
ANALYSIS OF GENETIC, PARENT OF ORIGIN OR TREATMENT EFFECT ON
GENE EXPRESSION USING RNA-SEQ DATA IN HUMAN AND MOUSE

Vasyl Zhabotynsky

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial ful�llment of the requirements for the degree of Doctor of Public Health
in the Department of Biostatistics in the Gillings School of Global Public Health.

Chapel Hill
2020

Approved by:

Wei Sun

Fei Zou

Yun Li

Danyu Lin

Fernando Pardo Manuel de Villena

Naim Rashid



cO 2020

Vasyl Zhabotynsky

ALL RIGHTS RESERVED

ii



ABSTRACT

Vasyl Zhabotynsky: Analysis of Genetic, Parent of Origin or Treatment e�ect on gene
expression using RNA-seq data in Human and Mouse

(Under the direction of Wei Sun and Fei Zou)

RNA sequencing allows us to systematically study allelic imbalance of gene

expression, which may be due to genetic factors or genomic imprinting. In order to

avoid confounding between genetic and parent-of-origin e�ects, and to improve the

power to detect either e�ect, we have developed new statistical methods to jointly

model both e�ects. In this dissertation, we consider a situation where modeling and

separation of genetic and parent-of-origin e�ects are more challenging. First, we

consider outbred populations such as human. We propose to collect RNA-seq data

from children of family trios as well as phased genotype data for each member of

those trios. Then we capture the genetic e�ects by cis-acting eQTLs and use the

phased genotype data to de�ne parent-of-origin e�ects. Next we propose a protocol

for processing and analysis of RNAseq data with proper integration of total and

allele-speci�c counts. We compare two major methods for �nal analysis as well as

propose an e�cient method for estimating permutation p-value. Finally we study for

treatment, sex and additive genetic e�ect the reciprocal inbred crosses (RIX)

produced from eight divergent inbred strains.
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CHAPTER 1: LITERATURE REVIEW

High-throughput RNA sequencing, known as RNA-seq, is one of the most popular

techniques in the last decade for measuring gene expression abundance. In a typical

RNA-seq experiment, for a given sample, tens of millions of sequence reads can be

obtained, from which expression of each gene can be quanti�ed as the number of

reads mapped to the gene. RNA-seq o�ers several advantages over microarrays. For

example, RNA-seq data are often less noisy with a larger dynamic range than

microarray data. In addition, RNA-seq o�ers a great opportunity for identifying new

transcripts while microarray's detection capability is limited by its probes (Mortazavi

et al. 2008, Wang et al. 2009). Furthermore, RNA-seq is able to measure

allele-speci�c expression (ASE) not otherwise available from microarray data. In

diploid samples, every gene has two alleles: one paternally inherited and one

maternally inherited. The transcript abundance of each allele (i.e., the ASE) allows

one to dissect cis- and trans- regulations (Doss et al. 2005, Ronald et al. 2005). A few

computational methods have been proposed to estimate genetic e�ect while

combining total and allele-speci�c read counts (Sun 2012, Sun and Hu 2013, McVicker

et al. 2013, Hu et al. 2015, Kumasaka et al. 2016, León-Novelo et al. 2014)). Di�erent

strategies have been proposed to estimate parent-of-origin e�ect, for example,

screening using family pedigree (Morcos et al. 2011), or comparing the genotypes of

mRNA vs. genomic DNA using genotyping microarrays (Barbaux et al. 2012). A

method suggested by (Kumasaka et al. 2016) also allows for indirectly testing

potential imprinting e�ects by searching for the genes that show allelic imbalance
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across all samples while the genetic identity of silenced allele varies across individuals.

In studies of haloperidol a typical study involves a few mice of inbred strain, thus

not allowing to jointly estimate genetic and treatment e�ect. Analysis done by (Kim

et al. 2018) paper is on the larger side involving 28 C56BL/6j mice. In the setting of

the reciprocal cross of two inbred strains, a method directly modeling genetic and

parent-of-origin e�ects utilizing total and allele-speci�c counts was developed by (Zou

et al. 2014). This approach opens new possibilities in studying drug e�ect on more

diverse and at the same time well controlled mice population. For example, it allows

to do joint estimation of genetic and treatment e�ect in total read counts. As was

shown in (Zou et al. 2014) to incorporate parent-of-origin e�ects one also needs to add

allele-speci�c expression, since in total read counts only model has identi�ability issue.

1.1 Joint Estimation of Genetic and Parent-of-Origin E�ects Using

RNA-seq Data From Human Population

1.1.1 TReCASE approach

Total read count (TReC) can be compared across samples of di�erent genotypes to

quantify genetic e�ects on gene expression. Combining RNA-seq data and phased

genotype of a diploid genome allows us to estimate allele-speci�c expression (ASE).

Speci�cally, an RNA-seq read that overlaps with at least one heterozygous SNP can

be assigned to one of the two alleles and thus contribute one allele-speci�c read count.

(Sun 2012) developed the �rst statistical method to combine the data from TReC and

ASE to improve the estimation of genetic e�ects, and the method is referred to as

TReCASE. In TReCASE, TReC and allele-speci�c read counts are modeled by

Negative-Binomial and Beta-Binomial distribution, respectively, and both

distributions allow for over-dispersion. (Hu et al. 2015) has improved TReCASE

method in several aspects. The phasing uncertainty between candidate eQTL and
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exonic SNPs was appropriately modeled, the computing e�ciency was greatly

improved by using a score test, and a more rigorous approach was developed to

distinguish cis- and trans-acting eQTLs.

For a particular gene of interest, let yi be its total read count in the i-th sample

where i = 1, ...,N . Let the allele-speci�c read counts for the two haplotypes be ni1 and

ni2, and ni = ni1 + ni2. If we want to test the association between this gene and the

j-th SNP, we need to phase the genotype of SNP j and the gene of interest. For

example, in a sample where the genotype of SNP j is AB, if B allele is on the same

allele as the second haplotype, nijB = ni2 and otherwise nijB = ni − ni2. Let ni2′ = nijB

if genotype of SNP j is AB, and let ni2′ = ni2 otherwise. Then the allele-speci�c read

counts can be modeled as:

fBB(ni2′ ;ni, πi, ϕ) = (
ni
ni2′

)
∏
ni2′−1
k=0 (πi + kϕ)∏

ni−ni2′−1
k=0 (1 − πi + kϕ)

∏
ni−1
k=1 (1 + kϕ)

, (1.1)

where over-dispersion ϕ provides additional �exibility for excessive variance. In the

case of ni = 0, we set fBB(ni2′ ;ni, πi, ϕ) = 1. The above model can be extended to

include possible mapping bias.

log(
πij

1 − πij
) = τnullξij + (1 − ξij)b

(A)
0 , (1.2)

log (
πnull

1 − πnull
) = τnull, (1.3)

where ξij = 1 if SNP j is heterozygous for individual i, and 0 otherwise. πnull de�nes a

mapping bias. Following similar approaches in earlier works, in this dissertation, we

remove SNPs with strong mapping bias and then to assume πnull = 0.5 (or τnull = 0).

The total read counts generally can be modeled by a Negative Binomial

distribution with mean value µi and dispersion parameter φ:
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fNB(yi;µi, φ) =
Γ(yi + 1/φ)

yi!Γ(1/φ)
(

1

1 + φµi
)
1/φ

(
φµi

1 + φµi
)

yi

(1.4)

where µi is a function of p covariates βk, k = 1, ..., p such as average read depth in the

i-th sample, sex, dominant genetic e�ect, and genetic e�ect for SNP j, denoted by ηij:

log(µi) =
p

∑
k=1
βkcik + ηij, (1.5)

and

ηij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if gij = 0(AA)

log {1 + exp(bj)} − log {2} if gij = 1(AB)

bj if gij = 2(BB)

By the de�nition of cis-acting regulation, if SNP j is a cis-eQTL, b
(A)
0 = bj. In such

case, a joint likelihood can be �t with common parameter b0j shared by the likelihood

for total and allele-speci�c read counts:

(Θ) =
N

∏
i=1
fBB(ni2′ , ni; b0j, ϕ)fNB(yi; b0j, φ, β1, ...βp), (1.6)

where Θ = (b0j, ϕ, φ, β1, ...βp). A likelihood ratio test or score test can be used to

assess cis-eQTL e�ect by testing H0 ∶ b0j = 0. In the case of trans-eQTL, bj ≠ b
(A)
0 , and

thus cis- and trans-eQTL can be distinguished by a testing H0 ∶ b
(A)
0 = bj.

1.1.2 Combined haplotype test (CHT)

Combined haplotype test (CHT) estimates additive genetic cis-e�ects while

allowing over-dispersion (van de Geijn et al. 2015). The paper tests whether the

genotype of SNP j is associated with read depth and allelic imbalance in a nearby
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target region r for each pair h = {j, r}. Let αh and βh be two quantities that measure

the gene expression from reference and alternative allele, respectively, so that the

expected allelic imbalance in heterozygous case can be written as

ph =
αh

αh + βh
. (1.7)

In this model, total read counts are modeled with Beta Negative Binomial

distribution that has two over-dispersion parameters, one is speci�c for a target

region, denoted by φr for region r, and one is speci�c for an individual, denoted by Ωi

for individual i. In this distribution, the expected number of read counts for

individual i and test pair h = {j, r} is modeled as

ηhi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2αhTi if gij = 0

(αh + βh)Ti if gij = 1

2βhTi if gij = 2

where gij is the genotype of individual i at test SNP j, and Ti is the total number of

reads genome-wide for individual i.

L(αh, βh,Ωi, φr∣D) =
N

∏
i=1

P
BNB

(yir∣ηhi,Ωi, φr) (1.8)

where yir is number of reads for individual i in target region r.

Allelic imbalance in allele-speci�c read counts are modeled using Beta-Binomial

distribution with separately estimated individual level over-dispersion parameter ϕi.

Denote the number of allele-speci�c read counts from reference allele as n1ik for

individual i and target SNP k, and the total number of allele-speci�c read count as
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nik. Expected fraction of allele-speci�c reads from reference allele, denoted as ph, is

de�ned the same way as in equation (1.7), thus producing a likelihood

L(αh, βh∣D) =
N

∏
i=1
∏
k

P
BB

(n1ik∣nik, ph, ϕi) (1.9)

Furthermore, this method adjusts for incorrect calls of SNP genotypes by creating a

mixture of two Beta-Binomial distributions with Hik - probability that individual i is

heterozygous at SNP k.

P
BB−mix

(n1ik∣nik, ph, ϕi,Hik) =Hik P
BB

(n1ik∣nik, ph, ϕi) +

(1 −Hik) [P
BB

(Y = n1ik∣nik, perr, ϕi) + P
BB

(n1ik∣nik,1 − perr, ϕi)] (1.10)

with this model for allele-speci�c counts the joint likelihood is set to

(αh, βh, φr∣D) =
N

∏
i=1

[ P
BNB

(yir∣ηhi, Ω̂i, φr)∏
k

P
BB−mix

(n1ik∣nik, ph, ϕ̂i, Ĥik)] (1.11)

Individual level over-dispersion parameters as well as probability of incorrect

heterozygous SNP call for this joint model are estimated separately.

To test for additive genetic cis-e�ect one needs to test a hypothesis H0 ∶ αh = βh

versus the two sided alternative with LRT.

1.1.3 RASQUAL approach

RASQUAL is another recent method for eQTL mapping while combining total and

allele speci�c read counts (Kumasaka et al. 2016). RASQUAL models total read

counts by a Negative Binomial distribution and allele-speci�c read counts for each

SNP within a feature (e.g., a gene) by a Beta-Binomial distribution, while searching

and adjusting for potential mapping bias. For a feature, suppose we observe yi: total
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read count in sample i, and for the l-th SNP within the feature, we observe nil:

allele-speci�c count at SNP l, and n1il: the number of alternative read counts at this

SNP. We refer to such a SNP within the feature of interest as a feature SNP (fSNP).

Let Ki be sample speci�c o�set term re�ecting library size and other factors for

individual i, and assume it is estimated a priori. Assume there is a single

cis-regulatory SNP (rSNP) with imbalance parameter π. The read count of this

feature is modeled by a Negative Binomial distribution with mean value µi:

µi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(1 − π)λKi if gi = 0

λKi if gi = 1

2πλKi if gi = 2

where λ is a scale parameter for mean expression, and genotype gi taking values 0, 1

or 2 based on number of alternative alleles at the rSNP.

For this cis-e�ect, the expected allelic ratio that we measure at available

heterozygous fSNPs for a heterozygous or a homozygous rSNP is {1 − π,π} or

{0.5,0.5}, respectively. These allele-speci�c counts are modeled with Beta-Binomial

distribution. Assuming such mean structure, adding δ - the probability that an

individual read maps to an incorrect location, πnull - reference mapping bias

(πnull = 0.5 corresponds to no reference bias) and assuming common over-dispersion

parameter φ for both Negative Binomial and Beta Binomial distributions, the

respective joint likelihood is

(π, δ, πnull, φ) =
N

∏
i=1

[∑
gi

p(gi)pNB(yi∣gi;π,λi, φ)

L

∏
l=1

(∑
Dil

p(Dil∣gi)pBB(n1il∣nil,Dil;π, δ, πnull, φ))] , (1.12)
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Table 1.1: Diplotype de�nition for the rSNP and the l-th fSNP in the i-th
individual. 0 and 1 indicates the reference allele and alternative allele, re-
spectively. For example, genotype of rSNP is (0,0) means it is homozygous
reference alleles. In the de�nition of diplotype, the order of the two hap-
lotypes can be switched, i.e, h1/h2 and h2/h1 are the same diplotype. Each
diplotype may correspond to multiple combination of allele-speci�c geno-
types. For example, in the 4-th row, if the genotype for rSNP and fSNP are
(0,1) and (0,0), the �rst haplotype is 00, and the second haplotype is 10. If
the genotype for rSNP and fSNP are (1,0) and (0,0), the �rst haplotype is
10, and the second haplotype is 00. Both cases correspond to the diplotype
10/00.

Allele-speci�c genotype for rSNP Diplotype: Dil = h1/h2, where
and the l-th fSNP: {gi, gil} h1 and h2 are two haplotypes
{(0,0),(0,0)} 00/00
{(0,0),(0,1)} or {(0,0),(1,0)} 00/01
{(0,0),(1,1)} 01/01

{(0,1),(0,0)} or {(1,0),(0,0)} 10/00
{(0,1),(1,0)} or {(1,0),(0,1)} 10/01
{(0,1),(0,1)} or {(1,0),(1,0)} 11/00
{(0,1),(1,1)} or {(1,0),(1,1)} 11/01

{(1,1),(0,0)} 10/10
{(1,1),(1,0)} or {(1,1),(0,1)} 10/11
{(1,1),(1,1)} 11/11

where Dil de�nes the diplotype con�guration in individual i between the rSNP and

the l-th fSNP (Table 1.1). The genotype and haplotype probabilities p(gi) and

p(Dil∣gi) are obtained from SNP phasing and imputation. In addition to common

over-dispersion parameter, RASQUAL assumes that neither incorrect mapping δ nor

reference mapping bias φ in�uence total read count.

1.1.4 RASQUAL approach to imprinting testing

Without distinguishing paternal and maternal allele, RASQUAL cannot be used to

estimate parent-of-origin e�ect. However, the authors suggest that RASQUAL can be

used to search for potential imprinted genes by searching for genes where all samples
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show allelic imbalance, while the directions of allelic imbalance cannot be explained

by the genetic identities of the alleles. Speci�cally, they model the unknown

parent-origin by a hypothetical rSNP that is heterozygous in all samples. Let gi be

the genotype of this hypothetical rSNP, then

p(gi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 gi = 0

1 gi = 1

0 gi = 2.

Assuming the genotype of any feature SNP is independent with the genotype of this

hypothetical rSNP, then the probably of diplotype is

p(Dil∣gi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p(gil = 0) Dil = 00/10

0.5p(gil = 1) Dil = 01/10

0.5p(gil = 1) Dil = 00/10

p(gil = 2) Dil = 01/11

0 otherwise

Authors call a region to be imprinted if the p-value of association with this

hypothetical rSNP is lower than the p-values for any QTL, and if estimated e�ect size

π is extreme (> 0.9 or < 0.1).

1.1.5 Approaches in estimating parent-of-origin e�ect

Morcos et al. (2011) use genotyping arrays to assess allelic imbalance using both

RNA and genomic DNA (gDNA) samples to identify potential imprinted genes

estimating allelic imbalance fraction coming from one of the alleles at a given SNP
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after which if in at least 3 consecutive SNPs average deviation exceeded a 1 SD

threshold in at least two samples. Those potential imprinted genes are then screened

using family pedigree.

