Introduction

• Why large sample theory
 – studying small sample properties is usually difficult and complicated
 – large sample theory studies the limit behavior of a sequence of random variables, say X_n.
 – example: $\bar{X}_n \to \mu, \sqrt{n}(\bar{X}_n - \mu)$
Modes of Convergence

- Convergence almost surely

Definition 3.1 X_n is said to converge almost surely to X, denoted by $X_n \to_{a.s.} X$, if there exists a set $A \subset \Omega$ such that $P(A^c) = 0$ and for each $\omega \in A$, $X_n(\omega) \to X(\omega)$ in real space.
[comments]
• Equivalent condition

\[\{ \omega : X_n(\omega) \rightarrow X(\omega) \}^c \]

\[= \bigcup_{\epsilon > 0} \bigcap_n \{ \omega : \sup_{m \geq n} |X_m(\omega) - X(\omega)| > \epsilon \} \]

\[\Rightarrow X_n \rightarrow_{a.s.} X \text{ iff } \]

\[P(\sup_{m \geq n} |X_m - X| > \epsilon) \rightarrow 0 \]
• Convergence in probability

Definition 3.2 X_n is said to *converge in probability* to X, denoted by $X_n \rightarrow_p X$, if for every $\epsilon > 0$,

$$P(|X_n - X| > \epsilon) \to 0.$$
[comments]
• Convergence in moments/means

Definition 3.3 \(X_n\) is said to converge in \(r\)th mean to \(X\), denoted by \(X_n \rightarrow_r X\), if

\[
E[|X_n - X|^r] \rightarrow 0 \quad \text{as} \quad n \rightarrow \infty
\]

for functions \(X_n, X \in L_r(P)\), where \(X \in L_r(P)\) means \(\int |X|^r \, dP < \infty\).
• Convergence in distribution

Definition 3.4 X_n is said to converge in distribution of X, denoted by $X_n \rightarrow_d X$ or $F_n \rightarrow_d F$ (or $L(X_n) \rightarrow L(X)$ with L referring to the “law” or “distribution”), if the distribution functions F_n and F of X_n and X satisfy $F_n(x) \rightarrow F(x)$ as $n \rightarrow \infty$ for each continuity point x of F.
[comments]
• Uniform integrability

Definition 3.5 A sequence of random variables \(\{X_n\} \) is **uniformly integrable** if

\[
\lim_{\lambda \to \infty} \lim_{n \to \infty} \sup E \{|X_n| I(|X_n| \geq \lambda)\} = 0.
\]
• A note

– Convergence almost surely and convergence in probability are the same as we defined in measure theory.

– Two new definitions are
 * convergence in rth mean
 * convergence in distribution
● “convergence in distribution”
 - is very different from the others
 - example: a sequence $X, Y, X, Y, X, Y, ...$ where X and Y are $N(0, 1)$; the sequence converges in distribution to $N(0, 1)$ but the other modes do not hold.
 - “convergence in distribution” is important for asymptotic statistical inference.
• Relationship among different modes

Theorem 3.1 A. If $X_n \to_{a.s.} X$, then $X_n \to_p X$.
B. If $X_n \to_p X$, then $X_{n_k} \to_{a.s.} X$ for some subsequence X_{n_k}.
C. If $X_n \to_r X$, then $X_n \to_p X$.
D. If $X_n \to_p X$ and $|X_n|^r$ is uniformly integrable, then $X_n \to_r X$.
E. If $X_n \to_p X$ and $\limsup_n E|X_n|^r \leq E|X|^r$, then $X_n \to_r X$.
[comments]
F. If $X_n \to_r X$, then $X_n \to_{r'} X$ for any $0 < r' \leq r$.
G. If $X_n \to_p X$, then $X_n \to_d X$.
H. $X_n \to_p X$ if and only if for every subsequence $\{X_{n_k}\}$ there exists a further subsequence $\{X_{n_k,l}\}$ such that $X_{n_k,l} \to_{a.s.} X$.
I. If $X_n \to_d c$ for a constant c, then $X_n \to_p c$.
\[\Delta_n \xrightarrow{\text{a.s.}} \Delta \]

for a subsequence

\[\Delta_n \xrightarrow{\text{p}} \Delta \]

\[\Delta_n \xrightarrow{d} \Delta \]

\[|\Delta_n| \text{ uniformly integrable} \]

\[\lim_{n \to \infty} E[|\Delta_n|^{r}] \leq E[|\Delta|^{r}] \]

\[r' < r \]
[comments]
Proof

A and B follow from the results in measure theory.

Prove C. *Markov inequality*: for any increasing function $g(\cdot)$ and random variable Y, $P(|Y| > \epsilon) \leq E[\frac{g(|Y|)}{g(\epsilon)}]$.

$\Rightarrow P(|X_n - X| > \epsilon) \leq E[\frac{|X_n - X|^r}{\epsilon^r}] \to 0.$
[comments]
Prove D. It is sufficient to show that for any subsequence of \(\{X_n\} \), there exists a further subsequence \(\{X_{n_k}\} \) such that

\[
E|X_{n_k} - X|^r \to 0.
\]

For any subsequence of \(\{X_n\} \), from B, there exists a further subsequence \(\{X_{n_k}\} \) such that \(X_{n_k} \to_{a.s.} X \). For any \(\epsilon \), there exists \(\lambda \) such that \(\limsup_{n_k} E[|X_{n_k}|^r I(|X_{n_k}|^r \geq \lambda)] < \epsilon \).

Particularly, choose \(\lambda \) such that

\[
P(|X|^r = \lambda) = 0
\]

\[
\Rightarrow |X_{n_k}|^r I(|X_{n_k}|^r \geq \lambda) \to_{a.s.} |X|^r I(|X|^r \geq \lambda).
\]

\[
\Rightarrow \text{By Fatou’s Lemma,}
\]

\[
E[|X|^r I(|X|^r \geq \lambda)] \leq \limsup_{n_k} E[|X_{n_k}|^r I(|X_{n_k}|^r \geq \lambda)] < \epsilon.
\]
\[
\Rightarrow
\]

\[
E[|X_{n_k} - X|^r] \\
\leq E[|X_{n_k} - X|^r I(|X_{n_k}|^r < 2\lambda, |X|^r < 2\lambda)] \\
+ E[|X_{n_k} - X|^r I(|X_{n_k}|^r \geq 2\lambda, \text{ or }, |X|^r \geq 2\lambda)] \\
\leq E[|X_{n_k} - X|^r I(|X_{n_k}|^r < 2\lambda, |X|^r < 2\lambda)] \\
+ 2^r E[(|X_{n_k}|^r + |X|^r) I(|X_{n_k}|^r \geq 2\lambda, \text{ or }, |X|^r \geq 2\lambda)],
\]

where the last inequality follows from the inequality
\[
(x + y)^r \leq 2^r (\max(x, y))^r \leq 2^r (x^r + y^r), x \geq 0, y \geq 0.
\]

When \(n_k\) is large, the second term is bounded by
\[
2 \times 2^r \left\{ E[|X_{n_k}|^r I(|X_{n_k}| \geq \lambda)] + E[|X|^r I(|X| \geq \lambda)] \right\} \leq 2^{r+1} \epsilon.
\]

\[
\Rightarrow \limsup_n E[|X_{n_k} - X|^r] \leq 2^{r+1} \epsilon.
\]
Prove E. It is sufficient to show that for any subsequence of \(\{X_n\} \), there exists a further subsequence \(\{X_{n_k}\} \) such that
\[
E[|X_{n_k} - X|^r] \rightarrow 0.
\]

For any subsequence of \(\{X_n\} \), there exists a further subsequence
\(\{X_{n_k}\} \) such that \(X_{n_k} \rightarrow_{a.s.} X \). Define
\[
Y_{n_k} = 2^r (|X_{n_k}|^r + |X|^r) - |X_{n_k} - X|^r \geq 0.
\]

⇒ By the Fatou’s Lemma,
\[
\int \liminf_{n_k} Y_{n_k} dP \leq \liminf_{n_k} \int Y_{n_k} dP.
\]
It is equivalent to
\[
2^{r+1} E[|X|^r] \leq \liminf_{n_k} \left\{ 2^r E[|X_{n_k}|^r] + 2^r E[|X|^r] - E[|X_{n_k} - X|^r] \right\}.
\]
[comments]
Prove F. The Hölder inequality:

\[
\int |f(x)g(x)| \, d\mu \leq \left(\int |f(x)|^p \, d\mu(x) \right)^{1/p} \left(\int |g(x)|^q \, d\mu(x) \right)^{1/q},
\]

\[
\frac{1}{p} + \frac{1}{q} = 1.
\]

Choose \(\mu = P, f = |X_n - X|^{r'}, g \equiv 1 \) and \(p = r/r', q = r/(r - r') \) in the Hölder inequality

\[\Rightarrow \]

\[
E[|X_n - X|^{r'}] \leq E[|X_n - X|^{r}]^{r'/r} \to 0.
\]
[comments]
Prove G. $X_n \rightarrow_p X$. If $P(X = x) = 0$, then for any $\epsilon > 0$,

$$P(|I(X_n \leq x) - I(X \leq x)| > \epsilon)$$

$$= P(|I(X_n \leq x) - I(X \leq x)| > \epsilon, |X - x| > \delta)$$

$$+ P(|I(X_n \leq x) - I(X \leq x)| > \epsilon, |X - x| \leq \delta)$$

$$\leq P(X_n \leq x, X > x + \delta) + P(X_n > x, X < x - \delta)$$

$$+ P(|X - x| \leq \delta)$$

$$\leq P(|X_n - X| > \delta) + P(|X - x| \leq \delta).$$

The first term converges to zero since $X_n \rightarrow_p X$.

