) Form the \(H^*(t) \), the greatest the convex minorant of the cumulative sum diagram.

(iii) Let \(\hat{P}_i \) be the left derivative of \(H^* \) at \(i \).

Then \((\hat{P}_1, ..., \hat{P}_n) \) maximizes the objective function.
• **Summary of NPMLE**

 – The NPMLE is a generalization of the maximum likelihood estimation in the parametric model to semiparametric or nonparametric models.

 – We replace the functional parameter by an empirical function with jumps only at observed data and maximize a modified likelihood function.

 – Both computation of the NPMLE and the asymptotic property of the NPMLE can be difficult and vary for different specific problems.
[comments]
Alternative Efficient Estimation

• One-step efficient estimation

 - start from a strongly consistent estimator for parameter θ, denoted by $\hat{\theta}_n$, assuming that $|\hat{\theta}_n - \theta_0| = O_p(n^{-1/2})$.

 - One-step procedure is a one-step Newton-Raphson iteration in solving the likelihood score equation:

 $$\hat{\theta}_n = \hat{\theta}_n - \left\{ \ddot{l}_n(\hat{\theta}_n) \right\}^{-1} \dot{l}_n(\hat{\theta}_n),$$

 where $\dot{l}_n(\theta)$ is the score function and $\ddot{l}_n(\theta)$ is the derivative of $\dot{l}_n(\theta)$.

[comments]
• Result about the one-step estimation

Theorem 5.6 Let \(l_\theta(X) \) be the log-likelihood function of \(\theta \). Assume that there exists a neighborhood of \(\theta_0 \) such that in this neighborhood, \(|l_\theta^{(3)}(X)| \leq F(X) \) with \(E[F(X)] < \infty \). Then

\[
\sqrt{n}(\hat{\theta}_n - \theta_0) \rightarrow_d N(0, I(\theta_0)^{-1}),
\]

where \(I(\theta_0) \) is the Fisher information.
\textbf{Proof} Since $\tilde{\theta}_n \to_{a.s.} \theta_0$, we perform the Taylor expansion on the right-hand side of the one-step equation and obtain

$$\hat{\theta}_n = \tilde{\theta}_n - \left\{ \tilde{i}_n(\tilde{\theta}_n) \right\} \left\{ i_n(\theta_0) + \tilde{i}_n(\theta^*)(\tilde{\theta}_n - \theta_0) \right\}$$

where θ^* is between $\tilde{\theta}_n$ and θ_0. \Rightarrow

$$\hat{\theta}_n - \theta_0 = \left[I - \left\{ \tilde{i}_n(\tilde{\theta}_n) \right\}^{-1} \tilde{i}_n(\theta^*) \right] (\tilde{\theta}_n - \theta_0) - \left\{ \tilde{i}_n(\tilde{\theta}_n) \right\} i_n(\theta_0).$$

On the other hand, by the condition that $|l^{(3)}_\theta(X)| \leq F(X)$ with $E[F(X)] < \infty$,

$$\frac{1}{n} \tilde{i}_n(\theta^*) \to_{a.s.} E[\tilde{l}_\theta(X)], \quad \frac{1}{n} \tilde{i}_n(\tilde{\theta}_n) \to_{a.s.} E[\tilde{l}_\theta(X)].$$

\Rightarrow

$$\hat{\theta}_n - \theta_0 = o_p(|\tilde{\theta}_n - \theta_0|) - \left\{ E[\tilde{l}_\theta(X)] + o_p(1) \right\}^{-1} \frac{1}{n} i_n(\theta_0).$$
• Slightly different one-step estimation

\[\hat{\theta}_n = \tilde{\theta}_n + I(\tilde{\theta}_n)^{-1}i(\tilde{\theta}_n). \]

• Other efficient estimation

the Bayesian estimation method (posterior mode, minimax estimator etc.)
• **Conclusions**

 – The maximum likelihood approach provides a natural and simple way of deriving an efficient estimator.

 – Other estimation approaches are possible for efficient estimation such as one-step estimation, Bayesian estimation etc.

 – Generalization from parametric models to semiparametric or nonparametric models. How?
READING MATERIALS: Ferguson, Sections 16-20, Lehmann and Casella, Sections 6.2-6.7