Similarly, Barbaux et al. (2012) used genotyping microarrays to compare

mRNA/cDNA vs. genomic DNA to identify new genes presenting mono-allelic

expression: such mono-allelic status at the informative SNP was de�ned as (1) having

a heterozygosity on gDNA, (2) apparent homozygosity on the corresponding cDNA in

at least two samples (out of �ve tested) which were further experimentally validated.

Finally, in experimental settings for F1 cross of highly divergent mouse strains,

(Zou et al. 2014) have jointly modeled genetic and parent-of-origin e�ect. More

details on this method are to be described in the next section.

1.2 Modeling Additive, Sex and Treatment E�ects in Diverse

Recombinant Inbred Cross (RIX)

Typical study of haloperidol e�ect on mice prior to RIX cross design was done using

small sample size of inbred mice. Analysis done by (Kim et al. 2018) paper was done

on total expression of 28 C56BL/6j mice. In this experiment haloperidol was studied

using similar tissue (striatum) and relatively large sample size - several other recent

papers studying haloperidol e�ect in rodent models are presented in (Kim et al. 2018)

Supplementary Table 1 with typical sample size under 10 mice from 6 to 24 mice. The

results of previous studies show extreme variability in number of reported signi�cant

genes with high variability in number of up-regulated versus down-regulated genes.

(Kim et al. 2018) in their study have shown importance of using striatum - even in

whole brain tissue authors were able to discover smaller number of treatment e�ects.

For such experiments quite statistical model design is relatively straightforward due

to the fact that no genetic e�ect can be observed in inbred mice as well as typically
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only one sex is chosen for experiment, thus leaving only treatment e�ect as a main

e�ect of interest. Total expression in (Kim et al. 2018), for example, was �t using

Negative-Binomial model as implemented in EdgeR package with gene-wise

dispersion. Drug e�ect was tested using likelihood ratio test.

Incorporating additive and sex e�ect in more diverse populations such as RIX cross

can add both to the stability of estimate and improve identi�ability due more diverse

population. RNA-seq data collected from F1 reciprocal crosses of inbred strains allows

a straightforward joint modelling of treatment and genetic e�ects. It also allows

attribution of allele-speci�c reads to one of the parents and, the knowledge of parent's

genotype allows to reduce mapping bias at the mapping stage and thus concentrate

on estimating of e�ects of interest. In (Zou et al. 2014), authors de�ne a model for N1

F1 mice and N2 inbred mice - allele-speci�c counts would be not available for inbred

mice since parental crosses are exactly the same. For a given gene total expression yi

is observed, and for each F1 mouse niB and ni represent number of observed allele

speci�c reads from cross B and overall number of allele speci�c reads (i.e.

ni = niA + niB for samples i = 1...N1. Assuming that b0 represents additive genetic

e�ect and bpoo represents parent-of-origin e�ect, allele-speci�c reads can be modeled

using following Beta-Binomial distribution

fBB(niB;ni, b0, bpoo, ϕ) = (
ni
niB

)
∏
niB−1
k=0 (πi + kϕ)∏

ni−niB−1
k=0 (1 − πi + kϕ)

∏
ni−1
k=1 (1 + kφ)

, (1.13)

In this model over-dispersion ϕ provides additional �exibility for excessive variance

and overall model can be represented with a certain πi that incorporates both genetic

and parent-of-origin e�ects as
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log (
πiB

1 − πiB
) = b

(A)
0 + bpooxi (1.14)

(1.15)

xi = 1 if parent of strain B is father and xi = −1 if parent of strain B is mother.

The total counts yi generally can be modeled with certain mean µi and dispersion

parameter φ as:

fNB(yi;µi, φ) =
Γ(yi + 1/φ)

yi!Γ(1/φ)
(

1

1 + φµi
)
1/φ

(
φµi

1 + φµi
)

yi

(1.16)

where mean can incorporate variety of covariates as well as a link to genetic and

parent-of-origin e�ects ηi

log(µi) =
p

∑
k=1
βkcik + ηi, (1.17)

and

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i ∈ AA

log {1 + exp(b0 + bpoo)} − log {1 + exp(bpoo)} i ∈ AB

log {1 + exp(b0 − bpoo)} − log {1 + exp(−bpoo)} i ∈ BA

b0 i ∈ BB

The joint model can be written

L(Θ) =
N1

∏
i=1
fBB(niB, ni; b0, bpoo, ϕ)

N1+N+2
∏
i=1

fNB(yi; b0, bpoo, φ, β1, ...βp), (1.18)

In case of cis-e�ect b(A) = b0 in such case a joint likelihood can be �tted with common
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parameter b0 = b
(A)
0 for total and allele-speci�c counts.

The model this way allows to perform multiple tests including a test for genetic

cis-e�ect H0 ∶ b
(A)
0 = b0 vs two sided alternative.

Similarly to described above extension to allow to �t di�erent genetic and

parent-of-origin e�ects for total and allele speci�c counts the full model also allows for

e�ects to be di�erent for male and female mice b
(A)
0F , b

(A)
0M and b0F , b0M , bpooF , bpooM ,

The paper discusses the special case of X chromosome, for which the model allows

to both adjust for allelic bias on X chromosome in female mice (due to the known

partial imprinting called Xce e�ect) by adding a sample level bias analogous to πnull

in TReCASE subsection denoted as πiXce in their model de�ned as chromosome level

expression of allele from parent B, as well as adjusting male samples due to the fact

that they have only one copy of X chromosome. Setting log ( πiXce

1−πiXce
) = τiXce these

adjustments produce a modi�ed mean structure for corresponding crosses in female

mice:

log (
πiB

1 − πiB
) = τiXce + b

(A)
0F + bpooFxi (1.19)

(1.20)

xi = 1 if B is paternal and xi = −1 if B is maternal.

and ηi for total read counts to

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i ∈ AA

log {1 + exp(τiXce + b0F + bpooF )} − log {1 + exp(bpoo)} + log {2πiXce)} i ∈ AB

log {1 + exp(τiXce + b0F − bpooF )} − log {1 + exp(−bpoo)} + log {2πiXce)} i ∈ BA

b0F i ∈ BB
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while no allele-speci�c counts for males and since males always have maternally

inherited X chromosome which is upregulated (compared to same strain in female

mouse) ηi set to

ηi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

log {2} − log {1 + exp(−bpooF )} i ∈ AA,AB

b0M − log {1 + exp(−bpooF )} i ∈ BB,BA

In this model sample level Xce e�ect is estimated separately by taking a median

allele-speci�c expression among non-fully imprinted X-chromosome genes of that

individual.

Additionally, model discusses an issue of identi�ability of the parent-of-origin e�ects

in case when only total read counts are available - when no additive e�ect exists of

using total read counts only. In such case if no additive e�ect exists a parent-of-origin

e�ect de�ned in model 1.16 is not identi�able. Plugging b0F produces all four variants

of ηi to be 0. Thus, for the cases with no allele-speci�c counts (or very low counts)

the only test that can be done is to reduce to a simpler version similar to TReCASE

approach discussed at the beginning of the review:

log(µi) =
p

∑
k=1
βkcik + βdevxi + ηi, (1.21)

In the equation above we essentially take xi as it was de�ned earlier, except now we

extend its de�nition to inbred mice by de�ning that it is 0 for crosses AA or BB and

update

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 i ∈ AA

log {1 + exp(b0)} − log {2)} i ∈ AB,BA

b0 i ∈ BB
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One still can test whether there is a deviation from additivity with H0 ∶ βdev = 0,

however if we observe additive genetic e�ect b0 = 0 interpretation of deviation from

additivity as resulting from parent-of-origin e�ect becomes spurious as it was

mentioned expected values for all four crosses are expected to be the same if b0 = 0.

Same remains true for X chromosome.
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CHAPTER 2: JOINT ESTIMATION OF GENETIC AND
PARENT-OF-ORIGIN EFFECTS UNDER FAMILY TRIO DESIGN

2.1 Method

We assume genetic e�ects can be captured by a limited number of cis-acting

eQTLs. Here we de�ne cis-eQTLs as those eQTLs that in�uence allelic-imbalance of

gene expression (Sun and Hu 2013). This is a reasonable assumption because most

cis-acting eQTLs are local eQTLs and because of the limited linkage dis-equilibrium

(LD) structure around a gene, the number of independent cis-eQTLs of a gene is

relatively small. In the following, we assume there is only one cis-eQTL to simplify

the discussion. Our method can be easily extended to the cases with multiple

cis-eQTLs.

To help explain the motivation of the model choice and parametrization of our

method, we start by a toy example to illustrate how cis-eQTL and PoO factors a�ect

both total expression and ASE. Consider the expression of one gene in four

individuals, and a cis-eQTL of this gene with ordered genotype CC, TT, TC or CT

with the �rst allele listed being inherited from mother and the second from father

(Figure 3.1). The genetic e�ect is that C allele has three times expression of T allele,

and the PoO e�ect is that paternal allele has twice of the expression of maternal allele.

It is apparent that there are allelic imbalance in all four individuals. The degree of

allelic imbalance depends on both cis-eQTL and PoO e�ects and it is very challenging

to discern them without knowing the parent-of-origin of each allele. This toy example

also demonstrates that in addition to ASE, both cis-eQTL and PoO factors can a�ect
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Figure 2.1: Recovering allele-speci�c signal from RNA-seq data. The di-
agram illustrates cis-eQTL and parent-of-origin e�ects on gene expression
in four individuals (individuals 1-4). The yellow/green boxes indicate ex-
onic/intronic regions, respectively. Assume there is a heterozygous SNP in
the exonic region of this hypothetical gene in all four individuals, and thus
we can quantify ASE. There is a cis-eQTL with C or T allele, and its C
allele has three times of expression of T allele. In addition, the paternal
copy has twice expression of the maternal copy.

total expression. Cis-eQTL's e�ect on total expression is more apparent since total

expression decreases as genotype shift from CC, CT/TC, to TT. PoO modi�es the

total expression of the two individuals with ordered genotype CT and TC. Without

PoO e�ect, these two individuals should have equal amount of TReC.

2.1.1 Allele speci�c counts

To simplify the notation, we assume the haplotypes connecting a candidate eQTL

and the gene of interest are known. Let ni1 and ni2 be the allele-speci�c read counts

of the two haplotypes of the gene of interest in the i-th individual (denoted by hi1 and

hi2), respectively, where i = 1, ...,N . Let ni = ni1 + ni2. Denote the two alleles of the

candidate eQTL as A1 and A2, and denote its genotype in the i-th individual as gi.
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We assign di�erent meanings to genotypes A1A2 and A2A1 such that A1A2 means

haplotypes hi1 and hi2 harbor the A1 and A2 alleles, respectively, and A2A1 means

haplotypes hi1 and hi2 harbor the A2 and A1, respectively. We model ni1 by a

beta-binomial distribution (denoted by fBB):

ni1 ∼ fBB(ni1;ni, πi, ϕ), log [πi/(1 − πi)] = b0zi + b1xi, (2.1)

where ϕ is over-dispersion parameter, and zi and xi are de�ned as follows:

zi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if gi = AkAk, k = 1 or 2

1 if gi = A2A1

−1 if gi = A1A2;

xi =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1 if haplotype hi1 is inherited from the paternal allele,

−1 if haplotype hi1 is inherited from the maternal allele.

2.1.2 Total read counts (TReCs)

The TReC of the gene of interest in the i-th individual, denoted by yi, is modeled

by a negative binomial distribution with mean µi and over-dispersion parameter φ,

denoted by fNB(yi;µi, φ). We can write the mean structure for negative binomial

distribution as:

log(µi) = γ0 + βκ log(κi) +
p

∑
u=1

βuciu + ηi, (2.2)

where βu, u = 1, ..., p, is the regression coe�cient for the u-th covariate (e.g., age,

gender, batch e�ects, principal component for population strati�cation, or surrogate
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variables for latent batch e�ects). ηi is de�ned as:

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if gi = A1A1

log {1 + exp(b0 + xib1)} − log {1 + exp(xib1)} if gi = A1A2 or A2A1

b0 if gi = A2A2

Note that the additive genetic and parent-of-origin e�ects are parametrized by b0 and

b1, which are the same as the b0 and b1 in equation (2.1) for allele-speci�c read counts.

2.1.3 Joint likelihood

The joint likelihood of total read count (TReC) and ASE is

(Θ) =
K

∏
i=1
fBB(ni1, ni; b0, b1, ϕ)fNB(yi; b0, b1, φ, γ, βκ, β1, ...βp), (2.3)

where Θ = (b0, b1, φ,ϕ, γ, βκ, β1, ...βp). In this model we assume common genetic and

parent-of-origin e�ect for TReC and ASE. We test the genetic and parent-of-origin

e�ects by testing whether b0 or b1 equals to 0, respectively, with the likelihood ratio

test.

2.1.4 Optimization Algorithm

For a given initial values for non-linear terms (φ, ϕ, b0, b1)

Step 1: Optimize linear terms given the initial values of non-linear terms:

βr+1 = βr + (X ′WrX)−1(X ′Wrkr), diag(Wr) =
µr

1 + φ−1r µr
and kr =

yr − µr
µr

,

where Wr is a diagonal matrix.

Step 2: Iteratively estimate b0 and b1. Note that the following two steps are
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redundant, but improves the robustness of the algorithm.

1. Optimize b0 and b1 together using BFGS method.

2. Optimize b0 and b1 separately using Brent algorithm.

Step 3: optimize over-dispersion parameter log(φ) and log(ϕ) separately using

Brent algorithm. For stability we limit the range of over-dispersion to be between

10−4 and 104.

Step 4: If likelihood change is larger than a small number ε, go to step 1, otherwise

�nish the estimation process.

2.2 Simulations

We simulated ASE and TReC from the model described by joint likelihood in

equation (2.3). We chose the smallest sample size to be 32, which is similar to the

dataset size we have for real data analysis. To demonstrate the asymptotic properties,

we also simulated data of larger sample sizes of 64, 128, and 256. We set the

over-dispersion parameters for beta-binomial (ϕ) and negative binomial (φ)

distributions to be 1/4, and 4/3, respectively, which are fairly typical in real data. We

further scale the expected counts so that mean total read count was about 250. We

set the proportion of reads that are allele-speci�c to be 10% which is reasonably close

to observed value in our real data. Our simulation results show that the estimates of

b0 and b1 from our method are unbiased. In contrast, if a model is �t with only

genetic or parent-of-origin e�ect while in fact both e�ects are present, the parameter

estimates have signi�cant bias (Figure 2.2).

We also compared the type I error and power of our joint model versus naive �t

using R/glm.nb function to �t Negative-Binomial model using total read counts only

and R/vglm function to �t Beta-Binomial model using allele speci�c counts only. As
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Figure 2.2: Observed bias in model �tting marginal models. Fitting the
joint model versus (a) additive genetic e�ect only or (b) parent-of-origin
e�ect only for various sample sizes. The legend on the left side of each
�gure shows sample sizes. The solid line shows density estimates obtained
from joint estimation of additive and parent-of-origin e�ect, while dash line
shows density estimates when only one e�ect is �tted (i.e. additive only for
left panel and parent-of-origin only for right panel)

shown in Table 2.1, the simple models don't control type I error as well as joint model

and they also have lower power to detect either genetic or parent-of-origin e�ect than

the joint model.

The statistical power of the joint model is illustrates in Figure 2.3. Even at sample

size of 32, our method has around 80% of power to detect either genetic or

parent-of-origin e�ect at two-fold change, which corresponds to e�ect size

log(2) = 0.693. The power to detect parent-of-origin e�ect is higher than the power to

detect genetic e�ect. This is because the ASE of all samples can be used to quantify

parent-of-origin e�ect (i.e., comparing paternal vs. maternal allele). In contrast, ASE

can be used to quantify genetic e�ect only if the genotype of the candidate eQTL is

heterozygous, so that we can compare the expression of one allele versus the other
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Table 2.1: Power Analysis

Parameters Genetic Parent-of-Origin
Joint Negative Beta Joint Negative Beta

b0 b1 Model Binomial Binomial Model Binomial Binomial
0.00 0.00 0.06 0.11 0.07 0.06 0.12 0.07
0.13 0.13 0.09 0.12 0.08 0.11 0.11 0.10
0.25 0.25 0.19 0.14 0.11 0.27 0.11 0.18
0.50 0.50 0.53 0.21 0.21 0.72 0.12 0.46
0.75 0.75 0.83 0.32 0.33 0.96 0.14 0.76
1.50 1.50 1.00 0.76 0.49 1.00 0.39 0.93

allele.