The second term can be arbitrarily small if δ is small, since

$$\lim_{\delta \to 0} P(|X - x| \leq \delta) = P(X = x) = 0.$$

$\Rightarrow I(X_n \leq x) \rightarrow_p I(X \leq x)$

$\Rightarrow F_n(x) = E[I(X_n \leq x)] \rightarrow E[I(X \leq x)] = F(x).$
Prove H. One direction follows from B.

To prove the other direction, use the contradiction. Suppose there exists $\epsilon > 0$ such that $P(|X_n - X| > \epsilon)$ does not converge to zero.

\Rightarrow find a subsequence $\{X_{n'}\}$ such that $P(|X_{n'} - X| > \epsilon) > \delta$ for some $\delta > 0$.

However, by the condition, there exists a further subsequence $X_{n''}$ such that $X_{n''} \to_{a.s.} X$ then $X_{n''} \to_{p} X$ from A. Contradiction!
[comments]
Prove I. Let $X \equiv c$.

\[P(|X_n - c| > \epsilon) \leq 1 - F_n(c + \epsilon) + F_n(c - \epsilon) \]
\[\rightarrow 1 - F_X(c + \epsilon) + F(c - \epsilon) = 0. \]
• Some counter-examples

(Example 1) Suppose that X_n is degenerate at a point $1/n$; i.e., $P(X_n = 1/n) = 1$. Then X_n converges in distribution to zero. Indeed, X_n converges almost surely.
(Example 2) X_1, X_2, \ldots are i.i.d with standard normal distribution. Then $X_n \to_d X_1$ but X_n does not converge in probability to X_1.
[comments]
(Example 3) Let Z be a random variable with a uniform distribution in $[0, 1]$. Let

$$X_n = I(m2^{-k} \leq Z < (m + 1)2^{-k})$$

when $n = 2^k + m$ where $0 \leq m < 2^k$. Then it is shown that X_n converges in probability to zero but not almost surely. This example is already given in the second chapter.
(Example 4) Let Z be $Uniform(0, 1)$ and let $X_n = 2^n I(0 \leq Z < 1/n)$. Then $E[|X_n|^r] \to \infty$ but X_n converges to zero almost surely.
[comments]
• Result for convergence in rth mean

Theorem 3.2 (Vitali’s theorem) Suppose that $X_n \in L_r(P)$, i.e., $\|X_n\|_r < \infty$, where $0 < r < \infty$ and $X_n \to_p X$. Then the following are equivalent:

A. $\{|X_n|_r\}$ are uniformly integrable.

B. $X_n \to_r X$.

C. $E[|X_n|^r] \to E[|X|^r]$.
• One sufficient condition for uniform integrability

 - Liapunov condition: there exists a positive constant ϵ_0 such that $\limsup_n E[|X_n|^{r+\epsilon_0}] < \infty$

 $$E[|X_n|^r I(|X_n|^r \geq \lambda)] \leq \frac{E[|X_n|^{r+\epsilon_0}]}{\lambda^{\epsilon_0}}$$
[comments]
Integral inequalities

- **Young’s inequality**

\[|ab| \leq \frac{|a|^p}{p} + \frac{|b|^q}{q}, \quad a, b > 0, \]

where the equality holds if and only if \(a = b \).

\(\log x \) is concave:

\[\log\left(\frac{1}{p}|a|^p + \frac{1}{q}|b|^q\right) \geq \frac{1}{p} \log |a|^p + \frac{1}{q} \log |b|. \]

Geometric interpretation (insert figure here):
[comments]
• Hölder inequality

\[\int |f(x)g(x)|d\mu(x) \leq \left\{ \int |f(x)|^p d\mu(x) \right\}^{\frac{1}{p}} \left\{ \int |g(x)|^q d\mu(x) \right\}^{\frac{1}{q}} \]

- in Young’s inequality, let
 \[a = \frac{f(x)}{\left\{ \int |f(x)|^p d\mu(x) \right\}^{\frac{1}{p}}} \]
 \[b = \frac{g(x)}{\left\{ \int |g(x)|^q d\mu(x) \right\}^{\frac{1}{q}}} \]

- when \(\mu = P \) and \(f = X(\omega), g = 1, \mu_r^{s-t} \mu_t^{r-s} \geq \mu_s^{r-t} \)
where \(\mu_r = E[|X|^r] \) and \(r \geq s \geq t \geq 0 \).

- when \(p = q = 2 \), obtain Cauchy-Schwartz inequality:

\[\int |f(x)g(x)|d\mu(x) \leq \left\{ \int f(x)^2 d\mu(x) \right\}^{\frac{1}{2}} \left\{ \int g(x)^2 d\mu(x) \right\}^{\frac{1}{2}} . \]
[comments]
• **Minkowski’s inequality** \(r > 1 \),

\[
\|X + Y\|_r \leq \|X\|_r + \|Y\|_r.
\]

– derivation:

\[
E[|X + Y|^r] \leq E[(|X| + |Y|)|X + Y|^{r-1}]
\]

\[
\leq E[|X|^r]^{1/r} E[|X+Y|^r]^{1-1/r} + E[|Y|^r]^{1/r} E[|X+Y|^r]^{1-1/r}.
\]

– \(\| \cdot \|_r \) in fact is a norm in the linear space

\{X : \|X\|_r < \infty\}. Such a normed space is denoted as

\(L_r(P) \).
• **Markov’s inequality**

\[P(|X| \geq \epsilon) \leq \frac{E[g(|X|)]}{g(\epsilon)} , \]

where \(g \geq 0 \) is an increasing function in \([0, \infty)\).

- Derivation:

\[P(|X| \geq \epsilon) \leq P(g(|X|) \geq g(\epsilon)) \]

\[= E[I(g(|X|) \geq g(\epsilon))] \leq E\left[\frac{g(|X|)}{g(\epsilon)}\right]. \]

- When \(g(x) = x^2 \) and \(X \) replaced by \(X - \mu \), obtain **Chebyshev’s inequality**:

\[P(|X - \mu| \geq \epsilon) \leq \frac{Var(X)}{\epsilon^2}. \]
• **Application of Vitali’s theorem**

 - Y_1, Y_2, \ldots are i.i.d with mean μ and variance σ^2. Let $X_n = \bar{Y}_n$.

 - By Chebyshev’s inequality,
 \[
P(|X_n - \mu| > \epsilon) \leq \frac{\text{Var}(X_n)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \to 0.
 \]
 \[\Rightarrow X_n \to_p \mu.\]

 - From the Liapunov condition with $r = 1$ and $\epsilon_0 = 1$,
 \[|X_n - \mu| \text{ satisfies the uniform integrability condition} \]
 \[\Rightarrow E[|X_n - \mu|] \to 0.\]
[comments]
Convergence in Distribution

“Convergence in distribution is the most important mode of convergence in statistical inference.”
[comments]
Equivalent conditions

Theorem 3.3 (Portmanteau Theorem) The following conditions are equivalent.

(a). X_n converges in distribution to X.
(b). For any bounded continuous function $g(\cdot)$, $E[g(X_n)] \to E[g(X)]$.
(c). For any open set G in \mathbb{R}, $\liminf_n P(X_n \in G) \geq P(X \in G)$.
(d). For any closed set F in \mathbb{R}, $\limsup_n P(X_n \in F) \leq P(X \in F)$.
(e). For any Borel set O in \mathbb{R} with $P(X \in \partial O) = 0$ where ∂O is the boundary of O, $P(X_n \in O) \to P(X \in O)$.
Proof

(a)⇒(b). Without loss of generality, assume $|g(x)| \leq 1$. We choose $[-M, M]$ such that $P(|X| = M) = 0$.

Since g is continuous in $[-M, M]$, g is uniformly continuous in $[-M, M]$.

⇒ Partition $[-M, M]$ into finite intervals $I_1 \cup \ldots \cup I_m$ such that within each interval I_k, $\max_{I_k} g(x) - \min_{I_k} g(x) \leq \epsilon$ and X has no mass at all the endpoints of I_k (why?).
[comments]
Therefore, if we choose any point \(x_k \in I_k, \ k = 1, \ldots, m, \)

\[
|E[g(X_n)] - E[g(X)]| \\
\leq \ E[|g(X_n)|I(|X_n| > M)] + E[|g(X)|I(|X| > M)] \\
+ |E[g(X_n)I(|X_n| \leq M)] - \sum_{k=1}^{m} g(x_k)P(X_n \in I_k)| \\
+ |\sum_{k=1}^{m} g(x_k)P(X_n \in I_k) - \sum_{k=1}^{m} g(x_k)P(X \in I_k)| \\
+ |E[g(X)I(|X| \leq M)] - \sum_{k=1}^{m} g(x_k)P(X \in I_k)| \\
\leq \ P(|X_n| > M) + P(|X| > M) \\
+ 2\epsilon + \sum_{k=1}^{m} |P(X_n \in I_k) - P(X \in I_k)|.
\]

\[\Rightarrow \ \limsup_{n} |E[g(X_n)] - E[g(X)]| \leq 2P(|X| > M) + 2\epsilon. \text{ Let } M \rightarrow \infty \text{ and } \epsilon \rightarrow 0.\]
(b)\Rightarrow(c). For any open set G, define $g(x) = 1 - \frac{\epsilon}{\epsilon + d(x, G^c)}$, where $d(x, G^c)$ is the minimal distance between x and G^c, $\inf_{y \in G^c} |x - y|$.