Figure 2.3: The statistical power of joint model. Figure shows the ability of
detecting (a) additive genetic e�ect or (b) parent-of-origin e�ects for various
sample sizes. The horizontal red dash line indicates the p-value cuto� 0.05
to declare statistical signi�cance.

2.2.1 Model misspeci�cation due to only a fraction of individuals having

imprinting e�ect

We also consider a scenario when only a fraction of individuals doesn't have

imprinting e�ect (assuming that they still have the same genetic e�ect). To do it we
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simulate the model as described in method section, but for a randomly chosen

fraction we replace b1 e�ect with 0. In simulation we included true model, 5%, 10%,

20% and 40% individuals with no imprinting e�ect. While we simulated the data for

sample size 32, 64 and 128, since they show similar results for the future illustrations

we chose sample size 32. We do observe that increased fraction of not imprinted

individuals leads to larger bias and lower power (Figure 2.4). We also observe that

type one error is reasonably controlled in such scenario for all the fractions we used in

our simulations. We can see that higher fraction of individuals with no parent of

origin e�ect leads to drop of power with more pronounced drop in parent of origin

e�ect (panel (f)). Additionally, it is clear that the higher is value of the other e�ect

the higher drop of power gets, especially notable for additive genetic e�ect (panel (e)).

At least in part this drop in power is due to the fact that only a fraction of samples

have a non-zero e�ect, and the rest (up to 40%) don't have e�ect. It could be of

interest for the future work to see how much power would improve under a properly

speci�ed model for this scenario.
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Figure 2.4: Simulation results for 10,000 datasets with variable e�ect sizes,
and fraction imprinting. For readability purposes we choose sample size
32 for presentation. The data simulated with true model perturbed by
replacing parent of origin e�ect (b1) to 0 for a certain fraction of randomly
chosen individuals. Fractions 0, 0.05, 0.10, 0.20 and 0.40 were selected for
simulations. Model that assumes that all individuals share common parent
of origin e�ect (b1) was �tted. Panels (a)-(c) show the type 1 error, power
and relative bias introduced to additive genetic e�ect when it is �t with
underlying POO e�ect of 1 for di�erent fractions of mis-speci�ed parent of
origin e�ects. Panels (d)-(f) show the similar results for parent of origin
e�ect. In panels (b) and (d) we choose e�ect size of 0.5 since it better
illustrates power drop. In panels (c) and (f) we plot a relative bias of a
corresponding e�ect with other e�ect set to 0. Since it is a relative bias we
want to concentrate only on large enough e�ect sizes to show the trend - we
keep only e�ect sizes 0.25, 0.5 and 1. Even at that you may see that e�ect
size 0.25 gets noisier estimate than 0.5 and 1.
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2.2.2 Model mis-speci�cation with perturbation of genotype

We also considered a situation when a fraction of individuals have randomly �ipped

genotype either due to error or due to the fact that we consider not true eQTL, but

the one similar to it. To do it we simulate the model as described in method section,

but for a fraction of randomly chosen individuals we replaced genotype by a randomly

chosen wrong value. In simulation we included 0%, 5%, 10%, 20% and 40% �ipped

individuals. Again, we present the results for sample size 32.

We do observe that increased fraction of �ipped genotypes leads to larger bias and

lower power (Figure 2.5). We also observe that type one error is reasonably controlled

in such scenario. We can see that higher fraction of individuals with perturbed

genotype leads to higher loss of power. Additionally, it is clear that the higher is value

of underlying additive e�ect the more pronounced is power drop in parent of origin

e�ect due to the incorrect genotypes (panel (f)). Still, main drop due to genotype

switch is in genetic e�ect (panel (e)).

2.2.3 Model mis-speci�cation with perturbation of haplotype

Similarly we modify the main manuscript scheme adding a �ip of parental

information in 0%, 5%, 10%, 20% and 40% randomly chosen individuals. We

performed simulations under several sample sizes (32, 64, 128) samples and present

the results for sample size 32.

In this case we also observe that increased fraction of �ipped haplotypes leads to

larger bias and lower power (Figure 2.6). We also observe that type one error is not

controlled as well in parent of origin e�ect when fraction goes up. The problem is

more pronounced with higher underlying genetic e�ect. This e�ect is similarly visible

in higher sample sizes. We can see that higher fraction of individuals with perturbed

haplotype leads to higher loss of power. Additionally, the higher is value of the
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incorrect haplotypes impacts parent of origin e�ect more with higher underlying

additive genetic e�ect (panel (f))

2.2.4 Extended simulations with parameters selected based on real data

While we presented a more controlled simulation scenario in the main text that

allows us to evaluate the power for a variety of e�ect sizes and to observe bias of the

short model ignoring genetic or parent of origin e�ect, we also extended the

simulation to better mimic observed dataset to simulate 10,000 genes. Speci�cally, we

aimed to mimic the real dataset in several aspects:

1. We select 10 e�ect sizes for either genetic (eQTL) or parent of origin e�ect: 0

and 9 deciles of the observed e�ect sizes in the real data. For genetic e�ect these

values span the range from 0 to 0.53 and for PoO the e�ect varies from 0 to

0.31. Among the 10,000 simulated genes, we randomly selected 1,000 genes to

assign one of the ten genetic e�ects, and similarly randomly assign parent of

origin e�ects.

2. To address variability in total read counts, we calculated mean total read count

for each expressed gene from our real data analysis, excluded 5% genes with

lowest expression and 5% genes with highest expression, and then selected 10

mean read counts using equally spaced quantiles. As result we get mean count

for each gene to vary between 30 for the lowest expressed group to 3,588 for the

most expressed genes. We randomly assign those read counts so that 1000 genes

have one of the 10 read counts.

3. As shown in Figure 2.7, over-dispersion parameter varies with respect to

expression level. In addition, over-dispersion distributions were fairly symmetric

on log scale. Therefore for each of 10 total read count categories de�ned in step
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2, we estimated mean and variance of both negative binomial and beta-binomial

over-dispersion parameters (in log scale) from our dataset, and then randomly

generated over-dispersion parameters for each simulated gene by sampling the

log over-dispersion from normal distributions with given mean and variance.

4. We also observed that distribution of the fraction of allele-speci�c counts is

notably di�erent for each of 10 total expression categories and in each of them

there is notable number of individuals with no allele-speci�c reads. We created

empiric distributions of the fractions of allele-speci�c counts for each of 10

groups de�ned in step 2, and for each simulated gene we used the corresponding

empiric distribution to simulate fractions of allele-speci�c counts for each

individual.

5. Additionally, we took estimates of the other coe�cients we used in our model

�t: intercept, library size, and batch e�ects, and randomly simulated values for

each of the simulated gene.

We have also repeated this simulation setup several times with additional a

secondary eQTL. Our model only consider the primary eQTL, and thus this is a

situation with model mis-speci�cation. We consider the situation when the e�ect size

of the second eQTL is a certain fraction of the e�ect size of the primary eQTL and its

genotype is positively correlated with primary eQTL. The results for both correctly

speci�ed model (i.e., with only one eQTL) and several mis-speci�ed models (i.e., with

secondary eQTL) are shown in Figure 2.8. The type I error is controlled by both

correctly speci�ed model and speci�ed models. Correctly speci�ed model gives

unbiased estimates of e�ect sizes. In the mis-speci�ed models, since we simulated

secondary eQTL to be positively correlated with the primary one, we tend to

over-estimate eQTL e�ect and have higher power when the e�ect of the secondary
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eQTL gets bigger. Mis-speci�cation of eQTL e�ects does not a�ect our ability to

estimate and test the parent of origin e�ect.
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Figure 2.5: Simulation results for 10,000 datasets with variable e�ect size
and fractions of individuals with wrong genotype. For illustration we select
sample size 32. The data simulated with true model perturbed genotype
replacing it by an opposite for a certain fraction of randomly chosen indi-
viduals. Fractions 0, 0.05, 0.10, 0.20 and 0.40 were selected for simulations.
Panels (a)-(c) show the type 1 error, power and relative bias introduced to
additive genetic e�ect when it is �t with underlying POO e�ect of 1 for
di�erent fractions of mis-speci�ed parent of origin e�ects. Panels (d)-(f)
show the similar results for parent of origin e�ect. In panels (b) and (d) we
choose e�ect size of 0.5 since it better illustrates power drop. In panels (c)
and (f) we plot a relative bias of a corresponding e�ect with other e�ect set
to 0. Since it is a relative bias we want to concentrate only on large enough
e�ect sizes to show the trend - we keep only e�ect sizes 0.25, 0.5 and 1.
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Figure 2.6: Simulation results for 10,000 datasets with variable e�ect size
and fractions of individuals with wrong haplotype. For illustration we select
sample size 32. The data simulated with true model perturbed haplotype
replacing it by an opposite for a certain fraction of randomly chosen indi-
viduals. Fractions 0, 0.05, 0.10, 0.20 and 0.40 were selected for simulations.
Panels (a)-(c) show the type 1 error, power and relative bias introduced to
additive genetic e�ect when it is �t with underlying POO e�ect of 1 for
di�erent fractions of mis-speci�ed parent of origin e�ects. Panels (d)-(f)
show the similar results for parent of origin e�ect. In panels (b) and (d) we
choose e�ect size of 0.5 since it better illustrates power drop. In panels (c)
and (f) we plot a relative bias of a corresponding e�ect with other e�ect set
to 0. Since it is a relative bias we want to concentrate only on large enough
e�ect sizes to show the trend - we keep only e�ect sizes 0.25, 0.5 and 1.
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Figure 2.7: The distribution of over-dispersion parameters for total expres-
sion ϕ (left panel) and allele-speci�c φ reads (right panel) plotted versus
median expression of a gene, both scales on logarithmic scale. Values for
near zero over-dispersion in a group of genes are truncated below.
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Figure 2.8: Simulation results for 10,000 genes with variable e�ect sizes,
total read counts, and the proportion of allele-speci�c read counts. There
are 5 simulation setups. The �correct� one has one eQTL. In the four mis-
speci�ed models, we only model one eQTL, but there is a secondary eQTL.
The genotype of the primary and secondary eQTLs have a correlation of
0.5. The e�ect size of the secondary eQTL is a fraction (1/8, 1/4, 1/2, or 1)
of the e�ect size of the primary eQTL. (a)-(b): E�ect size estimation where
x-axis is simulated e�ect size and y-axis is e�ect size estimate. the red dash
line is the diagonal line. (c)-(d): The statistical power to detect genetic
e�ect or parent-of-origin e�ects. The horizontal red dash line indicates the
p-value cuto� 0.05 to declare statistical signi�cance.
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2.2.5 Comparison of model-based estimates of standard errors versus the

empirically observed ones

Using the aforementioned genome-wide simulations, we demonstrated that the

standard error of e�ect size estimates are consistent with empirically observed ones,

with slight under-estimate when sample size is 32 (Table 2.2). The con�dence

intervals have reasonable coverage, except for sample size 32, where the coverage is

slightly lower than expected (Table 2.3).

Table 2.2: Model-based standard errors vs empirical standard errors

eQTL

sample size 32 64 128

e�ect size b0 Model Empiric Model Empiric Model Empiric

0.000 0.120 0.138 0.086 0.097 0.074 0.100

0.019 0.118 0.131 0.086 0.090 0.071 0.076

0.040 0.133 0.150 0.101 0.102 0.070 0.072

0.062 0.123 0.115 0.089 0.093 0.067 0.058

0.089 0.148 0.156 0.105 0.113 0.073 0.067

0.120 0.124 0.121 0.111 0.104 0.077 0.081

0.160 0.119 0.116 0.089 0.090 0.061 0.061

0.218 0.132 0.145 0.102 0.127 0.071 0.062

0.312 0.118 0.137 0.089 0.086 0.067 0.063

0.526 0.123 0.127 0.101 0.112 0.074 0.071

Parent-of-Origin

sample size 32 64 128

e�ect size b1 Model Empiric Model Empiric Model Empiric

0.000 0.142 0.149 0.108 0.120 0.078 0.070

0.012 0.146 0.175 0.110 0.100 0.075 0.069

0.025 0.148 0.164 0.106 0.113 0.077 0.078

0.039 0.146 0.159 0.109 0.115 0.081 0.091

0.056 0.137 0.128 0.101 0.114 0.074 0.074

0.077 0.149 0.159 0.101 0.108 0.074 0.081

0.104 0.151 0.148 0.111 0.122 0.077 0.085

0.140 0.141 0.147 0.101 0.106 0.076 0.073

0.198 0.155 0.142 0.105 0.106 0.078 0.071

0.308 0.142 0.134 0.104 0.114 0.073 0.082
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Table 2.3: Model based coverage

b0 32 64 128 b1 32 64 128
0.000 92.7% 94.2% 95.0% 0.000 92.4% 94.6% 96.1%
0.019 93.3% 94.4% 93.8% 0.012 93.8% 94.7% 95.7%
0.040 93.7% 95.3% 95.4% 0.025 93.9% 92.8% 94.8%
0.062 95.3% 94.0% 94.0% 0.039 94.1% 93.9% 93.5%
0.089 92.3% 94.6% 95.3% 0.056 93.2% 95.5% 94.5%
0.120 94.2% 93.1% 94.9% 0.077 94.4% 94.7% 95.1%
0.160 93.1% 94.9% 94.1% 0.104 93.9% 94.6% 93.7%
0.218 93.5% 94.3% 96.4% 0.140 93.7% 94.5% 95.5%
0.312 93.9% 94.5% 94.7% 0.198 95.0% 94.9% 95.0%
0.526 92.8% 94.7% 94.1% 0.308 94.1% 94.4% 94.3%
overall 93.5% 94.4% 94.8% overall 93.9% 94.5% 94.8%
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2.2.6 Timing

Model �tting for each gene includes the following steps: �rst �t TReC only model

with b0 to obtain reasonable initial values, and then �t full TReCASE model

estimating b0 and b1, as well as two short models described above. The computational

time were evaluated by average time per gene.

The computational time of our method scales well with the sample size. The time

per gene remains under a second for sample sizes under 200 individuals: see

Figure 2.9: the time needed to �t a gene is linearly dependent on sample size and

increases for parameters being farther away from zero. For the sample size of around

200 the computation time is about 1 second per gene.

Figure 2.9: Time to �t full and short models in seconds to �t (a) additive
genetic and (b) parent-of-origin e�ects
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2.3 Application

2.3.1 Data collection

We collected RNA-seq data from 30 HapMap CEU (Caucasian) samples (15 males

+ 15 females). All of these samples are children of family trios, where the

genotypes/haplotypes of three family members have been reported in the HapMap

project, and their lymphoblastoid cell lines are available through Coriell

(http://www.coriell.org/). For most of these samples, the RNA reads were 150 bp

paired-end reads, with an additional smaller run of 75 bp paired-end reads. The

median of the total number of reads for these 30 samples is about 20 million. These

reads were mapped with Tophat2 using hg38 reference of human genome. HapMap

project genotyped about 3.9 million SNPs for these 30 trios. We phased and imputed

the genotypes of these 30 trios using shapeit2 (Delaneau et al. 2014) and impute2

(Howie et al. 2012), against 1000 Genome reference panel containing 2,504 individuals

with ∼82 million SNPs. Finally, based on phased and imputed genotype, we extracted

allele-speci�c reads (i.e., those RNA-seq reads that overlap with at least one

heterozygous SNP), and counted the number of allele-speci�c reads for each haplotype

of a gene.

2.3.2 Identi�cation of candidate cis-eQTLs

The parents of these 30 HapMap family trios are part of samples included in 1000

Genomes project (1000 Genomes Project Consortium 2012). To improve the power

and precision for eQTL mapping, we �rst identi�ed candidate cis-acting eQTLs using

the Caucasian samples of 1000 Genome Project. Speci�cally, we downloaded fastq

�les for 227 European samples from the Geuvadis consortium (Lappalainen et al.

2013). We mapped all the reads to hg38 reference, and then performed similar process
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of phasing and imputation of the genotypes of these 227 samples. Then we calculated

total read counts and allele-speci�c read counts per gene and per sample, and then

estimate additive genetic e�ect using TReCASE method (Hu et al. 2015).