For any $y \in G^c$, $d(x_1, G^c) - |x_2 - y| \leq |x_1 - y| - |x_2 - y| \leq |x_1 - x_2|$,
$\Rightarrow d(x_1, G^c) - d(x_2, G^c) \leq |x_1 - x_2|$.
$\Rightarrow |g(x_1) - g(x_2)| \leq \epsilon^{-1}|d(x_1, G^c) - d(x_2, G^c)| \leq \epsilon^{-1}|x_1 - x_2|$.
$\Rightarrow g(x)$ is continuous and bounded.
$\Rightarrow E[g(X_n)] \to E[g(X)]$.

Note $0 \leq g(x) \leq I_G(x)$
\Rightarrow
$\liminf_n P(X_n \in G) \geq \liminf_n E[g(X_n)] \to E[g(X)]$.

Let $\epsilon \to 0 \Rightarrow E[g(X)]$ converges to $E[I(X \in G)] = P(X \in G)$.

(c)\Rightarrow(d). This is clear by taking complement of F.
[comments]
(d) ⇒ (e). For any O with $P(X \in \partial O) = 0$,

$$\limsup_{n} P(X_n \in O) \leq \limsup_{n} P(X_n \in \bar{O}) \leq P(X \in \bar{O}) = P(X \in O),$$

and

$$\liminf_{n} P(X_n \in O) \geq \liminf_{n} P(X_n \in O^\circ) \geq P(X \in O^\circ) = P(X \in O).$$

(e) ⇒ (a). Choose $O = (-\infty, x]$ with $P(X \in \partial O) = P(X = x) = 0$.
• Counter-examples

 – Let $g(x) = x$, a continuous but unbounded function. Let X_n be a random variable taking value n with probability $1/n$ and value 0 with probability $(1 - 1/n)$. Then $X_n \to_d 0$. However, $E[g(X)] = 1$ does not converge to 0.

 – The continuity at boundary in (e) is also necessary: let X_n be degenerate at $1/n$ and consider $O = \{x : x > 0\}$. Then $P(X_n \in O) = 1$ but $X_n \to_d 0$.
Weak Convergence and Characteristic Functions

Theorem 3.4 (Continuity Theorem) Let ϕ_n and ϕ denote the characteristic functions of X_n and X respectively. Then $X_n \rightarrow_d X$ is equivalent to $\phi_n(t) \rightarrow \phi(t)$ for each t.
[comments]
Proof

To prove \Rightarrow direction, from (b) in Theorem 3.1,

$$\phi_n(t) = E[e^{itX_n}] \to E[e^{itX}] = \phi(t).$$

The proof of \Leftarrow direction consists of a few tricky constructions (skipped).
One simple example $X_1, ..., X_n \sim Bernoulli(p)$

$$
\phi_{\bar{X}_n}(t) = E[e^{it(X_1 + ... + X_n)/n}] = (1 - p + pe^{it/n})^n
$$

$$
= (1 - p + p + itp/n + o(1/n))^n \to e^{ipt}.
$$

Note the limit is the c.f. of $X = p$. Thus, $\bar{X}_n \to_d p$ so \bar{X}_n converges in probability to p.
[comments]
Generalization to multivariate random vectors

- $X_n \xrightarrow{d} X$ if and only if

 $E[\exp\{it'X_n\}] \rightarrow E[\exp\{it'X\}]$, where t is any k-dimensional constant

- Equivalently, $t'X_n \xrightarrow{d} t'X$ for any t

- to study the weak convergence of random vectors, we can reduce to study the weak convergence of
 one-dimensional linear combinations of random vectors

- This is the well-known Cramér-Wold device
[comments]
Theorem 3.5 (The Cramér-Wold device) Random vector X_n in \mathbb{R}^k satisfies $X_n \xrightarrow{d} X$ if and only $t'X_n \xrightarrow{d} t'X$ in \mathbb{R} for all $t \in \mathbb{R}^k$.
[comments]
Properties of Weak Convergence

Theorem 3.6 (Continuous mapping theorem)
Suppose $X_n \rightarrow_{a.s.} X$, or $X_n \rightarrow_p X$, or $X_n \rightarrow_d X$. Then for any continuous function $g(\cdot)$, $g(X_n)$ converges to $g(X)$ almost surely, or in probability, or in distribution.
[comments]
Proof

If $X_n \to_{a.s.} X$, $\Rightarrow g(X_n) \to_{a.s} g(X)$.

If $X_n \to_p X$, then for any subsequence, there exists a further subsequence $X_{n_k} \to_{a.s.} X$. Thus, $g(X_{n_k}) \to_{a.s.} g(X)$. Then $g(X_n) \to_p g(X)$ from (H) in Theorem 3.1.

To prove that $g(X_n) \to_d g(X)$ when $X_n \to_d X$, use (b) of Theorem 3.1.
[comments]
• One remark

Theorem 3.6 concludes that $g(X_n) \xrightarrow{d} g(X)$ if $X_n \xrightarrow{d} X$ and g is continuous. In fact, this result still holds if $P(X \in C(g)) = 1$ where $C(g)$ contains all the continuity points of g. That is, if g’s discontinuity points take zero probability of X, the continuous mapping theorem holds.
[comments]
Theorem 3.7 (Slutsky theorem) Suppose $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{p} y$ and $Z_n \xrightarrow{p} z$ for some constant y and z. Then $Z_n X_n + T_n \xrightarrow{d} zX + y$.
Proof

First show that $X_n + Y_n \to_d X + y$.

For any $\epsilon > 0$,

$$P(X_n + Y_n \leq x) \leq P(X_n + Y_n \leq x, |Y_n - y| \leq \epsilon) + P(|Y_n - y| > \epsilon)$$

$$\leq P(X_n \leq x - y + \epsilon) + P(|Y_n - y| > \epsilon).$$

$$\Rightarrow \limsup_n F_{X_n + Y_n}(x) \leq \limsup_n F_{X_n}(x - y + \epsilon) \leq F_X(x - y + \epsilon).$$
On the other hand,

\[
P(X_n + Y_n > x) = P(X_n + Y_n > x, |Y_n - y| \leq \epsilon) + P(|Y_n - y| > \epsilon)
\]

\[
\leq P(X_n > x - y - \epsilon) + P(|Y_n - y| > \epsilon).
\]

\[
\Rightarrow \limsup_n (1 - F_{X_n+Y_n}(x)) \leq \limsup_n P(X_n > x - y - \epsilon)
\]

\[
\leq \limsup_n P(X_n \geq x - y - 2\epsilon) \leq (1 - F_X(x - y - 2\epsilon)).
\]

\[
\Rightarrow F_X(x - y - 2\epsilon) \leq \liminf_n F_{X_n+Y_n}(x) \leq \limsup_n F_{X_n+Y_n}(x) \leq F_X(x + y + \epsilon).
\]

\[
\Rightarrow F_{X+y}(x-) \leq \liminf_n F_{X_n+Y_n}(x) \leq \limsup_n F_{X_n+Y_n}(x) \leq F_{X+y}(x).
\]
[comments]
To complete the proof,

\[P(|(Z_n - z)X_n| > \epsilon) \leq P(|Z_n - z| > \epsilon^2) + P(|Z_n - z| \leq \epsilon^2, |X_n| > \frac{1}{\epsilon}). \]

\[\Rightarrow \]

\[\limsup_n P(|(Z_n - z)X_n| > \epsilon) \leq \limsup_n P(|Z_n - z| > \epsilon^2) \]

\[+ \limsup_n P(|X_n| \geq \frac{1}{2\epsilon}) \rightarrow P(|X| \geq \frac{1}{2\epsilon}). \]

\[\Rightarrow \text{that } (Z_n - z)X_n \rightarrow_p 0. \]

Clearly \(zX_n \rightarrow_d zX \Rightarrow Z_nX_n \rightarrow_d zX \) from the proof in the first half.

Again, using the first half’s proof, \(Z_nX_n + Y_n \rightarrow_d zX + y. \)
Examples

- Suppose $X_n \rightarrow_d N(0, 1)$. Then by continuous mapping theorem, $X_n^2 \rightarrow_d \chi_1^2$.

- This example shows that g can be discontinuous in Theorem 3.6. Let $X_n \rightarrow_d X$ with $X \sim N(0, 1)$ and $g(x) = 1/x$. Although $g(x)$ is discontinuous at origin, we can still show that $1/X_n \rightarrow_d 1/X$, the reciprocal of the normal distribution. This is because $P(X = 0) = 0$. However, in Example 3.6 where $g(x) = I(x > 0)$, it shows that Theorem 3.6 may not be true if $P(X \in C(g)) < 1$.
[comments]
The condition $Y_n \to_p y$, where y is a constant, is necessary. For example, let $X_n = X \sim Uniform(0, 1)$. Let $Y_n = -X$ so $Y_n \to_d -\tilde{X}$, where \tilde{X} is an independent random variable with the same distribution as X. However $X_n + Y_n = 0$ does not converge in distribution to $X - \tilde{X}$.
[comments]
Let X_1, X_2, \ldots be a random sample from a normal distribution with mean μ and variance $\sigma^2 > 0$,

$$\sqrt{n}(\bar{X}_n - \mu) \rightarrow_d N(0, \sigma^2),$$

$$s_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2 \rightarrow_{a.s.} \sigma^2.$$

\Rightarrow

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{s_n} \rightarrow_d \frac{1}{\sigma} N(0, \sigma^2) \approx N(0, 1).$$

\Rightarrow in large sample, t_{n-1} can be approximated by a standard normal distribution.
[comments]
Representation of Weak Convergence

Theorem 3.8 (Skorohod’s Representation Theorem) Let \(\{X_n\} \) and \(X \) be random variables in a probability space \((\Omega, \mathcal{A}, P)\) and \(X_n \to_d X \). Then there exists another probability space \((\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{P})\) and a sequence of random variables \(\tilde{X}_n\) and \(\tilde{X}\) defined on this space such that \(\tilde{X}_n\) and \(X_n\) have the same distributions, \(\tilde{X}\) and \(X\) have the same distributions, and moreover, \(\tilde{X}_n \to_{a.s.} \tilde{X}\).
• Quantile function

\[F^{-1}(p) = \inf\{x : F(x) \geq p\}. \]

Proposition 3.1 (a) \(F^{-1} \) is left-continuous.

(b) If \(X \) has continuous distribution function \(F \), then \(F(X) \sim Uniform(0, 1) \).

(c) Let \(\xi \sim Uniform(0, 1) \) and let \(X = F^{-1}(\xi) \). Then for all \(x \), \(\{X \leq x\} = \{\xi \leq F(x)\} \). Thus, \(X \) has distribution function \(F \).
Proof

(a) Clearly, F^{-1} is nondecreasing. Suppose p_n increases to p then $F^{-1}(p_n)$ increases to some $y \leq F^{-1}(p)$. Then $F(y) \geq p_n$ so $F(y) \geq p$. $\Rightarrow F^{-1}(p) \leq y \Rightarrow y = F^{-1}(p)$.

(b) $\{X \leq x\} \subset \{F(X) \leq F(x)\}$ $\Rightarrow F(x) \leq P(F(X) \leq F(x))$.
$\{F(X) \leq F(x) - \epsilon\} \subset \{X \leq x\}$ $\Rightarrow P(F(X) \leq F(x) - \epsilon) \leq F(x)$ $\Rightarrow P(F(X) \leq F(x) - \epsilon) \leq F(x)$.

Then if X is continuous, $P(F(X) \leq F(x)) = F(x)$.

(c) $P(X \leq x) = P(F^{-1}(\xi) \leq x) = P(\xi \leq F(x)) = F(x)$.
Proof

Let \((\tilde{\Omega}, \tilde{\mathcal{A}}, \tilde{\mathbb{P}})\) be \(([0, 1], \mathcal{B} \cap [0, 1], \lambda)\). Define \(\tilde{X}_n = F_n^{-1}(\xi)\), \(\tilde{X} = F^{-1}(\xi)\), where \(\xi \sim \text{Uniform}(0, 1)\). \(\tilde{X}_n\) has a distribution \(F_n\) which is the same as \(X_n\).

For any \(t \in (0, 1)\) such that there is at most one value \(x\) such that \(F(x) = t\) (it is easy to see \(t\) is the continuous point of \(F^{-1}\)),

\[\Rightarrow\] for any \(z < x\), \(F(z) < t\)

\[\Rightarrow\] when \(n\) is large, \(F_n(z) < t\) so \(F_n^{-1}(t) \geq z\).

\[\Rightarrow\] \(\liminf_n F_n^{-1}(t) \geq z \Rightarrow \liminf_n F_n^{-1}(t) \geq x = F^{-1}(t)\).

From \(F(x + \epsilon) > t\), \(F_n(x + \epsilon) > t\) so \(F_n^{-1}(t) \leq x + \epsilon\).

\[\Rightarrow\] \(\limsup_n F_n^{-1}(t) \leq x + \epsilon \Rightarrow \limsup_n F_n^{-1}(t) \leq x\).

Thus \(F_n^{-1}(t) \to F^{-1}(t)\) for almost every \(t \in (0, 1)\) \(\Rightarrow \tilde{X}_n \to a.s. \tilde{X}\).
• **Usefulness of representation theorem**

 – For example, if $X_n \rightarrow_d X$ and one wishes to show some function of X_n, denote by $g(X_n)$, converges in distribution to $g(X)$:

 – see the diagram in Figure 2.
Skorohod's Representation

\[\bar{X}_n \xrightarrow{d} \bar{X} \]

\[S \xrightarrow{d} S \]

\[\hat{X}_n \xrightarrow{a.s.} \hat{X} \]

\[g(\bar{X}_n) \xrightarrow{d} g(\bar{X}) \]

\[S \xrightarrow{d} S \]

\[g(\hat{X}_n) \xrightarrow{a.s.} g(\hat{X}) \]
• Alternative Proof for Slutsky Theorem

First, show \((X_n, Y_n) \rightarrow_d (X, y)\).

\[
|\phi_{(X_n,Y_n)}(t_1, t_2) - \phi_{(X,y)}(t_1, t_2)| = |E[e^{it_1 X_n}e^{it_2 Y_n}] - E[e^{it_1 X}e^{it_2 y}]|
\]

\[
\leq |E[e^{it_1 X_n}(e^{it_2 Y_n} - e^{it_2 y})]| + |e^{it_2 y}||E[e^{it_1 X_n}] - E[e^{it_1 X}]|
\]

\[
\leq E[|e^{it_2 Y_n} - e^{it_2 y}|] + |E[e^{it_1 X_n}] - E[e^{it_1 X}]| \rightarrow 0.
\]

Thus, \((Z_n, X_n) \rightarrow_d (z, X)\). Since \(g(z, x) = zx\) is continuous,

\[
\rightarrow Z_n X_n \rightarrow_d zX.
\]

Since \((Z_n X_n, Y_n) \rightarrow_d (zX, y)\) and \(g(x, y) = x + y\) is continuous,

\[
\rightarrow Z_n X_n + Y_n \rightarrow_d zX + y.
\]
[comments]
Summation of Independent R.V.s

- Some preliminary lemmas

Proposition 3.2 (Borel-Cantelli Lemma) For any events A_n,

$$\sum_{i=1}^{\infty} P(A_n) < \infty$$

implies $P(A_n, i.o.) = P(\{A_n\} \text{ occurs infinitely often}) = 0$; or equivalently, $P(\cap_{n=1}^{\infty} \cup_{m \geq n} A_m) = 0$.

Proof

$$P(A_n, i.o) \leq P(\cup_{m \geq n} A_m) \leq \sum_{m \geq n} P(A_m) \to 0, \text{ as } n \to \infty.$$
• **One result of the first Borel-cantelli lemma**

If for a sequence of random variables, \(\{Z_n\} \), and for any \(\epsilon > 0 \), \(\sum_n P(|Z_n| > \epsilon) < \infty \), then \(|Z_n| > \epsilon \) only occurs a finite number of times.

\[\Rightarrow Z_n \rightarrow_{a.s.} 0. \]
[comments]
Proposition 3.3 (Second Borel-Cantelli Lemma)
For a sequence of independent events A_1, A_2, \ldots,
$\sum_{n=1}^{\infty} P(A_n) = \infty$ implies $P(A_n, i.o.) = 1$.

Proof Consider the complement of $\{A_n, i.o\}$.

$$P(\bigcup_{n=1}^{\infty} \cap_{m \geq n} A_m^c) = \lim_{n} P(\cap_{m \geq n} A_m^c) = \lim_{n} \prod_{m \geq n} (1 - P(A_m))$$

$$\leq \limsup_n \exp\{- \sum_{m \geq n} P(A_m)\} = 0.$$
[comments]
• Equivalence lemma

Proposition 3.4 X_1, \ldots, X_n are i.i.d with finite mean. Define $Y_n = X_n I(|X_n| \leq n)$. Then

$$\sum_{n=1}^{\infty} P(X_n \neq Y_n) < \infty.$$
\textbf{Proof} Since $E[|X_1|] < \infty$,

$$
\sum_{n=1}^{\infty} P(|X| \geq n) = \sum_{n=1}^{\infty} nP(n \leq |X| < (n + 1)) \leq \sum_{n=1}^{\infty} E[|X|] < \infty.
$$

From the Borel-Cantelli Lemma, $P(X_n \neq Y_n, i.o) = 0$.