2.3.3 Identi�cation of imprinted genes

Given the candidate cis-acting eQTLs identi�ed from 1000G samples, we used our

method to estimate genetic (eQTL) e�ect and imprinting e�ect for 12,386 genes in

the 30 children of the family trios. These genes were selected because they had

enough expression in the 30 samples and they had at least one candidate cis-eQTL

based on eQTL mapping results from the 227 samples of 1000 Genome Project. For

the negative binomial model of total read count, we �t our model with additional

covariates to capture the e�ects of read-depth and batches (the RNA-seq data were

collected through 3 batches with 10 samples per batch). No additional covariate is

needed for the analysis of allele-speci�c read counts because our model for ASE

compared the expression of one allele versus the other allele, and thus the e�ects of

such covariates are canceled. We found 16 genes with signi�cant imprinting e�ects at

q-value cuto� 0.05 (Table 2.4).

Replotting the results of the table 2.4 we can conclude that genes missing 0.05

cuto� generally show lower imprinting disbalance, so notable chunk of them missed

0.05 cuto� due to power issues of a small sample size.

Out of these 16 genes, 10 were known to be imprinted from previous studies and 6

were novel �ndings. For 14 of these 16 genes, the paternal allele had higher expression

than the maternal allele. For all of those 10 known imprinted genes, our estimates of

allelic imbalance agree with what were reported before. At a more liberal cuto� of

q-value 0.25, we identi�ed 15 additional imprinted genes. After manually examining

the expression pattern of these 15 genes, we concluded that 12 of them missed the
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Table 2.4: POO genes found: 1 - missed cuto� due to low count and 2 -
missed cuto� due to smaller e�ect size

ID Name q-value Expression Is Known
ENSG00000269821 KCNQ1OT1 1.2e-08 paternally yes
ENSG00000204186 ZDBF2 9.6e-08 paternally yes
ENSG00000167981 ZNF597 2.9e-07 maternally yes
ENSG00000185513 L3MBTL1 5.1e-06 paternally yes
ENSG00000177432 NAP1L5 6.6e-06 paternally yes
ENSG00000242265 PEG10 6.9e-06 paternally yes
ENSG00000257151 PWAR6 5.8e-05 paternally no
ENSG00000224078 SNHG14 8.2e-05 paternally no
ENSG00000130844 ZNF331 1.2e-04 paternally no
ENSG00000261069 RP11-701H24.4 3.8e-04 paternally no
ENSG00000225806 RP1-309F20.3 3.8e-04 paternally no
ENSG00000122390 NAA60 4.3e-04 maternally yes
ENSG00000128739 SNRPN 3.6e-03 paternally yes
ENSG00000100138 SNU13 4.4e-03 paternally no
ENSG00000145945 FAM50B 2.5e-02 paternally yes
ENSG00000101898 MCTS2P 3.7e-02 paternally yes
ENSG000002791921 PWAR5 8.6e-02 paternally no
ENSG000001748512 YIF1A 9.9e-02 paternally no
ENSG000001821091 RP11-69E11.4 1.3e-01 paternally no
ENSG000001718471 FAM90A1 1.5e-01 maternally no
ENSG000000827811 ITGB5 2e-01 paternally no
ENSG000001780571 NDUFAF3 2e-01 maternally no
ENSG000002543191 RP11-134O21.1 2e-01 paternally no
ENSG000002536332 KB-1980E6.3 2e-01 paternally no
ENSG000001116781 C12orf57 2e-01 maternally no
ENSG00000101160 CTSZ 2e-01 maternally no
ENSG000000549672 RELT 2.1e-01 paternally no
ENSG000001262262 PCID2 2.1e-01 maternally no
ENSG00000135709 KIAA0513 2.1e-01 maternally no
ENSG00000175643 RMI2 2.1e-01 maternally no
ENSG000002621551 RP11-266L9.5 2.2e-01 paternally no
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Figure 2.10: A graphical summary of the imprinting e�ect for the 31 genes
that passed q-value 0.25 cuto� X-axis being gene index, and y-axis being the
proportion of RNAseq reads from the allele with higher expression. These
31 genes are ordered by q-value and the size of each point re�ects the scale
of log read counts. Red line (as well as di�erent shape) re�ects a q-value
0.05 cuto�. The symbols indicate whether a gene has q-value smaller than
0.05.

q-value cuto� 0.05 due to power - either because parent-of-origin e�ect was smaller (4

genes) or the number of allele-speci�c reads was small (8 genes).

We illustrate the read count data of a clearly imprinted gene, ZNF497, which has

higher expression on maternal allele (Figure 2.11). The imprinting e�ect can be

observed from both TReC and ASE. We denote the genotype such as the �rst allele is

maternal allele, i.e., genotype AB means A and B are from maternal and paternal

allele, respectively. For TReC, the two groups with genotype AA and AB have similar

expression because they share the same maternal allele and maternal allele has much

higher expression than paternal allele. Similarly, the two groups BA and BB have

similar expression. The results are even more evident in allele-speci�c reads where we

observe the proportion reads from paternal allele is far below 50%.
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Figure 2.11: ZNF497 - a maternally expressed gene. (a) normalized total
read counts (log10 scale), (b) percent of paternally expressed reads. Reads
are classi�ed into four categories by their genotype, assuming that �rst
recorded genotype is maternal. Size of circle re�ects the scale of log read
counts.

We selected known imprinted genes based on the list reported by (Morison et al.

2005) or those genes recorded in the Geneimprint database (Jirtle 2016). There is a

total of 90 known imprinted genes, among which 32 were expressed in our dataset and

had a candidate eQTL. Of these 32 genes, 10 were found to be signi�cant (q-value <

0.05) by our method. For several genes (such as RB1, KCNQ1, PEG3, and PLAGL1),

we observed signal of imprinting, but the signal was too weak to produce signi�cant

q-value. In general, though, we observed that even for insigni�cant results, those with

relatively smaller q-value tend to have estimated imprinting direction matched with

the reported imprinting direction.

2.3.4 Locations of discovered parent-of-origin e�ect

For each chromosome, we assess whether the proportion of paternally imprinted

genes of this chromosome is di�erent from all the other chromosomes. We performed

a test only if there are at least 5 imprinted genes in a chromosome (Table 2.5). These
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Table 2.5: POO genes found by chromosome

q-value < 0.25 q-value < 0.5
chr pat/tot p-value pat/tot p-value
1 1/1 7/11 0.36
2 1/1 5/11 1.00
3 1/2 2/6 0.68
4 1/1 6/7 0.06
5 0/0 1/8 0.06
6 1/1 5/8 0.49
7 1/1 3/5 0.68
8 2/2 5/8 0.49
9 0/0 1/1
10 0/0 2/6 0.68
11 3/3 5/10 1.00
12 0/2 1/8 0.06
13 0/1 0/4
14 0/0 5/10 1.00
15 5/5 0.29 7/8 0.03
16 1/5 0.02 3/11 0.21
17 0/0 5/8 0.49
18 0/0 2/3
19 1/1 5/11 1.00
20 3/4 5/8 0.49
21 0/0 0/0
22 1/1 1/3

formal tests con�rm the clusters at chromosome 16 and 15, at imprinting q-value

cuto� 0.25 and 0.5, respectively; although if we de�ne imprinted genes at the q-value

cuto� 0.5, the p-value of enrichment of imprinted genes for chromosome 15 is not

signi�cant after multiple testing correction.

41



2.3.5 Permutation setup for signi�cant imprinted genes

For the genes with signi�cant parent of origin e�ect we calculated permutation

p-values using up to 100,000 permutations. We seek to permute the data to retain

eQTL e�ect and destroy parent of origin e�ect. To do this we randomly �ip maternal

and paternal allele-speci�c counts. For samples with heterozygous eQTL SNP, e.g.,

with genotype Ami A
p
j , i ≠ j, after �ipping the allele-speci�c counts, we also �ip the

eQTL allele to be Amj A
p
i so that the genetic e�ect remain unchanged. A naive

comparison of the permutation p-value and the LRT p-value may suggest that they

have weak correlation (Figure 2.12(a)). However, this is an artifact due to the limited

range of permutation p-value. First, since we permute up to 100,000 times, the

minimum permutation p-value is 10−5. For some genes, the number of samples with

allele-speci�c reads is small, and thus the total number of possible permutations is

limited. For example, we can have at most 210 = 1024 permutations if there are

allele-speci�c reads in 10 samples. After accounting for such limited range of

permutation p-value, we observe strong consistency between LRT p-values and

permutation p-values (Figure 2.12(b)).
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Figure 2.12: Calculating permutation based p-value for 31 signi�cant genes
using 100,000 permutations. Panel (a): permutation based p-value vs LRT
based p-value, in -log10 scale. (b) Same permutation based p-value vs LRT
or one over the number of possible permutations based on number of indi-
viduals with allele-speci�c counts for a given gene. The size of a circle is
proportional to number of individuals with allele-speci�c counts. The dash
line is the diagonal line.
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2.3.6 Additional study of bias using simpler model and only eQTL and

parent of origin e�ect

We also performed additional study of the bias observed in a Figure 2 of the main

text to explore the underlying reason of such bias. We removed all the extra

covariates and did a simple modeling of allele-speci�c counts only using beta-binomial

distribution (R/vglm function) or quasi-binomial distribution (R/glm function). The

latter one is not useful for testing as it doesn't control type I error under such

mis-speci�cation of over-dispersion (as it was shown in (Zou et al. 2014)), but is

helpful as a point of comparison. We evaluate the relative bias of parent of origin

e�ect (b1) if we ignore genetic e�ect b0, and illustrate the bias as b0 increases from 0

to 1 (Figure 2.13 (a)). We can see that increasing size of b0 is associated with

increasing bias of beta-binomial over-dispersion parameter as well as increasing bias of

b1. Therefore, we conjecture that ignoring b0 leads to over-estimate of over-dispersion

parameter, which in turn a�ects b1 estimates. In contrast, we didn't see such bias

when used a quasi-binomial model (Figure 2.13 (b)), likely due to the fact that it �rst

estimates e�ect size based on binomial model and then adds an extra step of

estimating extra variation, which absorb the model mis-speci�cation.
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Figure 2.13: Plotting bias vs over-dispersion (a) Bias in e�ect size estimate
(b1, the parent of origin e�ect) of a mis-speci�ed beta-binomial model (ig-
noring genetic e�ect b0) is associated with bias in over-dispersion parameter.
(b) Mis-speci�ed quasi-binomial model does not lead to bias in e�ect size
estimate (b1, the parent of origin e�ect).
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2.4 Summary

We developed a systematic approach to jointly estimate cis-eQTL and PoO e�ect

in human. Our results recovered about one third of known imprinted genes, and if we

excluded genes with low expression and included genes with weaker, but

non-contradicting imprinting directions, there was a good overall consistency. None of

the genes classi�ed as �predicted imprinting� instead of �imprinting� in Geneimprint

database were detected as imprinted genes with high con�dence in our results. One

possible reason is that most of these genes were selected based on a screening paper

(Luedi et al. 2007) and were false positives. We also noted that for these �predicted

imprinting� genes, the proportion of genes with predominantly paternal expression is

roughly 50%, while this proportion is about 68% (61/90) for known imprinting genes.

Several imprinted genes that we found are non-coding RNAs, such as RP11-701H24.4

and RP1-309F20.3, which warrants further studies to elucidate the functional

consequence of imprinted non-coding RNAs.

In exonic regions with at least one heterozygous SNPs, one haplotype (e.g., the

paternal one) may have more reference alleles than the other haplotype. This may

create RNA-seq mapping bias because we map RNA-seq reads to reference genome.

As shown by a comprehensive study, mapping bias has minimum e�ect on eQTL

mapping (Panousis et al. 2014). In addition, we have explored the potential impact of

mapping bias on estimating parent-of-origin e�ect and found it does not have any

non-ignorable confounding e�ect.

We have assumed haplotypes around a gene are known or it can be inferred from

un-phased genotypes. Phasing uncertainty is less a concern for family trio study

because we performed phasing using family information and thus the phasing results

are reasonably accurate within a short distance of a gene. For eQTL mapping in

unrelated individuals, we employed the eQTL mapping method from (Hu et al. 2015),
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which does handle phasing uncertainty.

Another potential issue is that due to genotyping error, some SNP genotypes may

be incorrectly labeled as heterozygous. If such mislabel happens for a couple

individuals, it can be accommodated by increasing over-dispersion parameter estimate

for ASReC. If it happens for more individuals, the e�ect sizes of TReC and ASReC

will be di�erent we will not consider such genes. Such mislabel of genotype may also

a�ect estimation of imprinting e�ect if it happens in a way consisting with

parent-of-origin. However, it is unlikely that such genotyping errors occur frequently

in many samples and happen to lead to the same direction of changes (e.g., creating

zero-expression maternal allele).

To safeguard our results from such complications, we have used permutation test to

evaluate our results. We observed good consistency between our model-based p-values

and permutation p-values.
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CHAPTER 3: PROTOCOL FOR EQTL MAPPING USING RNA-SEQ
DATA AND EVALUATION OF DIFFERENT METHODS

In a diploid genome, most of the genomic loci have two alleles (i.e., the paternal

and maternal allele), and thus gene expression can be quanti�ed for each allele based

on genetic di�erence of the two alleles. Most gene expression quantitative trait loci

(eQTLs) are cis-acting eQTLs Doss et al. (2005), Lagarrigue et al. (2013), McKenzie

et al. (2014), Crowley et al. (2015) that lead to allelic imbalance of gene expression,

and thus using information from allele-speci�c expression (ASE) can improve the

power of eQTL mapping. A few computational methods have been proposed for

eQTL mapping using both total expression and ASE, including TReCASE (Total

Read Count + ASE) Sun (2012), Hu et al. (2015), CHT (combined haplotype test)

McVicker et al. (2013), and RASQUAL (Robust Allele Speci�c Quantitation and

Quality Control) Kumasaka et al. (2016). TReCASE Sun (2012) was the �rst method

of this kind and was later extended to implement a computationally more e�cient

score test and to account for phasing errors Hu et al. (2015). CHT was developed in a

study with relatively small sample size of n = 10. It allows extra over-dispersion in

total expression and account for genotyping errors. RASQUAL implemented some

elegant strategies to account for sequencing/mapping errors, reference bias,

genotyping errors, as well as phasing errors.

We will demonstrate that TReCASE is at least 10 times faster than RASQUAL.

Earlier in the TReCASE paper Kumasaka et al. (2016), it has been demonstrated

that CHT is at least 10 times slower than RASQUAL and its performance is not
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better than TReCASE or RASQUAL. Therefore we will not consider CHT in our

evaluations. We will evaluate TReCASE, RASQUAL, and a linear model that ignores

ASE by simulations and real data analyzes using eQTL data from 1000 Genomes

Project Consortium (2015), Lappalainen et al. (2013) and Genotype-Tissue

Expression (GTEx) project Consortium et al. (2017), Aguet et al. (2019). Our

analyzes aim to demonstrate the advantages and limitations of each method and

provide guidance for their usage. We have also developed a pipeline to prepare ASE

for eQTL mapping and a computationally e�cient strategy for multiple testing

correction. Our method development and results contribute towards a comprehensive

computational framework for eQTL mapping using both total expression and ASE.

3.1 Introduction to the TReCASE and RASQUAL approaches with an

illustrative example

In this paper we consider two methods that allow integration of allele-speci�c signal

and total expression for association mapping of cis-QTLs: TReCASE and RASQUAL.

In addition to this we use the comparison of TReCASE versus MatrixEQTL - a fast

alternative that uses only total expression for analysis to both study power increase

and precision of the signal detection. Each of these methods models the expression of

each gene separately and assumes that genetic e�ects can be captured by a small

number of cis-acting eQTLs, de�ning cis-eQTLs as those eQTLs that in�uence

allelic-imbalance of gene expression.

To describe the di�erences in the way each method approaches the data consider an

example provided in Figure 3.1. A cis acting SNP is illustrated to the left with T and

C alleles for a given individual. The genetic e�ect is that the C allele has two times

expression of T allele. First, one can collect total expression for this individual - 15,

repeat this step for other individuals and perform an analysis on total expression
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across multiple individuals estimating eQTL e�ect along with other covariates such as

library depth, age, principal components, etc. Both RASQUAL and TReCASE �t

this part of the data using Negative-Binomial distribution structure and are nearly

identical in this part of the model.

MatrixEQTL, on the other hand, would �t a simple linear model �t on log

transformed total expression with eQTL e�ect and other covariates.

Figure 3.1: This diagram illustrates cis-eQTL and several SNPs at which
we can collect allele-speci�c information. There is a cis-eQTL with C or T
allele, and its C allele has two times of expression of T allele.