For almost every $\omega \in \Omega$, when n is large enough, $X_n(\omega) = Y_n(\omega)$.
[comments]
Weak Law of Large Numbers

Theorem 3.9 (Weak Law of Large Number) If X, X_1, \ldots, X_n are i.i.d with mean μ (so $E[|X|] < \infty$ and $\mu = E[X]$), then $\bar{X}_n \xrightarrow{p} \mu$.
Proof
Define $Y_n = X_n I(-n \leq X_n \leq n)$. Let $\bar{\mu}_n = \sum_{k=1}^{n} E[Y_k]/n$.

$$P(|\bar{Y}_n - \bar{\mu}_n| \geq \epsilon) \leq \frac{\text{Var}(\bar{Y}_n)}{\epsilon^2} \leq \frac{\sum_{k=1}^{n} \text{Var}(X_k I(|X_k| \leq k))}{n^2 \epsilon^2}.$$

$$\text{Var}(X_k I(|X_k| \leq k)) \leq E[X_k^2 I(|X_k| \leq k)]$$

$$= E[X_k^2 I(|X_k| \leq k, |X_k| \geq \sqrt{k \epsilon^2})] + E[X_k^2 I(|X_k| \leq k, |X| \leq \sqrt{k \epsilon^2})]$$

$$\leq k E[|X_k| I(|X_k| \geq \sqrt{k \epsilon^2})] + k \epsilon^4,$$

$$\Rightarrow P(|\bar{Y}_n - \mu_n| \geq \epsilon) \leq \frac{\sum_{k=1}^{n} E[|X| I(|X| \geq \sqrt{k \epsilon^2})]}{n \epsilon^2} + \epsilon^2 \frac{n(n+1)}{2n^2}. \Rightarrow \limsup \ P(|\bar{Y}_n - \mu_n| \geq \epsilon) \leq \epsilon^2 \Rightarrow \bar{Y}_n - \bar{\mu}_n \rightarrow_p 0.$$

$\bar{\mu}_n \rightarrow \mu \Rightarrow \bar{Y}_n \rightarrow_p \mu$. From Proposition 3.4 and subsequence arguments,

$\bar{X}_{nk} \rightarrow a.s. \mu \Rightarrow X_n \rightarrow_p \mu$.

[comments]
Strong Law of Large Numbers

Theorem 3.10 (Strong Law of Large Number) If X_1, \ldots, X_n are i.i.d with mean μ then $\bar{X}_n \to_{a.s.} \mu$.
[comments]
Proof

Without loss of generality, we assume $X_n \geq 0$ since if this is true, the result also holds for any X_n by $X_n = X_n^+ - X_n^-$. Similar to Theorem 3.9, it is sufficient to show $\tilde{Y}_n \to_{a.s.} \mu$, where $Y_n = X_n I(X_n \leq n)$.

Note $E[Y_n] = E[X_1 I(X_1 \leq n)] \to \mu$ so

$$\sum_{k=1}^{n} E[Y_k] / n \to \mu.$$

⇒ if we denote $\tilde{S}_n = \sum_{k=1}^{n} (Y_k - E[Y_k])$ and we can show $\tilde{S}_n / n \to_{a.s.} 0$, then the result holds.
[comments]
\[\text{Var}(\tilde{S}_n) = \sum_{k=1}^{n} \text{Var}(Y_k) \leq \sum_{k=1}^{n} E[Y_k^2] \leq nE[X_1^2I(X_1 \leq n)]. \]

By the Chebyshev’s inequality,

\[P\left(\left| \frac{\tilde{S}_n}{n} \right| > \epsilon \right) \leq \frac{1}{n^2\epsilon^2}\text{Var}(\tilde{S}_n) \leq \frac{E[X_1^2I(X_1 \leq n)]}{n\epsilon^2}. \]

For any \(\alpha > 1 \), let \(u_n = [\alpha^n] \).

\[\sum_{n=1}^{\infty} P\left(\left| \frac{\tilde{S}_{u_n}}{u_n} \right| > \epsilon \right) \leq \sum_{n=1}^{\infty} \frac{1}{u_n\epsilon^2}E[X_1^2I(X_1 \leq u_n)] \leq \frac{1}{\epsilon^2}E[X_1^2 \sum_{u_n \geq X_1} \frac{1}{u_n}]. \]

Since for any \(x > 0 \), \(\sum_{n \geq x} \{\mu_n\}^{-1} < 2 \sum_{n \geq \log x/\log \alpha} \alpha^{-n} \leq Kx^{-1} \) for some constant \(K \), \(\Rightarrow \)

\[\sum_{n=1}^{\infty} P\left(\left| \frac{\tilde{S}_{u_n}}{u_n} \right| > \epsilon \right) \leq \frac{K}{\epsilon^2}E[X_1] < \infty, \]

\[\Rightarrow \tilde{S}_{u_n}/u_n \to_{a.s.} 0. \]
For any k, we can find $u_n < k \leq u_{n+1}$. Thus, since $X_1, X_2, \ldots \geq 0$,

\[
\frac{\bar{S}_{u_n}}{u_n} \frac{u_n}{u_{n+1}} \leq \frac{\bar{S}_k}{k} \leq \frac{\bar{S}_{u_{n+1}}}{u_{n+1}} \frac{u_{n+1}}{u_n}.
\]

\Rightarrow

\[
\frac{\mu}{\alpha} \leq \liminf_{k} \frac{\bar{S}_k}{k} \leq \limsup_{k} \frac{\bar{S}_k}{k} \leq \mu \alpha.
\]

Since α is arbitrary number larger than 1, let $\alpha \to 1$ and we obtain

\[
\lim_{k} \bar{S}_k / k = \mu.
\]
[comments]
Central Limit Theorems

- Preliminary result of c.f.

Proposition 3.5 Suppose $E[|X|^m] < \infty$ for some integer $m \geq 0$. Then

$$|\phi_X(t) - \sum_{k=0}^{m} \frac{(it)^k}{k!} E[X^k]|/|t|^m \to 0, \quad \text{as } t \to 0.$$
[comments]
Proof

\[e^{itx} = \sum_{k=1}^{m} \frac{(itx)^k}{k!} + \frac{(itx)^m}{m!} [e^{it\theta x} - 1], \]

where \(\theta \in [0, 1] \).

\[\Rightarrow \]

\[|\phi_X(t) - \sum_{k=0}^{m} \frac{(it)^k}{k!} E[X^k]|/|t|^m \leq E[|X|^m |e^{it\theta X} - 1|]/m! \to 0, \]

as \(t \to 0 \).
• Simple versions of CLT

Theorem 3.11 (Central Limit Theorem) If X_1, \ldots, X_n are i.i.d with mean μ and variance σ^2 then $$\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \sigma^2).$$
Proof

Denote $Y_n = \sqrt{n}(\bar{X}_n - \mu)$.

$$\phi_{Y_n}(t) = \{\phi_{X_1-\mu}(t/\sqrt{n})\}^n.$$

$\Rightarrow \phi_{X_1-\mu}(t/\sqrt{n}) = 1 - \sigma^2 t^2/2n + o(1/n).$

\Rightarrow

$$\phi_{Y_n}(t) \to \exp\{-\frac{\sigma^2 t^2}{2}\}.$$
Theorem 3.12 (Multivariate Central Limit Theorem) If \(X_1, \ldots, X_n \) are i.i.d random vectors in \(\mathbb{R}^k \) with mean \(\mu \) and covariance \(\Sigma = E[(X - \mu)(X - \mu)'] \), then \(\sqrt{n}(\bar{X}_n - \mu) \to_d N(0, \Sigma) \).

Proof
Use the Cramér-Wold’s device.
[comments]
\begin{itemize}
 \item \textbf{Liaponov CLT}
 \end{itemize}

\textbf{Theorem 3.13 (Liapunov Central Limit Theorem)}

Let X_{n1}, \ldots, X_{nn} be independent random variables with $\mu_{ni} = E[X_{ni}]$ and $\sigma_{ni}^2 = Var(X_{ni})$. Let $\mu_n = \sum_{i=1}^{n} \mu_{ni}$, $\sigma_n^2 = \sum_{i=1}^{n} \sigma_{ni}^2$. If

$$\sum_{i=1}^{n} \frac{E[|X_{ni} - \mu_{ni}|^3]}{\sigma_n^3} \to 0,$$

then $\sum_{i=1}^{n} (X_{ni} - \mu_{ni})/\sigma_n \to_d N(0, 1)$.

Lindeberg-Feller CLT

Theorem 3.14 (Lindeberg-Fell Central Limit Theorem) Let X_{n1}, \ldots, X_{nn} be independent random variables with $\mu_{ni} = E[X_{ni}]$ and $\sigma^2_{ni} = Var(X_{ni})$. Let $\sigma^2_n = \sum_{i=1}^{n} \sigma^2_{ni}$. Then both $\sum_{i=1}^{n} (X_{ni} - \mu_{ni})/\sigma_n \to_d N(0, 1)$ and $\max \{ \sigma^2_{ni}/\sigma^2_n : 1 \leq i \leq n \} \to 0$ if and only if the Lindeberg condition

$$\frac{1}{\sigma^2_n} \sum_{i=1}^{n} E[|X_{ni} - \mu_{ni}|^2 I(|X_{ni} - \mu_{ni}| \geq \epsilon \sigma_n)] \to 0,$$

holds.
[comments]
• Proof of Liapunov CLT using Theorem 3.14

\[
\frac{1}{\sigma_n^2} \sum_{i=1}^{n} E[|X_{nk} - \mu_{nk}|^2 I(|X_{nk} - \mu_{nk}| > \epsilon \sigma_n)] \\
\leq \frac{1}{\epsilon^3 \sigma_n^3} \sum_{k=1}^{n} E[|X_{nk} - \mu_{nk}|^3].
\]
[comments]
Examples

This is one example from a simple linear regression $X_j = \alpha + \beta z_j + \epsilon_j$ for $j = 1, 2, \ldots$ where z_j are known numbers not all equal and the ϵ_j are i.i.d with mean zero and variance σ^2.

$$\hat{\beta}_n = \sum_{j=1}^{n} X_j (z_j - \bar{z}_n) / \sum_{j=1}^{n} (z_j - \bar{z}_n)^2$$
$$= \beta + \sum_{j=1}^{n} \epsilon_j (z_j - \bar{z}_n) / \sum_{j=1}^{n} (z_j - \bar{z}_n)^2.$$

Assume

$$\max_{j \leq n} (z_j - \bar{z}_n)^2 / \sum_{j=1}^{n} (z_j - \bar{z}_n)^2 \rightarrow 0.$$

$$\Rightarrow \sqrt{n} \sqrt{\frac{\sum_{j=1}^{n} (z_j - \bar{z}_n)^2}{n}} (\hat{\beta}_n - \beta) \rightarrow_d N(0, \sigma^2).$$
[comments]
The example is taken from the randomization test for paired comparison. Let \((X_j, Y_j)\) denote the values of \(j\)th pairs with \(X_j\) being the result of the treatment and \(Z_j = X_j - Y_j\). Conditional on \(|Z_j| = z_j\), \(Z_j = |Z_j| \text{sign}(Z_j)\) is independent taking values \(\pm |Z_j|\) with probability 1/2, when treatment and control have no difference. Conditional on \(z_1, z_2, ...,\), the randomization \(t\)-test is the \(t\)-statistic \(\sqrt{n - 1} \bar{Z}_n / s_z\) where \(s_z^2\) is \(1/n \sum_{j=1}^{n} (Z_j - \bar{Z}_n)^2\). When

\[
\max_{j \leq n} \frac{z_j^2}{\sum_{j=1}^{n} z_j^2} \rightarrow 0,
\]

this statistic has an asymptotic normal distribution \(N(0, 1)\).
Delta Method

Theorem 3.15 (Delta method) For random vectors X and X_n in \mathbb{R}^k, if there exist two constants a_n and μ such that $a_n(X_n - \mu) \xrightarrow{d} X$ and $a_n \to \infty$, then for any function $g : \mathbb{R}^k \mapsto \mathbb{R}^l$ such that g has a derivative at μ, denoted by $\nabla g(\mu)$, then

$$a_n(g(X_n) - g(\mu)) \xrightarrow{d} \nabla g(\mu)X.$$
Proof

By the Skorohod representation, we can construct \tilde{X}_n and \tilde{X} such that $\tilde{X}_n \sim_d X_n$ and $\tilde{X} \sim_d X$ (\sim_d means the same distribution) and $a_n(\tilde{X}_n - \mu) \rightarrow_{a.s.} \tilde{X}$.

\Rightarrow

$$a_n(g(\tilde{X}_n) - g(\mu)) \rightarrow_{a.s.} \nabla g(\mu)\tilde{X}$$

\Rightarrow

$$a_n(g(X_n) - g(\mu)) \rightarrow_d \nabla g(\mu)X$$
[comments]
Examples

Let X_1, X_2, \ldots be i.i.d with fourth moment and $s_n^2 = (1/n) \sum_{i=1}^{n} (X_i - \bar{X}_n)^2$. Denote m_k as the kth moment of X_1 for $k \leq 4$. Note that $s_n^2 = (1/n) \sum_{i=1}^{n} X_i^2 - (\sum_{i=1}^{n} X_i/n)^2$ and

$$
\sqrt{n} \left[\left(\frac{\bar{X}_n}{(1/n) \sum_{i=1}^{n} X_i^2} \right) - \left(\begin{array}{c} m_1 \\ m_2 \end{array} \right) \right]
\rightarrow_d N \left(0, \begin{pmatrix} m_2 - m_1 & m_3 - m_1 m_2 \\ m_3 - m_1 m_2 & m_4 - m_2^2 \end{pmatrix} \right),
$$

the Delta method with $g(x, y) = y - x^2$

$\Rightarrow \sqrt{n}(s_n^2 - \text{Var}(X_1)) \rightarrow_d N(0, m_4 - (m_2 - m_1^2)^2)$.

[comments]
Let \((X_1, Y_1), (X_2, Y_2), \ldots\) be i.i.d bivariate samples with finite fourth moment. One estimate of the correlation among \(X\) and \(Y\) is

\[
\hat{\rho}_n = \frac{s_{xy}}{\sqrt{s_x^2 s_y^2}},
\]

where \(s_{xy} = (1/n) \sum_{i=1}^n (X_i - \bar{X}_n)(Y_i - \bar{Y}_n)\),
\(s_x^2 = (1/n) \sum_{i=1}^n (X_i - \bar{X}_n)^2\) and
\(s_y^2 = (1/n) \sum_{i=1}^n (Y_i - \bar{Y}_n)^2\). To derive the large sample distribution of \(\hat{\rho}_n\), first obtain the large sample distribution of \((s_{xy}, s_x^2, s_y^2)\) using the Delta method then further apply the Delta method with \(g(x, y, z) = x/\sqrt{yz}\).
The example is taken from the Pearson’s Chi-square statistic. Suppose that one subject falls into \(K \) categories with probabilities \(p_1, \ldots, p_K \), where \(p_1 + \ldots + p_K = 1 \). The Pearson’s statistic is defined as

\[
\chi^2 = n \sum_{k=1}^{K} \left(\frac{n_k}{n} - p_k \right)^2 / p_k,
\]

which can be treated as \(\sum (\text{observed count} - \text{expected count})^2 / \text{expected count} \). Note \(\sqrt{n}(n_1/n - p_1, \ldots, n_K/n - p_K) \) has an asymptotic multivariate normal distribution. Then we can apply the Delta method to \(g(x_1, \ldots, x_K) = \sum_{i=1}^{K} x_k^2 \).
[comments]

Definition 3.6 A *U-statistics* associated with
\(\tilde{h}(x_1, ..., x_r) \) is defined as

\[
U_n = \frac{1}{r!(\binom{n}{r})} \sum_{\beta} \tilde{h}(X_{\beta_1}, ..., X_{\beta_r}),
\]

where the sum is taken over the set of all unordered subsets \(\beta \) of \(r \) different integers chosen from \(\{1, ..., n\} \).
[comments]
Examples

- One simple example is $\tilde{h}(x, y) = xy$. Then

 \[
 U_n = (n(n - 1))^{-1} \sum_{i \neq j} X_i X_j.
 \]

- $U_n = E[\tilde{h}(X_1, \ldots, X_r)|X_{(1)}, \ldots, X_{(n)}].$

- U_n is the summation of non-independent random variables.

- If we define $h(x_1, \ldots, x_r)$ as

 \[
 (r!)^{-1} \sum_{(\tilde{x}_1, \ldots, \tilde{x}_r)} \tilde{h}(\tilde{x}_1, \ldots, \tilde{x}_r),
 \]

 then $h(x_1, \ldots, x_r)$ is permutation-symmetric

 \[
 U_n = \frac{1}{\binom{n}{r}} \sum_{\beta_1 < \ldots < \beta_r} h(\beta_1, \ldots, \beta_r).
 \]

- h is called the kernel of the U-statistic U_n.
• CLT for U-statistics

Theorem 3.16 Let \(\mu = E[h(X_1, \ldots, X_r)] \). If \(E[h(X_1, \ldots, X_r)^2] < \infty \), then

\[
\sqrt{n}(U_n - \mu) - \sqrt{n} \sum_{i=1}^{n} E[U_n - \mu | X_i] \rightarrow_p 0.
\]

Consequently, \(\sqrt{n}(U_n - \mu) \) is asymptotically normal with mean zero and variance \(r^2 \sigma^2 \), where, with \(X_1, \ldots, X_r, \tilde{X}_1, \ldots, \tilde{X}_r \) i.i.d variables,

\[
\sigma^2 = Cov(h(X_1, X_2, \ldots, X_r), h(X_1, \tilde{X}_2, \ldots, \tilde{X}_r)).
\]
Some preparation

- Linear space of r.v.s: let \mathcal{S} be a linear space of random variables with finite second moments that contain the constants; i.e., $1 \in \mathcal{S}$ and for any $X, Y \in \mathcal{S}$, $aX + bY \in \mathcal{S}_n$ where a and b are constants.

- Projection: for random variable T, a random variable S is called the projection of T on \mathcal{S} if $E[(T - S)^2]$ minimizes $E[(T - \tilde{S})^2]$, $\tilde{S} \in \mathcal{S}$.
Proposition 3.7 Let \mathcal{S} be a linear space of random variables with finite second moments. Then S is the projection of T on S if and only if $S \in \mathcal{S}$ and for any $\tilde{S} \in \mathcal{S}$, $E[(T - S)\tilde{S}] = 0$. Every two projections of T onto \mathcal{S} are almost surely equal. If the linear space \mathcal{S} contains the constant variable, then $E[T] = E[S]$ and $Cov(T - S, \tilde{S}) = 0$ for every $\tilde{S} \in \mathcal{S}$.
Proof For any S and \tilde{S} in S,

$$E[(T - \tilde{S})^2] = E[(T - S)^2] + 2E[(T - S)\tilde{S}] + E[(S - \tilde{S})^2].$$

\Rightarrow if S satisfies that $E[(T - S)\tilde{S}] = 0$, then
$E[(T - \tilde{S})^2] \geq E[(T - S)^2]$. \Rightarrow S is the projection of T on S.

If S is the projection, for any constant α, $E[(T - S - \alpha \tilde{S})^2]$ is minimized at $\alpha = 0$. Calculate the derivative at $\alpha = 0 \Rightarrow E[(T - S)\tilde{S}] = 0$.