While total expression allows to do comparison of expression level between

individuals it is clear from the Figure 3.1 that if we have phased SNPs, then for a

fraction of reads overlapping with at least one heterozygous SNP we can recover

within individual signal: In the �gure we see that 6 reads identi�ed with one

haplotype and 3 from other haplotype. We will call such counts allele speci�c

expression (ASE). This is an approach used by TReCASE: classifying all reads

containing at least one SNP reads in a gene to one of two haplotypes, which further

are aggregated on gene level. Reads with con�icting SNP information will be ignored.

RASQUAL also uses allele-speci�c reads, but collects them at each individual SNP

separately. Returning to illustrative Figure 3.1 RASQUAL approach would produce

allele-speci�c counts 6 and 2 for one SNP and for the second SNP they will be 1 and

1. Thus, according to RASQUAL approach, there can be more than one pair of ASE
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values: for each SNP that overlaps some reads RASQUAL produces another pair of

allele-speci�c counts. In RASQUAL notation those SNPs would be called fSNP: any

within exon SNP such that at least for one of individual the SNP is heterozygous.

Further in analysis in both methods allele-speci�c reads are �tted assuming

Beta-Binomial distribution structure.

The di�erent assumptions lead to several consequences. Two obvious di�erences are

the fact that (a) RASQUAL assumes that allele-speci�c counts share over-dispersion

with total read counts while TReCASE �ts Negative-Binomial and Beta-Binomial

over-dispersion separately and (b) in RASQUAL some reads can be counted multiple

times - once at each SNP. Less obvious, but as we will show critical, di�erence is that

each set of ASE in RASQUAL is considered to be distributed Beta-Binomially - in

our example both �rst SNP count 6 to 2 and second SNP count 1 to 1 are treated as

Beta-Binomial counts, while in TReCASE aggregate 6 to 3 ASE count is

Beta-Binomial. In nutshell TReCASE considers that Beta-Binomial over-dispersion

occurs between samples and that within sample counts are distributed Binomially,

while RASQUAL assumes that both within individual fSNP counts and between

individual SNP counts come from the same Beta-Binomial distribution.

As an added bene�t for RASQUAL choice of collecting the results at a SNP level

there is an opportunity to correct some fSNPs. For example, if fSNP is assumed to be

homozygous in a particular individual, but is observed to be heterozygous RAQUAL

can correct this error. Detailed description of these models can be found in Method

Section 3.3 Detailed study of these distinctions can can be found in Simulation

Sections 3.4 and 3.5.

The main methodological di�erence in approach to the data between these two

methods is that RASQUAL was designed to be applied to dataset without requiring

data �ltering while TReCASE relies more heavily on well preprocessed the data.
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3.2 Data processing pipeline

Before going into details of data processing steps for processing genotype and gene

expression data from each dataset, we �rst illustrate a general pipeline (Figure 3.2).

The steps of obtaining TReC per gene and per sample (the left part of the �gure) and

phased and imputed genotypes (the right side of the �gure) are often standard steps

in all the gene expression quantitative trait locus (eQTL) analyses. The middle of the

�gure shows the steps of obtaining allele-speci�c reads at gene or SNP level, and it is

an extra step to prepare data for eQTL mapping using allele-speci�c expression (ASE,

or allele-speci�c read count, ASReC).

Gene expression
(bam files)

Genotype calls
(array or sequencing)

Total read count (TReC) 
per gene per sample

list of phased 
heterozygous SNPs

bam files of 
allele-specific reads

TReCASE RASQUAL

gene-level allele-specific 
read count (ASReC)

SNP-level 
ASReC

Phase (and impute if 
needed) genotype data

Figure 3.2: Data processing pipeline

3.2.1 The eQTL data from 1000 Genomes Project and Geuvadis Project

The 280 samples of this eQTL dataset are lymphoblastoid cell lines that are part of

the samples used in 1000 Genomes Project (1KGP) (1000 Genomes Project

Consortium 2015). The genotype data were obtained from SNP arrays and RNA-seq
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data were generated by the Geuvadis project (Lappalainen et al. 2013).

Genotype phasing and imputation

SNP genotype data were obtained from the same Geuvadis project. Using

SHAPEIT2 (Delaneau et al. 2014) and IMPUTE2 (Howie et al. 2011; 2009), we phase

and impute genotypes in the following steps.

1. Convert unphased genotypes to PED/MAP format and ensure that genomic

positions are converted to the genome reference that match the reference panel.

This coordinate conversion can conveniently be done using liftover tool (Rhead

et al. 2009).

2. Run SHAPEIT2 in check mode to get a list of mismatching SNPs. We have

observed that there are a notable portion of SNPs labeled as strand mismatch

after this step. To �x this problem we �ip the SNPs with Plink (Purcell et al.

2007), repeat phasing in a check mode and compare resulting lists. If some of

the SNPs present in �rst error list disappear in the second list they should be

�ipped and kept, and the rest of the mismatched SNPs can be supplied to

SHAPEIT2 at the next step as an exclusion list.

3. Run SHAPEIT2 with exclusion list obtained in previous step.

4. Impute the pre-phased genotype data using IMPUTE2.

5. Using the imputed and phased data from the previous step, we obtain all

heterozygous SNPs for each sample. Speci�cally, T=the main output �le of

imputation has 3 columns with genotype probabilities per SNP, which represent

the probability of observing genotype G = 0, 1, or 2 respectively. We selected

heterozygous locations (i.e., with high probability of G = 1) to output phased

genotypes of these locations.
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For both phasing and imputation, we used the 1000 Genome reference panel (Howie

et al. 2011) (as of summer 2015) containing 2,504 samples with ∼82 million SNPs.

E�ective size of the population was set to the suggested value �effective-size

20000 and random seed was set to 1234567. Imputation was done by splitting the

genome into blocks of 5 Mb (no more than 7 Mb according to the instruction). We

also used the same population size option as the one used in phasing step (-Ne

20,000), other options used include -align_by_maf_g and -seed 12345.

The input data are genotypes of ∼2.2 million SNPs per sample for 2,123 samples of

African or European descent. After the above procedure of phasing and imputation,

we end up with genotype data for ∼82 million SNPs per sample which corresponds to

∼2.2 million heterozygous SNPs per sample heterozygous SNPs per sample. Among

all the imputed SNPs, around 6.5 million SNPs have MAF >0.05 and were used as

candidate eQTLs for eQTL mapping.

Processing RNA-seq

We downloaded raw RNA-seq data (in fastq format) of 465 samples that are part of

the samples for the 1KGP (1000 Genomes Project Consortium 2015). These RNA-seq

data were generated by the Geuvadis consortium (Lappalainen et al. 2013), and it is

available at

http://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/samples/. We have

used this dataset in a recent work (Zhabotynsky et al. 2019).

The RNA-samples were sequenced by the Illumina HiSeq2000 platform, with

paired-end 75-bp reads. We mapped these samples to hg38 reference assembly using

TopHat v2 (Trapnell et al. 2009), �ltered with the following criteria: ≤ 3 mismatches,

read gap length ≤ 3, read edit distance ≤ 3, and read realign edit distance equals to 0.

We �ltered RNA-seq reads with average base quality ≥ 30, mapping quality ≥ 20,
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and keeping only those uniquely mapped reads, by the prepareBAM function from R

package asSeq. In a typical sample, most of the RNA-seq reads pass these �lters.

For each sample, given the list of heterozygous SNPs obtained from phased and

imputed genotype data, we �lter out allele-speci�c reads using R function

extractASReads from asSeq package (Sun 2012). This step generates 3 bam �les for

each sample labeled with hap1, hap2 and hapN , which contain the RNA-seq reads

that match haplotype 1, haplotype 2, or with con�icting information. The size of

hapN �le should be much smaller than hap1 or hap2. Otherwise there may be some

systematic mismatch between RNA-seq bam �les and the SNP list, e.g., they were

generated using di�erent human genome references. Apparent imbalance in hap1 and

hap2 �le sizes often suggest some problems in the data preparation steps.

Next we obtained the Total Read Count (TReC) and allele-speci�c read count

(ASReC) per gene using R function summarizeOverlaps from GenomicAlignments

package (Lawrence et al. 2013) using Gencode version 21 (GRCh38). We observed

that for some samples, many genes have extreme proportions of reads attributed to

one haplotype - this is likely due inconsistency between genotype data and RNA-seq

data. We discarded such samples and used the remaining 280 samples for eQTL

mapping. The total number of reads mapped to genes in these 280 samples vary from

16 to 82 million with fraction of allele-speci�c reads from 2.6% to 6.3% (Figure 3.3).

For RASQUAL we produced SNP level allele-speci�c counts using the same

imputed SNPs and mapped bam �les as input to ASEReadCounter from GATK

package (McKenna et al. 2010).
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Figure 3.3: Summary of total read counts (x-axis) versus total number
of allele-speci�c reads (panel (a)) or the percentage of reads being allele-
speci�c (panel (b)) across all genes per sample for 1KGP data. Each point
indicates one of the 280 samples.
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3.2.2 GTEx data

We followed a similar pipeline to 1KPG to analyze Genotype-Tissue Expression

(GTEx) data (Consortium et al. 2017). We downloaded mapped RNA-seq data (in

SAM format) of 427 whole blood samples (V7). The RNA-samples were sequenced by

the Illumina HiSeq2000 platform with paired-end 76-bp reads and were mapped to

human genome references hg19. The RNA-seq data is available from dbGaP at

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=

phs000424.v7.p2.

We �ltered RNA-seq reads with average base quality ≥ 20, mapping quality ≥ 20,

and keeping only those uniquely mapped reads, by the prepareBAM function from R

package asSeq.

We downloaded Genotype calls (in VCF format) of 635 samples (release V7, hg19)

from dbGap. Indels and multi-allelic SNPs were removed using bcftools and

variants with missing rate large than 10% were �ltered out. We performed phasing on

all 635 samples, with the same reference panel and command used when phasing

1KGP data and used the resulting output �le to create a list of heterozygous SNPs

for each individual. Then we applied the same approaches as for 1KPG data to collect

Total Read Count (TReC) and Allele-Speci�c Read Count (ASReC) per gene and per

sample for TReCASE and RASQUAL.

We �ltered out genes whose 75 percentile of gene expression is less than 20 or

maximum gene expression is more than 25 million. The resulting 16,675 genes were

included in the analysis. The total number of reads mapped to genes in whole blood

samples vary from 1 to 30 million with fraction of allele-speci�c reads from 2.3% to

11.73%, with one apparent outlier (Sample ID: YEC3), labeled in red, removed in the

following analysis. (Figure 3.4).

Covariates data including genotyping principal components, age, and gender was
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downloaded from https://gtexportal.org/home/datasets. 354 samples, having

RNA-seq data from whole blood, genotype data and covariates data, were included in

the following eQTL mapping.
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Figure 3.4: Summary of total read counts (x-axis) versus total number
of allele-speci�c reads (panel (a)) or the percentage of reads being allele-
speci�c (panel (b)) across all genes per sample for GTEx data. The red point
indicates sample YEC3 has unexpected low proportion of allele-speci�c
reads and it is excluded from further analysis.

More tissue types in GTEx data are available in the V8 release.

We plan to extend our analysis using multiple brain tissues from this release and

provide the results for public use.
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Table 3.1: GTEx tissues with hundreds of samples

Tissue Sample size

RNA-seq & genotype RNA-seq

Muscle - Skeletal 706 803

Whole Blood 670 755

Skin - Sun Exposed (Lower leg) 605 701

Artery - Tibial 584 663

Adipose - Subcutaneous 581 663

Thyroid 574 653

Nerve - Tibial 532 619

Skin - Not Sun Exposed (Suprapubic) 517 604

Lung 515 578

Esophagus - Mucosa 497 555

Cells - Cultured �broblasts 483 504

Adipose - Visceral (Omentum) 469 541

Esophagus - Muscularis 465 515

Breast - Mammary Tissue 396 459

Artery - Aorta 387 432

Heart - Left Ventricle 386 432

Heart - Atrial Appendage 372 429

Colon - Transverse 368 406

Esophagus - Gastroesophageal Junction 330 375

Stomach 324 359

Testis 322 361

Colon - Sigmoid 318 373

Pancreas 305 328

Pituitary 237 283

Adrenal Gland 233 258

Spleen 227 241

Prostate 221 245

Artery - Coronary 213 240

Brain - Cerebellum 209 241

Liver 208 226

Brain - Cortex 205 255

Brain - Nucleus accumbens (basal ganglia) 202 246
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3.3 Probability distributions used by TReCASE and RASQUAL

Because we perform eQTL analysis for each gene separately, in the following section

we de�ne the probability distribution for one gene and omit the index for gene.

3.3.1 TReCASE de�nition

Let Ti be the total read count (TReC) for a gene of interest in the i-th sample, with

i = 1, . . . , n. In TReCASE model, Ti is assumed to follow a negative binomial

distribution with density function de�ned as:

fNB(Ti = ti;µi, φ) =
Γ(ti + 1/φ)

Γ(ti + 1)Γ(1/φ)
(

1/φ

1/φ + µi
)

1/φ
(

µi
1/φ + µi

)

ti

, (3.1)

where µi is sample-speci�c mean value and φ is an over-dispersion parameter. It can

be show that the variance of Ti is

Var(Ti) = µi + µ
2
iφ, (3.2)

and in the limiting case when φ→ 0, the negative binomial distribution converges to a

Poisson distribution.

Sample-speci�c mean value µi is de�ned as a function of some covariates:

log(µi) = β0 + βκ log(κi) +
p

∑
u=1

βuciu + ηi, (3.3)

where β0 is an intercept, βκ is the coe�cient for log-read-depth log(κi), βu, u = 1, ..., p,

is the regression coe�cient for the u-th covariate (e.g., age, gender, batch e�ects etc.),

and ηi is the genetic e�ect. Given a candidate eQTL with two alleles A and B, let gi

be its genotype, de�ned as the number of B alleles such that gi = 0, 1, or 2 for

genotype of homozygous A allele, heterozygous, or homozygous B allele, respectively.
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Then ηi is:

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if gi = 0

log[1 + exp(b0)] if gi = 1

b0 if gi = 2

, (3.4)

where b0 is the genetic e�ect, de�ned as log ratio of gene expression for genotype BB

vs. AA. The derivation of ηi follows from the assumption that gene expression is

additive across the two alleles before log-transformation, see equations (3)-(7) of Sun

(2012) for details.

For TReCASE, allele-speci�c expression (ASE), or allele-speci�c read counts

(ASReCs) are collected for two haplotypes at gene-level, whereas the ASReCs for

RASQUAL are measured at SNP level, as described in the next section. For the i-th

sample, denote the two ASReCs for haplotypes 1 and 2 by Ni1 and Ni2, so that total

ASReC for the i-th sample is Ni = Ni1 +Ni2. Note that for each sample, which

haplotype is de�ned as haplotype 1 is arbitrarily decided. The distribution of Ni1

given Ni can be modeled by a beta-binomial distribution:

fBB(Ni1 = ni1;Ni = ni, αi, βi) = (
ni
ni1

)
Γ(ni1 + αi)Γ(ni − ni1 + βi)

Γ(ni + αi + βi)

Γ(αi + βi)

Γ(αi)Γ(βi)
, (3.5)

where αi and βi are sample speci�c parameters and they are connected with expected

proportion of reads of haplotype 1 (denoted by πi) and over-dispersion (denoted by θ)

of this beta-binomial distribution by

πi =
αi

αi + βi
and θ =

1

αi + βi
. (3.6)
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The variance of this beta-binomial distribution is

Var(Ni1) = niπi(1 − πi)
1 + niθ

1 + θ
,

which converges to the variance of binomial distribution when θ = 0.

In an alternative parametrization, the over-dispersion parameter can be rescaled to

interval [0,1): ρ = θ/(1 + θ) (Paul et al. 2005). We will switch to this parametrization

in section 3.5.4 to study in�ation introduced by splitting reads across several SNPs

within a gene.

Let Gi be the ordered genotype of the candidate eQTL, which takes values 0, 1, 2,

and 3 for ordered genotype AA, AB, BA, and BB. An ordered genotype is de�ned

based on the order of haplotype 1 followed by haplotype 2. For example, AB

indicates that A is on haplotype 1 and B is on haplotype 2. Given Gi, we can model

πi as a function of genetic e�ect b0:

log (
πi

1 − πi
) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−b0 if Gi = AB

b0 if Gi = BA

0 if Gi = AA or BB

. (3.7)

The genetic e�ect b0 for TReC (equation (3.4)) and ASE (equation (3.7)) are the

same and thus it can be estimated by combining the data from TReC and ASE.