If T has two projections S_1 and S_2, $\Rightarrow E[(S_1 - S_2)^2] = 0$. Thus, $S_1 = S_2$, a.s. If the linear space S contains the constant variable, choose $\tilde{S} = 1 \Rightarrow 0 = E[(T - S)\tilde{S}] = E[T] - E[S]$. Clearly,
$Cov(T - S, \tilde{S}) = E[(T - S)\tilde{S}] = 0$.
• Equivalence with projection

Proposition 3.8 Let S_n be linear space of random variables with finite second moments that contain the constants. Let T_n be random variables with projections S_n on to S_n. If $\frac{\text{Var}(T_n)}{\text{Var}(S_n)} \to 1$ then

$$Z_n \equiv \frac{T_n - E[T_n]}{\sqrt{\text{Var}(T_n)}} - \frac{S_n - E[S_n]}{\sqrt{\text{Var}(S_n)}} \to_p 0.$$
[comments]
Proof. \(E[Z_n] = 0 \). Note that

\[
Var(Z_n) = 2 - 2 \frac{Cov(T_n, S_n)}{\sqrt{Var(T_n)Var(S_n)}}.
\]

Since \(S_n \) is the projection of \(T_n \),

\[
Cov(T_n, S_n) = Cov(T_n - S_n, S_n) + Var(S_n) = Var(S_n).
\]

We have

\[
Var(Z_n) = 2(1 - \sqrt{\frac{Var(S_n)}{Var(T_n)}}) \to 0.
\]

By the Markov’s inequality, we conclude that \(Z_n \to_p 0 \).
[comments]
• **Conclusion**

 - if S_n is the summation of i.i.d random variables such that $(S_n - E[S_n]) / \sqrt{\text{Var}(S_n)} \to_d N(0, \sigma^2)$, so is $(T_n - E[T_n]) / \sqrt{\text{Var}(T_n)}$. The limit distribution of U-statistics is derived using this lemma.
• Proof of CLT for U-statistics

Proof

Let $\tilde{X}_1, \ldots, \tilde{X}_r$ be random variables with the same distribution as X_1 and they are independent of X_1, \ldots, X_n. Denote \tilde{U}_n by $\sum_{i=1}^{n} E[U - \mu|X_i]$.

We show that \tilde{U}_n is the projection of U_n on the linear space $S_n = \{g_1(X_1) + \ldots + g_n(X_n) : E[g_k(X_k)^2] < \infty, k = 1, \ldots, n\}$, which contains the constant variables. Clearly, $\tilde{U}_n \in S_n$. For any $g_k(X_k) \in S_n$,

$$E[(U_n - \tilde{U}_n)g_k(X_k)] = E[E[U_n - \tilde{U}_n|X_k]g_k(X_k)] = 0.$$
\[\tilde{U}_n = \sum_{i=1}^{n} \frac{(n-1)}{r} \frac{(n-r)}{n} E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_i) - \mu |X_i] \\
= \frac{r}{n} \sum_{i=1}^{n} E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_i) - \mu |X_i]. \]

\[\Rightarrow \]

\[\operatorname{Var}(\tilde{U}_n) = \frac{r^2}{n^2} \sum_{i=1}^{n} E[(E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_i) - \mu |X_i])^2] \]

\[= \frac{r^2}{n} \operatorname{Cov}(E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_1) |X_1], E[h(\tilde{X}_1, \ldots, \tilde{X}_{r-1}, X_1) |X_1]) \]

\[= \frac{r^2}{n} \operatorname{Cov}(h(X_1, \tilde{X}_2, \ldots, \tilde{X}_r), h(X_1, X_2, \ldots, X_r)) = \frac{r^2 \sigma^2}{n}. \]
Furthermore,

\[
\text{Var}(U_n) = \binom{n}{r}^{-2} \sum_{\beta} \sum_{\beta'} \text{Cov}(h(X_{\beta_1}, \ldots, X_{\beta_r}), h(X_{\beta'_1}, \ldots, X_{\beta'_r}))
\]

\[
= \binom{n}{r}^{-2} \sum_{k=1}^{r} \sum_{\beta \text{ and } \beta' \text{ share } k \text{ components}} \text{Cov}(h(X_1, X_2, \ldots, X_k, X_{k+1}, \ldots, X_r), h(X_1, X_2, \ldots, X_k, \tilde{X}_{k+1}, \ldots, \tilde{X}_r)).
\]

\[\Rightarrow \text{Var}(U_n) = \sum_{k=1}^{r} \frac{r!}{k!(r-k)!} \frac{(n-r)(n-r+1)\ldots(n-2r+k+1)}{n(n-1)\ldots(n-r+1)} c_k .\]

\[\Rightarrow \text{Var}(U_n) = \frac{r^2}{n} \text{Cov}(h(X_1, X_2, \ldots, X_r), h(X_1, \tilde{X}_2, \ldots, \tilde{X}_r)) + O\left(\frac{1}{n^2}\right).\]

\[\Rightarrow \text{Var}(U_n)/\text{Var}(\tilde{U}_n) \rightarrow 1.\]

\[\Rightarrow \frac{U_n - \mu}{\sqrt{\text{Var}(U_n)}} - \frac{\tilde{U}_n}{\sqrt{\text{Var}(\tilde{U}_n)}} \rightarrow p 0.\]
[comments]
Example

In a bivariate i.i.d sample \((X_1, Y_1), (X_2, Y_2), \ldots\), one statistic of measuring the agreement is called Kendall’s \(\tau\)-statistic

\[
\hat{\tau} = \frac{4}{n(n-1)} \sum_{i<j} I \{(Y_j - Y_i)(X_j - X_i) > 0\} - 1.
\]

\(\Rightarrow\) \(\hat{\tau} + 1\) is a U-statistic of order 2 with the kernel

\[
2I \{(y_2 - y_1)(x_2 - x_1) > 0\}.
\]

\(\Rightarrow\) \(\sqrt{n}(\hat{\tau}_n + 1 - 2P((Y_2 - Y_1)(X_2 - X_1) > 0))\) has an asymptotic normal distribution with mean zero.
Rank Statistics

- Some definitions
 - $X_1 \leq X_2 \leq ... \leq X_n$ are called the order statistics
 - The rank statistics, denoted by $R_1, ..., R_n$ are the ranks of X_i among $X_1, ..., X_n$. Thus, if all the X’s are different, $X_i = X(R_i)$.
 - When there are ties, R_i is defined as the average of all indices such that $X_i = X(j)$ (sometimes called midrank).
 - Only consider the case that X’s have continuous densities.
[comments]
More definitions

- a *rank statistic* is any function of the ranks
- a linear rank statistic is a rank statistic of the special form $\sum_{i=1}^{n} a(i, R_i)$ for a given matrix $(a(i, j))_{n \times n}$.
- if $a(i, j) = c_i a_j$, then such a statistic with the form $\sum_{i=1}^{n} c_i a_{R_i}$ is called a *simple linear rank statistic*: c and a's are called the *coefficients* and *scores*.
Examples

In two independent samples $X_1, ..., X_n$ and $Y_1, ..., Y_m$, a Wilcoxon statistic is defined as the summation of all the ranks of the second sample in the pooled data $X_1, ..., X_n$, $Y_1, ..., Y_m$, i.e.,

$$W_n = \sum_{i=n+1}^{n+m} R_i.$$

Other choices for rank statistics: for instance, the van der Waerden statistic $\sum_{i=n+1}^{n+m} \Phi^{-1}(R_i)$.
[comments]
Properties of rank statistics

Proposition 3.9 Let X_1, \ldots, X_n be a random sample from continuous distribution function F with density f. Then

1. the vectors $(X_{(1)}, \ldots, X_{(n)})$ and (R_1, \ldots, R_n) are independent;

2. the vector $(X_{(1)}, \ldots, X_{(n)})$ has density $n! \prod_{i=1}^{n} f(x_i)$ on the set $x_1 < \ldots < x_n$;

3. the variable $X_{(i)}$ has density
 \[
 \binom{n-1}{i-1} F(x)^{i-1} (1 - F(x))^{n-i} f(x); \quad \text{for } F \text{ the uniform distribution on } [0, 1], \text{ it has mean } i/(n + 1) \text{ and variance } i(n - i + 1)/[(n + 1)^2(n + 2)];
 \]
4. the vector \((R_1, \ldots, R_n)\) is uniformly distributed on the set of all \(n!\) permutations of \(1, 2, \ldots, n\);

5. for any statistic \(T\) and permutation \(r = (r_1, \ldots, r_n)\) of \(1, 2, \ldots, n\),

\[
E[T(X_1, \ldots, X_n)|(R_1, \ldots, R_n) = r] = E[T(X_{(r_1)}, \ldots, X_{(r_n)})];
\]

6. for any simple linear rank statistic \(T = \sum_{i=1}^{n} c_i a_{R_i}\),

\[
E[T] = n\bar{c}_n \bar{a}_n, \quad \text{Var}(T) = \frac{1}{n-1} \sum_{i=1}^{n} (c_i - \bar{c}_n)^2 \sum_{i=1}^{n} (a_i - \bar{a}_n)^2.
\]
[comments]
CLT of rank statistics

Theorem 3.17 Let $T_n = \sum_{i=1}^{n} c_i a_{R_i}$ such that

$$\max_{i \leq n} |a_i - \bar{a}_n| / \sqrt{\sum_{i=1}^{n} (a_i - \bar{a}_n)^2} \rightarrow 0, \quad \max_{i \leq n} |c_i - \bar{c}_n| / \sqrt{\sum_{i=1}^{n} (c_i - \bar{c}_n)^2} \rightarrow 0.$$

Then $(T_n - E[T_n]) / \sqrt{\text{Var}(T_n)} \rightarrow_d N(0, 1)$ if and only if for every $\epsilon > 0$,

$$\sum_{(i,j)} I \left\{ \sqrt{n} \frac{|a_i - \bar{a}_n||c_i - \bar{c}_n|}{\sqrt{\sum_{i=1}^{n} (a_i - \bar{a}_n)^2 \sum_{i=1}^{n} (c_i - \bar{c}_n)^2}} > \epsilon \right\}$$

$$\times \frac{|a_i - \bar{a}_n|^2|c_i - \bar{c}_n|^2}{\sum_{i=1}^{n} (a_i - \bar{a}_n)^2 \sum_{i=1}^{n} (c_i - \bar{c}_n)^2} \rightarrow 0.$$
More on rank statistics

- a simple linear signed rank statistic

$$\sum_{i=1}^{n} a_{R_i} \text{sign}(X_i),$$

where $R_1^+, ..., R_n^+$, absolute rank, are the ranks of $|X_1|, ..., |X_n|$.

- In a bivariate sample $(X_1, Y_1), ..., (X_n, Y_n)$,

$$\sum_{i=1}^{n} a_{R_i} b_{S_i}$$

where $(R_1, ..., R_n)$ and $(S_1, ..., S_n)$ are respective ranks of $(X_1, ..., X_n)$ and $(Y_1, ..., Y_n)$.
[comments]
Martingales

Definition 3.7 Let \(\{Y_n\} \) be a sequence of random variables and \(\mathcal{F}_n \) be sequence of \(\sigma \)-fields such that \(\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \). Suppose \(E[|Y_n|] < \infty \). Then the sequence of pairs \(\{(Y_n, \mathcal{F}_n)\} \) is called a martingale if

\[
E[Y_n|\mathcal{F}_{n-1}] = Y_{n-1}, \quad \text{a.s.}
\]

\(\{(Y_n, \mathcal{F}_n)\} \) is a submartingale if

\[
E[Y_n|\mathcal{F}_{n-1}] \geq Y_{n-1}, \quad \text{a.s.}
\]

\(\{(Y_n, \mathcal{F}_n)\} \) is a supmartingale if

\[
E[Y_n|\mathcal{F}_{n-1}] \leq Y_{n-1}, \quad \text{a.s.}
\]
[comments]
• Some notes on definition

- Y_1, \ldots, Y_n are measurable in \mathcal{F}_n. Sometimes, we say Y_n is adapted to \mathcal{F}_n.

- One simple example: $Y_n = X_1 + \ldots + X_n$, where X_1, X_2, \ldots are i.i.d with mean zero, and \mathcal{F}_n is the σ-field generated by X_1, \ldots, X_n.
[comments]
Convex function of martingales

Proposition 3.9 Let \(\{(Y_n, \mathcal{F}_n)\} \) be a martingale. For any measurable and convex function \(\phi \), \(\{(\phi(Y_n), \mathcal{F}_n)\} \) is a submartingale.
Proof Clearly, \(\phi(Y_n) \) is adapted to \(\mathcal{F}_n \). It is sufficient to show

\[
E[\phi(Y_n) | \mathcal{F}_{n-1}] \geq \phi(Y_{n-1}).
\]

This follows from the well-known Jensen’s inequality: for any convex function \(\phi \),

\[
E[\phi(Y_n) | \mathcal{F}_{n-1}] \geq \phi(E[Y_n | \mathcal{F}_{n-1}]) = \phi(Y_{n-1}).
\]
• Jensen’s inequality

Proposition 3.10 For any random variable X and any convex measurable function ϕ,

$$E[\phi(X)] \geq \phi(E[X]).$$
Proof

Claim that for any x_0, there exists a constant k_0 such that for any x, $\phi(x) \geq \phi(x_0) + k_0(x - x_0)$.

By the convexity, for any $x' < y' < x_0 < y < x$,

$$\frac{\phi(x_0) - \phi(x')}{x_0 - x'} \leq \frac{\phi(y) - \phi(x_0)}{y - x_0} \leq \frac{\phi(x) - \phi(x_0)}{x - x_0}.$$

Thus, $\frac{\phi(x) - \phi(x_0)}{x - x_0}$ is bounded and decreasing as x decreases to x_0.

Let the limit be $k_0^+ \Rightarrow \frac{\phi(x) - \phi(x_0)}{x - x_0} \geq k_0^+$. \Rightarrow

$\phi(x) \geq k_0^+ (x - x_0) + \phi(x_0)$.
[comments]
Similarly,
\[
\frac{\phi(x') - \phi(x_0)}{x' - x_0} \leq \frac{\phi(y') - \phi(x_0)}{y' - x_0} \leq \frac{\phi(x) - \phi(x_0)}{x - x_0}.
\]

Then \(\frac{\phi(x') - \phi(x_0)}{x' - x_0}\) is increasing and bounded as \(x'\) increases to \(x_0\).

Let the limit be \(k_0^- \Rightarrow \)
\[
\phi(x') \geq k_0^-(x' - x_0) + \phi(x_0).
\]

Clearly, \(k_0^+ \geq k_0^-\). Combining those two inequalities,
\[
\phi(x) \geq \phi(x_0) + k_0(x - x_0)
\]
for \(k_0 = (k_0^+ + k_0^-)/2\).

Choose \(x_0 = E[X]\) then \(\phi(X) \geq \phi(E[X]) + k_0(X - E[X])\).
Decomposition of submartingale

- \(Y_n = M_n + A_n \), where

\[
M_n = \sum_{j=1}^{n} \left(Y_j - E[Y_j | \mathcal{F}_{j-1}] \right)
\]

and

\[
A_n = \sum_{j=1}^{n} E[Y_j - Y_{j-1} | \mathcal{F}_{j-1}],
\]

where \(\mathcal{F}_0 \) is the null \(\sigma \)-field and \(Y_0 = EY_1 \).

- any submartingale can be written as the summation of a martingale and a random variable predictable in \(\mathcal{F}_{n-1} \).
[comments]
• **Convergence of martingales**

Theorem 3.18 (Martingale Convergence Theorem)

Let \(\{(X_n, \mathcal{F}_n)\} \) be a submartingale. If \(K = \sup_n E[|X_n|] < \infty \), then \(X_n \to_{a.s.} X \) where \(X \) is a random variable satisfying \(E[|X|] \leq K \).
Corollary 3.1 If \mathcal{F}_n is an increasing σ-field and denote \mathcal{F}_∞ as the σ-field generated by $\bigcup_{n=1}^{\infty} \mathcal{F}_n$, then for any random variable Z with $E[|Z|] < \infty$, it holds that

$$E[Z|\mathcal{F}_n] \to_{a.s.} E[Z|\mathcal{F}_\infty].$$
[comments]
• **CLT for martingale**

Theorem 3.19 (Martingale Central Limit Theorem) Let \((Y_{n1}, \mathcal{F}_{n1}), (Y_{n2}, \mathcal{F}_{n2}), \ldots\) be a martingale. Define \(X_{nk} = Y_{nk} - Y_{n,k-1}\) with \(Y_{n0} = 0\) thus \(Y_{nk} = X_{n1} + \ldots + X_{nk}\). Suppose that

\[
\sum_{k} E[X_{nk}^2|\mathcal{F}_{n,k-1}] \to_p \sigma^2
\]

where \(\sigma\) is a positive constant and that

\[
\sum_{k} E[X_{nk}^2 I(|X_{nk}| \geq \epsilon)|\mathcal{F}_{n,k-1}] \to_p 0
\]

for each \(\epsilon > 0\). Then

\[
\sum_{k} X_{nk} \to_d N(0, \sigma^2).
\]
Some Notation

- $o_p(1)$ and $O_p(1)$
 - $X_n = o_p(1)$ denotes that X_n converges in probability to zero,
 - $X_n = O_p(1)$ denotes that X_n is bounded in probability; i.e.,
 \[
 \lim_{M \to \infty} \limsup_{n} P(|X_n| \geq M) = 0.
 \]
 - for a sequence of random variables $\{R_n\}$, $X_n = o_p(R_n)$ means that $|X_n|/R_n \to_p 0$ and $X_n = O_p(R_n)$ means that $|X_n|/R_n$ is bounded in probability.
• Algebra in $o_p(1)$ and $O_p(1)$

\[
o_p(1) + o_p(1) = o_p(1) \quad O_p(1) + O_p(1) = O_p(1),
\]
\[
O_p(1)o_p(1) = o_p(1) \quad (1 + o_p(1))^{-1} = 1 + o_p(1)
\]
\[
o_p(R_n) = R_n o_p(1) \quad O_p(R_n) = R_n O_p(1)
\]
\[
o_p(O_p(1)) = o_p(1).
\]

If a real function $R(\cdot)$ satisfies $R(h) = o(|h|^p)$ as $h \to 0$,
\[\Rightarrow R(X_n) = o_p(|X_n|^p). \]

If $R(h) = O(|h|^p)$ as $h \to 0$,
\[\Rightarrow R(X_n) = O_p(|X_n|^p). \]
READING MATERIALS: Lehmann and Casella, Section 1.8, Ferguson, Part 1, Part 2, Part 3 12-15