3.3.2 RASQUAL de�nition

To illustrate the di�erence between TReCASE and RASQUAL, we only consider

the basic RASQUAL model without additional features such as capturing

sequencing/mapping error or reference allele mapping bias. In addition, we change the

notations used by RASQUAL to be consistent with the notations of TReC to facilitate
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comparison. We will adopt two terms used in the RASQUAL paper: cis-regulatory

SNP (rSNP) and feature SNP (fSNP). An rSNP is a candidate eQTL SNP and a

fSNP is a SNP within exonic region of a gene where ASReC can be measured.

RASQUAL also models TReC Ti by a negative binomial distribution. Though

instead of a common over-dispersion parameter for all samples, it has a

sample-speci�c over-dispersion parameter φi:

fNB(Ti = ti;µi, φi) =
Γ(ti + 1/φi)

Γ(ti + 1)Γ(1/φi)
(

1/φi
1/φi + µi

)

1/φi
(

µi
1/φi + µi

)

ti

. (3.8)

The mean and over-dispersion is parametrized by

µi = λKiQi and φi =
1

θRKiQi

, (3.9)

where λ is a scaling parameter for absolute mean of coverage depth of this gene, Ki is

a sample speci�c o�set re�ecting library size and other a priori estimated size factors,

Qi is genetic e�ect de�ned later, and θR is a scaling parameter for over-dispersion.

Then the variance of Ti is Var(Ti) = µi + µ2
iφi = µi(1 + λ/θR).

Recall that gi denotes the genotype of a candidate eQTL, and it equals to 0, 1, or 2

for genotype AA, AB/BA, or BB. RASQUAL quanti�es genotype e�ect by

Qi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(1 − π) if gi = 0,

1 if gi = 1,

2π if gi = 2.

Then the sample-speci�c mean value in log scale is

log(µi) = log(λKiQi) = log(λ) + log(Ki) + log(Qi). (3.10)

63



Comparing the mean value of TReCASE (equation (3.3)) versus RASQUAL

(equation (3.10)), it is easy to see that log(Ki) captures the e�ects of all the

covariates. Although it is not explicitly mentioned in the RASQUAL paper, we

expect the scale of Ki to be around 1 because they assume λ captures the absolute

mean value µi. We can also see the correspondence of genetic e�ect between

TReCASE (b0) and RASQUAL (π) is log[π/(1 − π)] = b0.

While there is minor di�erence between TReCASE and RASQUAL in their TReC

model, the major di�erence is their speci�cations for the ASE data. In RASQUAL,

ASReCs are measured for each feature SNP (fSNP) (with SNP index l = 1, . . . , L),

denoted by Nil0 and Nil1 (with Nil = Nil0 +Nil1). Then given Nil, Nil1 is modeled by a

beta-binomial distribution

fBB(Nil1 = nil1;Nil = nil, αil, βil) =

(
nil
nil1

)
Γ(nil − nil1 + αil)Γ(nil1 + βil)

Γ(nil + αil + βil)

Γ(αil + βil)

Γ(αil)Γ(βil)
. (3.11)

Let 0 < h ≤ 1/L be the relative proportion ASReC contributed by each fSNP, then

αil = hθRKiQil0 and βil = hθRKiQil1,

where Qil0 and Qil1 quantify the number of ASReC from haplotype 0 and haplotype

1, and they are de�ned in Table 3.2. Note that Qil = Qil0 +Qil1 = Qi, which only

depends on the genotype of the cis-regulatory SNP (rSNP, or candidate eQTL) but

not the genotype of the l-th fSNP.

Then the expected proportion of reads of haplotype 1 and over-dispersion (denoted

by ϑ) of this beta-binomial distribution are

πi =
αi

αi + βi
=
Qil1

Qi

and ϑ =
1

αi + βi
=

1

hθRKiQi

. (3.12)
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Table 3.2: Relative mean for ASReCs. This table is taken from Supple-
mentary Table 4 of Kumasaka et al. (2016). The �rst column de�nes the
ordered genotype for rSNP (reference SNP or candidate eQTL) and fSNP
(feature SNP where ASReC is measured) where 0 and 1 indicate reference
and alternative allele, respectively.

rSNP,fSNP Qil0 Qil1 Qil = Qi

00,00 2(1 − π) 0 2(1 − π)
00,01 or 00,10 (1 − π) (1 − π) 2(1 − π)
00,11 0 2(1 − π) 2(1 − π)
01,00 or 10,00 1 0 1
01,10 or 10,01 π (1 − π) 1
01,01 or 10,10 (1 − π) π 1
01,11 or 10,11 0 1 1
11,00 2π 0 2π
11,01 or 00,10 π π 2π
11,11 0 2π 2π

The variance of this beta-binomial distribution is

Var(Nil1) = nil1πi(1 − πi)
1 + niϑ

1 + ϑ
,

which converges to the variance of binomial distribution when ϑ = 0.

In the RASQUAL paper, the authors further set h = 1 for the following reasons

quoted from page 42 of their supplementary materials:

�Here the constant h re�ecting the proportion of total AS count at

each feature SNP is arbitrary (0 < h ≤ 1/L for L > 0; otherwise h = 0).

However, in our experience, h < 1/L usually gives worse result in terms of

power and �ne-mapping than h ≈ 1. This is partly because the larger the

number of feature SNPs L is, the smaller the proportion h each feature

SNP accounts for, resulting in overestimation of the dispersion parameter

θ̂, resulting in more signi�cant associations in hypothesis testing for

features with larger L. To avoid this issue we set h = 1 to penalize the
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over-dispersion parameter more for large L.�

Since h denotes the proportion ASReC from each fSNP, it is very counter-intuitive

to set it to be 1. It appears to be an ad-hoc solution to reduce the signi�cance level,

especially for the genes with large number of fSNPs. In fact, as shown in this paper,

even when h = 1, RASQUAL still has in�ated type I error, and the degree of in�ation

increases with the number of fSNPs (Figure 1B in main text). However, the reason is

not overestimation of the dispersion parameter θ̂. The estimate of the dispersion

parameter is often accurate. It is the mis-speci�ed likelihood model that leads to

underestimate of the variance of the eQTL e�ect size. We will explain in more details

in Section D.8.

3.3.3 De�nition of RASQUAL-like method: TReCASE-RL

To facilitate more pointed comparison between TReCASE and RASQUAL, in

addition to running RASQUAL, we also implemented a modi�cation of TReCASE to

adopt two key assumptions made by RASQUAL but not by TReCASE: (1) Equating

the over-dispersion parameters of the negative binomial distribution for TReC and

the beta-binomial distribution for ASE; (2) Treating ASReC of each fSNP as

independent beta-binomial observation. Speci�cally, for the i-th sample and the l-th

SNP, we denote the two ASReCs for haplotypes 1 and 2 by Nil1 and Nil2. The

distribution of Nil1 given Nil = Nil1 +Nil2 is modeled by a beta-binomial distribution.

fBB(Nil1 = nil1;Nil = nil, αil, βil)

= (
nil
nil1

)
Γ(nil1 + αil)Γ(nil − nil1 + βil)

Γ(nil + αil + βil)

Γ(αil + βil)

Γ(αil)Γ(βil)
, (3.13)

where αil and βil are SNP speci�c parameters connected with expected proportion of

reads of haplotype 1 (denoted by πi) and over-dispersion (denoted by θ) of this
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beta-binomial distribution by

πil =
αil

αil + βil
and θ =

1

αil + βil
. (3.14)

We call the modi�ed TReCASE model as TReCASE-RL, where RL stands for

�RASQUAL Like�. By comparing TReCASE and TReCASE-RL, we can illustrate the

consequence of these two assumptions.

3.3.4 The over-dispersion parameters of the three models

We summarize the over-dispersion parameters of three models: TReCASE,

RASQUAL, and TReCASE-RL, in Table 3.3. The over-dispersion parameters of

TReCASE are constants across all samples. In contrast, RASQUAL's over-dispersion

parameters vary across samples because they depend on Ki and Qi. We expect both

Ki and Qi vary around the value of 1 and thus we may approximate the

over-dispersion parameters of RASQUAL by assuming Ki = Qi = 1. Then we can see

the de�nition of over-dispersion parameters are in reverse scale. For TReCASE, larger

over-dispersion parameter (φ or θ) means larger over-dispersion, and for RASQUAL,

larger over-dispersion parameter (θR) means smaller over-dispersion. In our results,

when we refer to an over-dispersion, it is the TReCASE over-dispersion.

Table 3.3: Over-dispersion parameters in TReCASE, RASQUAL, and
TReCASE-RL models. RASQUAL model modi�es the degree of over-
dispersion variation with additional o�set Ki and relative genetic e�ect Qi.

Component TReCASE RASQUAL TReCASE-RL
TReC φ 1/(θRKiQi) ≈ 1/θR θ
ASE θ 1/(θRKiQi) ≈ 1/θR θ

67



3.3.5 Evaluation of the binomial distribution assumption for ASReCs

across multiple SNPs within one gene and one sample

TReCASE assumes the summation of ASReCs across multiple SNPs within a gene

follows a beta-binomial distribution across samples. This assumption implies that the

ASReCs across multiple SNPs within a gene and a sample should follow the same

binomial distribution. If these SNP-level ASReCs actually follow a beta-binomial

distribution, their summation will not follow a beta-binomial distribution, though it

may be approximated by a beta-binomial distribution. Here we evaluate this binomial

distribution assumption. It cannot be evaluated for most (gene, sample) pairs because

most such cases only have a few heterozygous SNPs with enough coverage. We used

RNA-seq data from 30 HapMap trios (NCBI BioProject access number:

PRJNA385599) Zhabotynsky et al. (2019) to select a set of genes with allele-speci�c

counts distributed across multiple SNPs. This dataset was used since it has higher

read-depth. Speci�cally, we select those (gene, sample) pairs such that the gene in the

sample has at least 6 heterozygous SNPs, with at least 5 overlapping reads per SNP.

We ended up with 4,005 (gene, sample) pairs matching these criteria, accounting for

less than 1% of all (gene, sample) pairs.

Figure 3.5: The dis-
tribution of p-values
for testing deviation
from binomial distri-
bution across multiple
SNPs of the same gene
and within the same
sample

For these 4,005 cases we tested

how often the binomial assumption is violated. Deviation

from such assumption can be tested using a score statistic

developed by Tarone (1979). Since we don't have many

SNPs, normal approximation of score statistic cannot

be applied. Instead we generated the null distribution

of such score statistic using parametric bootstrap. For

each gene, we estimated the proportion of reads from one

allele, simulated ASReC for each SNP from a binomial
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distribution with this probability and the observed coverage, and recalculated the

score statistic. The proportion of times when the observed score statistic is more

extreme than the ones from simulations gives us an empiric p-value. Under null we

expect a uniform distribution of p-values, however we see an excess of p-values in the

category less than 0.1, which transforms to an estimate that the p-value is not

uniform for ∼23% of the cases (Figure 3.5). Note that this 23% is among those

selected 1% of the cases with enough heterozygous SNPs covered by RNA-seq reads,

and thus only represent a very small proportion of all the data points we examine in

real data analysis.
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3.4 Simulation setup

3.4.1 Simulation for TReC

We simulate total read count (TReC) using 4 covariates (including one that can be

treated as library depth). Negative binomial over-dispersion parameter is set to be

0.01, 0.1 or 0.5. Genetic e�ect size b0 is set to be 0, 0.125, 0.25, or 0.5. We simulate

the TReC so that the median across samples is around 100.

3.4.2 Simulation for ASReCs without within-sample over-dispersion

In the basic simulation setup, we simulate ASReCs within a sample by a binomial

distribution, and introduce over-dispersion across samples. Speci�cally, we simulated

data by the following steps:

1 We assume 10% of TReC are allele-speci�c (Figure 3.6(a)) and set the same

genetic e�ect b0 as for TReC. The beta-binomial over-dispersion is de�ned as a

fraction of negative binomial over-dispersion, with several values: 0, 1/8, 1/4,

1/2, 1 and 2 to cover the fractions observed in the 1KGP data (Figure 3.6(b)).

Fraction 0 corresponds to the extreme, but not unlikely scenario when ASReC

follow a binomial distribution.

2 After calculating expected proportion of reads coming from allele B for each

genotype G, denoted by πG we generate sample level expected proportions πi by

sampling from a beta distribution with parameters α and β such that

πG = α/(α + β), and θ = 1/(α + β).

3 Given πi, we generate ASReC from a binomial distribution.

To simulate SNP level ASReC, we modify step 3 as follows:
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Figure 3.6: Distribution of allele-speci�c fractions and over-dispersion pa-
rameters. (a) The fraction of RNA-seq reads being allele-speci�c per gene
per sample, given the ASReC is larger than 0, and truncated at 0.4. The
vertical line indicates median. It is based on 1KGP dataset of 280 samples.
(b) The distribution of over-dispersion parameters estimated by TReCASE
from the 1KGP dataset of 280 samples. The BB over-dispersion is truncated
at 0.001.

3a Uniformly distribute allele-speci�c reads among 2, 4, or 8 SNPs, and then

simulate ASReC on one haplotype by a binomial distribution using the same

sample level proportion πi.

3.4.3 Add within-sample over-dispersion for ASReC data

In order to simulate SNP level ASReC with over-dispersion across multiple SNPs

within a sample, we modify step 3a as follows:

3b Uniformly distribute total number of allele-speci�c reads (that can belong to

either haplotype) among 2, 4 or 8 SNPs, and then simulate ASReC for each

SNP on one haplotype by a beta-binomial distribution with mean value πi and

an over-dispersion parameter that equals to the between-sample beta-binomial

over-dispersion.

This modi�cation allows us to obtain ASReCs with over-dispersion within a sample

and at the same time with more similarity within sample than between samples.
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3.4.4 To simulate RASQUAL style ASReC data

RASQUAL style SNP level ASReC data have the same over-dispersion across any

two SNPs, either two SNPs within a sample or between samples. In other words,

there is no extra over-dispersion across samples. To simulate such data, we modify

step 2.2 to set the between-sample over-dispersion to be 0. After that we generate all

SNP level ASReC from a beta-binomial distribution according to step 2.3b. This is

equivalent to generating SNP level proportions πil from sample level proportions πi

with the same over-dispersion θ without discrimination for the SNPs within and

between samples.

3.4.5 Simulating the data with genotyping errors

To simulate genotyping errors, we randomly �ip a fraction of genotypes from

homozygous to heterozygous and from heterozygous to homozygous (fractions 0.05,

0.10 and 0.20 were used). The wrong genotypes have the following consequences.

1. TReCASE only uses heterozygous SNPs to collect ASReCs. In contrast,

RASQUAL produces counts for homozygous SNPs too. Consequently whenever

we �ip a heterozygous SNP to be homozygous, the read counts of this SNP are

ignored by TReCASE, while still used by RASQUAL - it would have read

counts of both alleles counted, but attach them to an incorrect homozygous

genotype status.

2. When a truly homozygous SNP is �ipped to be heterozygous, both methods still

use such data. They both assume all the reads are from one of the two alleles.
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3.5 Simulation Results

3.5.1 Simulation results under RASQUAL assumption

Under RASQUAL assumption, the SNP-level ASReC follows a beta-binomial

distribution, such that the similarity of the SNP-level ASReCs is the same for two

SNPs within one sample versus two SNPs of two di�erent samples. This is the

simulation scenario described in Section C.4. It worth noting that such scenario is not

supported by real data. As shown in Figure 3.5, when considering a subset of (gene,

sample) pairs with at least 6 heterozygous SNPs and at least 5 overlapping reads per

SNP, in 77% of the cases the ASReCs within a sample follow a binomial distribution.

We mainly want to use this scenario to demonstrate that RASQUAL does control

type I error if its model assumption is correct. In addition, TReCASE model is

mis-speci�ed in this scenario, and we demonstrate that TReCASE still has reasonable

performance despite its model mis-speci�cation.

As shown in Figure 3.7, both TReCASE and TReCASE-RL control type I error

well except that TReCASE-RL is slightly conservative when negative binomial

over-dispersion is 2 and beta-binomial over-dispersion is 0.25. The power of the two

methods is similar. TReCASE has slightly higher power when the over-dispersion for

beta-binomial distribution is small, and TReCASE-RL has slightly higher power when

the over-dispersion for beta-binomial is large.
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Figure 3.7: Evaluating TReCASE and TReCASE-RL using simulated data
under RASQUAL assumption. Under RASQUAL assumption, within sam-
ple over-dispersion is the same as between sample over-dispersion. Panels
(a)-(c) present type I error and panels (d)-(f) present power. 10,000 genes
were simulated for each e�ect size and over-dispersion pro�le. The three
line types refer to the number of fSNPs per gene. We use sample size 64 in
our illustrations.
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3.5.2 Simulations given within sample over-dispersion and additional

between sample over-dispersion for ASReCs

This is the simulation setting where both models are mis-speci�ed. Following the

simulation described in Section C.3, we simulated ASReC data with within sample

over-dispersion and extra between-sample over-dispersion. When simulating two

SNPs per gene, TReCASE still manages to control type I error, while the RASQUAL

style approach has in�ated type I error and the in�ation increases for larger

beta-binomial over-dispersion (Figure 1(C)). In the case of 4 or 8 SNPs per gene, the

results are similar. TReCASE still controls type I error, and RASQUAL style

approach shows even higher in�ation of type I error (results not shown).

3.5.3 Evaluating models for the data simulated under TReCASE

assumption

In previous section we show that the majority of the genes do not show evidence of

within sample over-dispersion. This is a TReCASE style assumption. In this section,

we simulated the data without within sample over-dispersion, and either combined

them into one count or split them across two or four SNPs. Our simulation results

show that in this scenario, TReCASE controls type I error reasonably well (Figure 3.8

(a)-(c)), while RASQUAL can either produce de�ated type I error (Figure 3.8 (a)) or

in�ated type I error (Figure 3.8 (b)-(c)).

We also evaluated the e�ect of double counting by randomly selecting 10% of the

reads from each SNP and adding them to a neighboring SNP. Double-counting further

in�ates type I errors in all three simulation settings (Figure 3.8 (d)-(f)).

We observed that RASQUAL is has some additional reasons to produces in�ation,

not explained by equating total read counts and allele-speci�c counts over-dispersion

and treating each SNP count as independent Beta-Binomial as implemented in
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TReCASE-RL version. This is was another motivation to do some comparisons of

TReCASE vs TReCASE-RL - this allowed us to more precisely measure assumption

violations such as non-equal over-dispersion in total and allele-speci�c counts and

within-gene Binomial distribution.

RASQUAL was still run for reference (as can be seeing in panels h-j), which allows

us to show both observed RASQUAL in�ation and in�ation that we get in

RASQUAL-like TReCASE model. In this way we are able to evaluate both in�ation

observed by RASQUAL and in�ation simply due to over-dispersion misspeci�cation,

avoiding potential extra discrepancies due to di�erences in implementation. For the

case when we evaluated genotype correction we used RASUQAL itself.
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Figure 3.8: Evaluating TReCASE, TReCASE-RL, and RASQUAL models
for the data simulated using TReCASE style assumptions. (a)-(c) Evalua-
tion of Type I error across di�erent values of over-dispersion parameters.
(d)-(f) Evaluation of type I error given double counting. (h)-(j) Evaluation
of power and type I error across eQTL e�ect sizes. Results are presented
for sample size 64.
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3.5.4 Evaluation of the in�ation of type I error by RASQUAL

In the previous section, we showed applying RASQUAL or TReCASE-RL on

simulated RNA-seq data (using both TReC and ASReC), there is in�ated type I

error. In this section, we study this issue by ignoring TReC and concentrating on

ASReCs without within-sample over-dispersion. We set beta-binomial over-dispersion

to 0.1 or 0.5 and generate data under null hypothesis of no eQTL e�ect (proportion of

either allele is set to be 0.5). We simulated data for 1,000 genes. For each gene, we

�rst simulated the data assuming there is only one fSNP. Then we split the ASReCs

uniformly to multiple fSNPs, while the total number of allele-speci�c reads is the

same. For example, if there are k reads per SNP for 8 SNPs, then there are 2k reads

per SNP for 4 SNPs, etc. We applied TReCASE-RL on these data. As shown in

previous results, there is no in�ation of type I error in one SNP scenario. In two SNP

scenario, as expected, both likelihood ratio test-statistics (LRT) and -log(p-value)

become larger than one SNP scenario (Figure 3.9).

Figure 3.9: Illustration of the type I error in�ation by TReCASE-RL. In
simulations under H0: b0=0, compare likelihood ratio test-statistics (LRT)
and -log10(p-values) of two situations: one fSNP or two fSNPs. Each point
corresponds to one of 1000 genes. We observe that for the same gene once
reads are split into two SNPs we tend to get more signi�cant results.
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To understand the underlying causes of type I error in�ation, we examine the

estimation of eQTL e�ect and over-dispersion across simulate replicates. We found

that after splitting the reads to 2, 4 and 8 fSNPs, the estimation of eQTL e�ects and

over-dispersion are both unbiased (Figure 3.10). As the number of fSNPs increases,

the variation of eQTL e�ect estimates remains similar while the variation of

over-dispersion estimates increases. However, due to the mis-speci�cation of likelihood

model by RASQUAL, the mode-based standard deviation (sd, sd:mod in Figure 3.10)

estimates are smaller than observed sds (sd:obs in Figure 3.10) for both eQTL e�ects

and over-dispersion. The under-estimation of sd for eQTL e�ects explains the

in�ation of type I error when we test for eQTL e�ect. Note that model-based sds does

match well with empirical sds when there is only one fSNP. This is expected since

there is no model mis-speci�cation when there is only one fSNP.

We derive sd using the Fisher's information matrix derived by Paul et al. (2005),

and to be consistent with their work, we quantify over-dispersion by ρ = θ/(1 + θ),

where θ was the over-dispersion parameter de�ned in Equation (3.1). To make the

notation clear, we use legend OD(theta) or OD(rho) in the plots to indicate

over-dispersion quanti�ed by θ and ρ, respectively.

Next we examine how the (model-based) sd estimates varies with respect to the

number of allele-speci�c reads. As expected the sd estimates of either eQTL e�ect and

over-dispersion decreases as ASReC increases (Figure 3.11). For eQTL e�ect, we have

observed in Figure 3.10 that the true sds are similar when the number of fSNPs is 1,

2, 4, or 8. Since the sd estimate of 1 SNP scenario is unbiased, the di�erence of the sd

estimates of eQTL e�ects when the number of fSNPs is 1, 2, 4, or 8 (Figure 3.11)

re�ects under-estimates of sds due to model mis-speci�cation. Such di�erence become

clearer when we examine relative sd estimates compared with the sd estimate of 1

SNP scenario (Figure 3.11). The standard deviation of over-dispersion parameter is of
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Figure 3.10: Distribution of eQTL e�ect and over-dispersion estimates. (a)
Distribution of eQTL e�ect estimates in terms of π, the proportion of AS-
ReC from one haplotype. (b) Distribution of over-dispersion estimates in
terms of ρ, which is the rescaling of over-dispersion parameter θ to [0, 1)
range by ρ = θ/(1 + θ). In the upper-right corner of each �gure, we also list
the model-based standard deviation estimate (sd:mod) using Fisher's infor-
mation matrix (Paul et al. 2005) and empirical standard deviation estimate
(sd:obs) across simulation replicates. The data were simulated under null
of no genetic e�ect, and ASReCs were split into 1, 2, 4, and 8 SNPs. Simu-
lation is done for sample size 64 and on average 10 allele-speci�c reads per
sample

less interest in this study. Though we can see that when the number of ASReC is

relatively large, the sds of over-dispersion tend to be under-estimated.
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Figure 3.11: Model-based sd estimates by Fisher's information matrix under
null. The sd estimates are evaluated for 1, 2, 4, and 8 fSNPs per gene. X-
axis is the number of allele-speci�c reads for each of 8 fSNPs. For example,
x = 5 means there are 5 reads for each of the 8 SNPs, or 10 reads for each of
the 4 SNPs, or 20 reads for each of the 2 SNPs, or 40 reads for one SNP.
Panels (a)-(b) present the simulation results for φ = 0.1 and panels (c)-(d)
present the simulation results for φ = 0.5
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Figure 3.12: Model-based relative sd estimates under null. The same as
Figure 3.11, except that the y-axis is the relative sd estimates with respect
to the sd estimate for 1 fSNP scenario.
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3.5.5 Compare TReCASE and RASQUAL's performance with

genotyping errors

Finally, we evaluate the results of TReCASE and RASQUAL when there are

genotyping errors using simulated data. We simulated ASReC data without within

sample over-dispersion (Section C.2), and then introduced genotyping errors as

described in section C.5, where we �ipped certain fraction of genotypes from

homozygous to heterozygous and from heterozygous to homozygous. When truly

heterozygous SNPs are listed as homozygous, they will be discarded by TReCASE

but used by RASQUAL, and the latter has a mechanism of correcting the genotype

status if it encounters a con�icting SNP. If truly homozygous SNPs are listed as

heterozygous, TReCASE will take them at face value while RASQUAL again will try

to correct them. Because RASQUAL needs to use multiple SNPs to correct a wrong

one, we only consider a scenario when splitting counts to 8 SNPs. Since most genes

have less than 8 heterozygous SNPs, these simulation results represent an uncommon

situation that favor the genotyping error correction mechanism of RASQUAL.

We consider the simulation setting when the over-dispersion parameters of negative

binomial and beta-binomial are the same to match with the assumption made by

RASQUAL. We illustrate the type I errors and powers for this simulation setup for a

few values of over-dispersion parameters and several sample sizes (Figure 3.13).

TReCASE controls type I error in all simulation setups. In contrast, RASQUAL

controls type I error only if sample size is small and over-dispersion is small

(Figure 3.13 (d)-(f)). The power of TReCASE remains similar as the proportion of

genotyping errors increases, with some slight reduction of power when over-dispersion

is large and eQTL e�ect is large. Larger fraction of genotyping errors also reduces the

power of RASQUAL in a magnitude slightly larger than for TReCASE (Figure 3.13

(a)-(c)).
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Figure 3.13: Type I errors and powers for a �tting TReCASE and
RASQUAL with 0, 5%, 10%, or 20% of all the fSNPs being randomly �ipped
between homozygous and heterozygous. Sample size 64 was used.

84



3.6 Summary of observed method performance

Both TReCASE and RASQUAL assume TReC follows a negative binomial

distribution that extends Poisson distribution to allow over-dispersion as described in

Materials Section 3.3. The negative binomial distribution is widely used to model

TReC per gene across multiple samples. We found it is adequate for most of them,

though sometime outliers of gene expression data may lead to in�ation of type I error.

We address this issue by adopting an outlier detection and reduction approach

implemented by DESeq2.

Despite using the same distribution family, the model assumption for ASE is very

di�erent between RASQUAL and TReCASE. RASQUAL models ASReC for each

feature SNP separately. In contrast, TReCASE add up the ASReCs across all the

heterozygous SNPs within a gene and model the gene-level ASReCs across samples.

An alternative interpretation of the TReCASE model is that it assumes ASReC follow

a binomial distribution across multiple SNPs within a sample, and then their

summation follows the same binomial distribution. This assumption is reasonable for

the majority of the cases (Figure 3.5). In other words, TReCASE assumes the

ASReCs across multiple SNPs within a sample are more similar than ASReCs across

di�erent samples. In contrast, RSQUAL assumes a constant over-dispersion within or

between samples. For example, suppose there are 5 heterozygous SNPs within a gene

and there are 100 samples. TReCASE models the gene-level ASReC across the 100

samples by a beta-binomial distribution, while RASQUAL models the 5×100

SNP-level ASReCs by a beta-binomial distribution. In practice, there is often much

larger variation across samples than within a sample (Figure 3.5 and Figure 3.6b),

due to biological di�erence across samples. Then RASQUAL's model is mis-speci�ed

and it can lead to in�ated type I error, which we will discuss in details.
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Type I error in�ation from RASQUAL's results

We ran both TReCASE and RASQUAL for eQTL mapping using 1KGP data, both

before and after permuting SNP genotypes across samples. The same permutation is

applied to all the SNPs so that the correlations among the SNPs remain the same and

all the eQTL signals are removed. We examined the relation between the percentage

of signi�cant �ndings versus the number of feature SNPs (fSNPs). Using un-permuted

data, TReCASE has higher power than RASQUAL for the genes with less than 10

fSNPs and their power become more similar for genes with larger number of fSNPs

(Figure 3.14(A)). Using permuted data, all �ndings should be false positives. We

examined the proportion of �ndings with p-value smaller than 0.05 with respect to

the number of fSNPs (Figure 3.14(B)). It is very clear that TReCASE controls type I

error well. However, RASQUAL's type I error increases linearly with the number of

fSNPs and it is severely in�ated for the genes with large number of fSNPs.

Because the major di�erence between TReCASE and RASQUAL is their models

for ASE, we conjecture that the type I error of RASQUAL is due to its assumption of

the same beta-binomial distribution within and between samples. Indeed, when this

assumption is satis�ed, RASQUAL controls type I error (Figure 3.7). When there is

within sample and extra between sample over-dispersion, it violates TReCASE's

assumption of no over-dispersion within a sample, and also violates RASQUAL's

assumption of no additional over-dispersion across samples. In this situation,

TReCASE still controls type I error but TReCASE-RL has in�ated type I error

(Figure 3.14(C)). When there is no over-dispersion within sample, but some

over-dispersion across samples, TReCASE-RL still has in�ated type I error

(Figure 3.14(C)) and the degree of in�ation increases with the number of fSNPs.

RASQUAL's approach to collect of the ASReC at the SNP level lead to

double-counting certain reads and we seek to quantify the consequence of such double
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counting. Finally, comparing all three methods in terms power analysis, RASQUAL

has slightly larger type I error in�ation than TReCASE-RL, and lower power

especially for larger eQTL e�ect sizes.

3.7 Using MatrixEQTL to perform preliminary screening

MatrixEQTL (Shabalin 2012) is a software package for computationally e�cient

eQTL mapping using linear model. We �rst perform normal-quantile transformation

for the expression of each gene before running MatrixEQTL, so that a linear model is

reasonable. This transformation is a rank-based transformation and thus it can limit

the e�ect of any outliers. We plan to use MatrixEQTL in two ways: for preliminary

screening of SNPs before �tting TReCASE model and to estimate the e�ective

number of tests for each gene.

We �rst compare the number of eQTL �ndings across p-value cuto�s for all

gene-SNP pairs by TReC, TReCASE and MatrixEQTL (Table 3.4 and Table 3.5).

Table 3.4: Gene-SNP p-values by TReC vs MatrixEQTL. Note, we used
widely used way to spot in�uential counts by using a known approach of
marking values with Cook's distance bigger than 4/n, where n is sample
size. Such value is recommended, for example, in (Hardin et al. 2007). We
consider several other candidate cuto�s in the further Section 3.9.6 and
con�rm that 4/n is more appropriate for our analysis.

TReC (0,1e-6] (1e-6, 0.001] (0.001,0.01] (0.01,0.1] (0.1,1]
MatrixEQTL

(0,1e-6] 162525 18962 650 115 7
(1e-6,0.001] 28543 359959 77947 7140 898
(0.001,0.01] 619 107229 403969 183961 5440
(0.01,0.1] 278 11369 227985 1562396 530555

(0.1,1] 200 1854 8794 601335 10670619

To screen potential eQTLs, we can �rst run MatrixEQTL and then select those

gene-SNP pairs passing a liberal p-value cuto�, such as 0.01, and only run TReCASE

for those selected gene-SNP pairs. Suppose after considering multiple testing
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correction, p-value cuto� 10−6 is a preliminary cuto� for TReC p-value and we apply

MatrixEQTL p-value cuto� 0.1 for screening. We will miss those 200 eQTLs with

p-value > 0.1 by MatrixEQTL but p-value < 10−6 by TReC. We found it is actually

justi�able to �miss� those eQTL �ndings because they are likely due to some outliers.

For example, after re�tting TReC model with 6 most expressed samples removed for

each gene, 74.3% of these tests weren't signi�cant at 0.01 level and only 10.5% of

these cases still had TReC p-value smaller than 10−6.

Table 3.5: Gene-SNP p-values by TReCASE vs MatrixEQTL

TReCASE (0,1e-6] (1e-6,0.001] (0.001,0.01] (0.01,0.1] (0.1,1]
MatrixEQTL

(0,1e-6] 139821 8808 498 84 8
(1e-6,0.001] 98179 232608 45088 6550 767
(0.001,0.01] 31865 152742 231474 128474 12888
(0.01,0.1] 24655 124162 273335 880042 535208

(0.1,1] 12661 81197 167098 1000798 7834345

3.8 Estimation of permutation p-values

3.8.1 The method for estimation of permutation p-values

When performing eQTL mapping for each gene, we need to scan across a number of

SNPs around the gene. The genotypes of these SNPs are often correlated due to

linkage disequilibrium. To correct for multiple testing across these local SNPs, we can

estimate the permutation p-value of the most signi�cant association. It is

computationally infeasible to run TReCASE or RASQUAL on a larger number of

permuted datasets. Instead, we seek to estimate a relation between permutation

p-value and minimum p-value for each gene separately, while using linear regression

for eQTL mapping. This is closely related with the concept of �e�ective number of

tests� since the ratio between permutation p-value and minimum p-value can be
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considered as the �e�ective number of tests�. Our model shows that such �e�ective

number of tests� is not a constant for each gene. It varies with the scale of the

minimum p-value.

Let pmin,i and pperm,i be the minimum p-value for the i-th gene and the

corresponding permutation p-value, respectively. Sun et al. (2010) observed that there

is an approximate linear relation on log scale:

E [log10 (pperm,i)] = β0 + β1 log10 (pmin,i) . (3.15)

We found such a linear model is accurate when the permutation p-value is small.

However, when there are relatively larger permutation p-values, e.g., 0.1, a logistic

regression has a better �t:

logit [E (pperm,i)] = β0 + β1 log10 (pmin,i) . (3.16)

We use the following procedure to produce multiple pairs of minimum p-value and

permutation p-value per gene to estimate β0 and β1 in the logistic regression.

1. For each gene we create k new datasets using bootstrap with eQTL e�ect size

modi�ed to produce minimum p-value corresponding to permutation p-value in

the range from 0.001 to 0.25. In order to approximately achieve a target

permutation p-value α, we modify the eQTL e�ect size so that the minimum

p-value is α/E, where E is a preliminary estimate of the e�ective number of

tests by eigenMT tool (Davis et al. 2016). The default value of k is 100. Then

the eQTL e�ect sizes of these 100 datasets are 100 grid points evenly spaced on

log scale. We also consider k = 20, 50, and 200 in our evaluations and conclude

that k = 100 is a good balance between accuracy and computational e�ciency.
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2. Run �rst 100 permutations. If more than 40% of the points on the grid are

below the target 0.001 or more than 30% of the points are above 0.3, do

additional adjustment and restart the process (up to 5 trials).

3. Run 1,000 permutations for each bootstrapped dataset, and calculate

permutation p-value of the minimum p-value of each dataset.

4. Select only the data-points with observed permutation p-value in the range 0 to

0.25 (for linear model between 0.001 and 0.25).

5. For each gene we �tted a linear regression and a logistic regression. Then the

number of independent tests is (permutation p-value) / (minimum p-value) =

exp(β0)(minimum p-value)β1−1.

3.8.2 Evaluation using 1KGP dataset

Running this setup with MatrixEQTL (a linear model approach for eQTL

mapping) (Shabalin 2012) on 14,500 genes with 50,100, and 200 grid points take

approximately 23, 28, and 42 days for 1000 permutations - the procedure scales quite

linearly for practical number of grid points. In contrast, running TReC model once

takes at least 18 days, if we only run TReCASE for those gene-SNP pairs with

signi�cant association from MatrixEQTL. We summarize total timing required to �t

the dataset in Table 3.6.

As a quick alternative one might simply use eigenMT to estimate the e�ective

number of tests, and then obtain the permutation p-value estimate by multiplying

minimum p-value with the e�ective number of tests, and truncating at 1. We evaluate

this approach and our methods (linear regression or logistic regression) using the

permutation p-values estimated by 10,000 permutations for 14,566 genes as the true

permutation p-values. We see that eigenMT tends to be conservative with a large
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Table 3.6: Summarizing total time to �t the data using each method. First
column gives time to �t the data. Second column - time to estimate per-
mutation p-value using MatrixEQTL using 100 and in parenthesis for the
reference smaller grid of 25-200 data points. Third column gives total time
to �t the data. Score method calculates permutation p-value automatically,
thus it doesn't require calculating estimated permuted p-values and only
has total time presented. For TReCASE(score) method 5,000 permutation
are done. TReCASE(LRT)* is modi�cation that pre-�lters SNP that were
not found to be signi�cant after �tting MatrixEQTL (using p-value cuto�
0.01).

method one run est. perm.pval total time
RASQUAL 610 28 (19-42) 638 (629-652)
TReCASE(score) - 750 (750)
TReCASE(LRT) 53 28 (19-42) 81 (72-95)
TReCASE(LRT)* 18 28 (19-42) 46 (37-60)

number of false negatives, especially at less signi�cant p-values (Table 3.7). This

suggests that the eigenMT estimates of the number of tests is too large, particularly

so for larger p-values. Overall the results based on linear �t is much more accurate

than eigenMT (in terms of smaller number of false positives + false negatives),

though it produces unbalanced false positives and false negatives, with more false

positives at larger p-value cuto� and more false negatives at smaller p-value cuto�s

(Table 3.8). Finally, the logistic regression has the the most accurate estimates with

balanced numbers of false positives and false negatives (Table 3.9).

Table 3.7: Permutation p-value estimated by eigenMT

permutation true false number of
p-value cuto� pos. neg. pos. neg. total pos. neg.

0.1 5119 8354 5 1088 1093 6207 8359
0.05 4449 9419 4 694 698 5143 9423
0.01 3403 10878 10 275 285 3678 10888
0.005 3094 11253 12 207 219 3301 11265
0.001 2579 11877 25 85 110 2664 11902

In terms of false classi�cations (Table 3.10), we do not get as much improvement by

using more than 100 grid points, particularly for logistic regression (glm) approach.
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Table 3.8: Permutation p-value estimates based on gene-by-gene linear re-
gression

permutation true false number of
p-value cuto� pos. neg. pos. neg. total pos. neg.

0.1 6200 8262 97 7 104 6207 8359
0.05 5138 9338 85 5 90 5143 9423
0.01 3657 10852 36 21 57 3678 10888
0.005 3270 11241 24 31 55 3301 11265
0.001 2612 11876 26 52 78 2664 11902

Table 3.9: Permutation p-value estimates based on gene-by-gene logistic
regression

permutation true false number of
p-value cuto� pos. neg. pos. neg. total pos. neg.

0.1 6180 8341 18 27 45 6207 8359
0.05 5109 9398 25 34 59 5143 9423
0.01 3661 10858 30 17 47 3678 10888
0.005 3284 11235 30 17 47 3301 11265
0.001 2636 11863 39 28 67 2664 11902

The performance of linear regression and logistic regression become similar at larger

grid points and more signi�cant p-values. Consequently, we suggest using 100 grid

points to estimate permutation p-values, though even with 25 grid points we observe

large improvement against eigenMT.

Table 3.10: Number of misclassi�cations of permutation p-value estimates
for 25, 50, 100 and 200 grid points.

permutation eigenMT lm glm
p-value cuto� 25 50 100 200 25 50 100 200

0.1 1093 139 103 10494 66 61 45 42
0.05 698 112 99 90 88 74 53 59 55
0.01 285 65 65 57 57 47 52 47 47
0.05 219 77 59 55 48 59 54 47 51
0.001 110 81 79 78 69 72 59 67 60
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Figure 3.14: Summary of observed method performance: (A) Compare
the number of signi�cant �ndings (q-value < 0.05) between TReCASE and
RASQUAL for di�erent number of feature SNPs (fSNPs) using 1KGP data
with sample size of 280. (B) The number of signi�cant �ndings (p-value
<0.05) after permuting SNP genotypes, which provides an empirical esti-
mate of type I error. For panels (C)-(F) we run 10,000 replicates per
each simulation pro�le. (C) Evaluation of type I error for TReCASE and
TReCASE-RL when there is over-dispersion within a sample and the same
amount of extra over-dispersion across samples. We assume there are 2
heterozygous fSNPs per gene and per sample. TReCs were simulated with
negative-binomial with over-dispersion 0.5. (D-F) Simulation settings
without over-dispersion for ASReC within a sample and with some over-
dispersion across samples. We consider the cases where the ASReC is dis-
tributed across 1, 2, or 4 fSNPs. (D) type I error when the over-dispersion
of negative binomial (NB) and beta-binomial (BB) are the same. (E) E�ect
of over-counting. We assume 15% double-counting and simulate the data
assuming NB over-dispersion to be 0.5. In order to distinguish pure double-
counting e�ect we �t both models RASQUAL like way. (F) power analysis
when the over-dispersion of NB and BB are both 0.5.
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From the scatter plots of permutation p-value estimates versus �true� permutation

p-values estimated by 10,000 permutations, we can see clearly the bias by eigenMT

and linear model, as well as the advantage of using larger number of grid points

(Figure 3.15).

Figure 3.15: Permutation p-value estimation using three methods for 1KGP
dataset: eigenMT, linear model (lm), and logistic model (glm). On the x-
axis we plot permutation p-values estimated by 10,000 permutations.
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3.8.3 Evaluation using GTEx dataset

Evaluation of di�erent methods on GTEx dataset leads to similar results. EigenMT

is conservative. Linear regression approach brings signi�cant improvement and

logistic regression is still the most stable and accurate one.

Table 3.11: Permutation p-value estimates with eigenMT approach

permutation true false number of
p-value cuto� pos. neg. pos. neg. total pos. neg.

0.1 4001 11636 0 1000 1000 5001 11636
0.05 3292 12750 0 595 595 3887 12750
0.01 2285 14148 0 204 204 2489 14148
0.005 2046 14457 3 131 134 2177 14460
0.001 1654 14918 11 54 65 1708 14929

Table 3.12: Permutation p-value estimates with linear regression using 100
grid points.

permutation true false number of
p-value cuto� pos. neg. pos. neg. total pos. neg.

0.1 4990 11521 115 11 126 5001 11636
0.05 3882 12658 92 5 97 3887 12750
0.01 2469 14127 21 20 41 2489 14148
0.005 2153 14443 17 24 41 2177 14460
0.001 1664 14908 21 44 65 1708 14929

Table 3.13: Permutation p-value estimates with logistic regression using 100
grid points.

permutation true false number of
p-value cuto� pos. neg. pos. neg. total pos. neg.

0.1 4968 11612 24 33 57 5001 11636
0.05 3870 12722 28 17 45 3887 12750
0.01 2471 14124 24 18 42 2489 14148
0.005 2159 14433 27 18 45 2177 14460
0.001 1679 14900 29 29 58 1708 14929
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Table 3.14: Number of misclassi�cations of permutation p-value estimates
for 25, 50, 100 and 200 point grid.

permutation eigenMT lm glm
p-value cuto� 25 50 100 200 25 50 100 200

0.1 1000 184 121 126 106 82 67 57 60
0.05 595 100 108 97 89 55 43 45 44
0.01 204 52 50 41 38 48 45 42 34
0.005 134 65 60 41 48 50 45 45 46
0.001 65 71 62 65 57 55 56 58 54

Figure 3.16: Permutation p-value estimation using three methods:
eigenMT, linear regression and logistic regression using GTEx dataset. The
x-axis are permutation p-values estimated by 10,000 permutations.
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3.9 Comparison of MatrixEQTL, TReCASE and RASQUAL using 1KGP

dataset

3.9.1 Comparison of computational time

We performed eQTL mapping all the genes for which we had at least 5 samples

with at least 5 allele-speci�c counts. Since RASQUAL is very time consuming, we

�tted each gene in parallel. For timing comparability, we did the same for TReCASE.

We limited total computational time per gene to be a week, and RASQUAL failed to

�nish within a week for 9 genes. We summarize the results for the remaining 14,427

genes. The average number of potential eQTL SNPs (rSNPs) per gene was 2,000. The

computational time of both TReCASE and RSQUAL increases nearly linearly with

sample sizes, and TReCASE is more than 10 times faster than RASQUAL

(Figure 3.17(a)). For the full 1KGP with sample size of 280, RASQUAL took 610

days and TReCASE using likelihood ratio test (LRT) took 53 days (Table 3.6).

We have developed a modi�ed version of TReCASE to perform testing using score

test (Hu et al. 2015). This TReCASE (score) method is computationally more

e�cient to perform permutations since some elements of the score test statistic can be

calculated only once and used for many permutations. For 280 samples in the 1KGP

dataset, TReCASE (score) method took 750 days for 5,000 permutations (Table 3.6),

and thus it is doable within a week using 100+ computing jobs. However, one

limitation of score test is that the p-values become less stable when sample size is

relatively small, such as n=50 or 100. While the permutation p-values are still

accurate, one should be cautious when using the p-values with small sample sizes.

The relative computational time of RASQUAL versus TReCASE increases with

respect to the number of fSNPs (Figure 3.17(b)) and the number of rSNPs

(Figure 3.17(c)). When genotype data were obtained by whole genome sequencing

97



(e.g., GTEx dataset), there are about 10 times of fSNPs per gene (Figure 3.18) than

the genotype data obtained from imputation (e.g., 1KPG dataset). Therefore, as a

consequence, RASQUAL can be 100 times slower than TReCASE.

Figure 3.17: TReCASE vs RASQUAL timing to �t a gene: (a) The mean
time (seconds) for eQTL mapping per gene by sample size - dotted lines
y = x and y = 13x are added for reference. (b-c) The relative median time for
eQTL mapping per gene using RASQUAL versus TReCASE with respect
to the number of fSNPs (with y = x line added for reference) or the number
of rSNPs (with line y = 7 + 0.1x added for the reference).
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Figure 3.18: Number of fSNPs per gene. The distribution of the number of
fSNPs per gene for 1KGP dataset (a) and GTEx dataset (b), respectively.
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3.9.2 Choose a permutation p-value cuto� to control FDR

Given the permutation p-value for each gene, we can choose a permutation p-value

cuto� to control FDR. We estimated fraction of genes in null distribution by doubling

fraction of genes with permutation p-value above 0.5 after which Storey q-value is

calculated. Because a larger proportion of genes has signi�cant eQTLs, for a FDR

cuto�, the corresponding permutation p-value can be even larger than the FDR

(Table 3.15). For example, to control FDR at 0.05, the p-value cuto�s are larger than

0.05. Here we use FDR cuto� 0.01 to choose permutation p-value cuto�s for the three

methods.

Table 3.15: Permutation p-value cuto�s for di�erent FDR cuto�s, using
1KGP dataset with sample size 280.

FDR TReCASE RASQUAL MatrixEQTL
0.001 0.001 0.0009 0.0005
0.01 0.014 0.011 0.009
0.05 0.092 0.071 0.074
0.1 0.211 0.161 0.189
0.2 0.474 0.362 0.477
0.25 0.616 0.470 0.631

It is interesting to check how the number of discoveries varies with sample size. We

down-sampled the 1KGP dataset to sample sizes from 35 to 140, and calculated the

number of signi�cant discoveries by FDR 0.01 (Table 3.16). It is clear that TReCASE

discovery a much larger number of eQTLs than MatrixEQTL, a linear model-based

approach.

Table 3.16: Number of signi�cant genes by method at FDR 0.01.

sample size MatrixEQTL TReC TReCASE
35 0 224 454
70 266 481 1119
140 1498 1865 3583
280 4501 5038 7447
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3.9.3 Results of MatrixEQTL and TReCASE show consistent patterns

Comparing p-values versus MatrixEQTL we observe that their correlations grow

with sample size (Table 3.17)

Table 3.17: Correlations of TReC and TReCASE p-values vs MatrixEQTL
p-values on -log10 scale

samples TReC TReCASE
35 0.72 0.67
70 0.89 0.77
140 0.95 0.85
280 0.97 0.87

3.9.4 Compare the results of RASQUAL vs. TReCASE

We classi�ed the �tted genes by their signi�cance according to each of two methods

(Table 3.18). Although the results of the two methods are consistent for the majority

of the genes, there is some notable discrepancy for a subset of genes. We study

potential sources for discrepancies in the following subsections.

Table 3.18: Number of genes passing corresponding cuto� of q-values ap-
plied on permuted p-values.

TReCASE [0.01,1] [10−3,0.01) [10−4,10−3) [10−5,10−4) < 1e-5 total
RASQUAL

[0.01,1] 6747 1103 303 151 153 8457
[10−3,0.01) 429 420 231 109 130 1319
[10−3,10−4) 195 189 134 121 173 812
[10−4,10−5) 103 92 92 94 177 558

< 1e-5 377 246 199 254 2344 3420
total 7851 2050 959 729 2977 14566

Additionally we notice that RASQUAL estimates one over-dispersion that is shared

by its negative binomial and beta-binomial components and TReCASE estimates the

over-dispersion parameters for these two components separately. We observe a quite

clear pattern that the over-dispersion from RASQUAL is very similar to the
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over-dispersion of TReCASE negative binomial component, but they are often much

larger than the over-dispersion of TReCASE beta binomial component (Figure 3.19).

Figure 3.19: Comparing an estimate of RASQUAL over-dispersion versus
observed: (a) TReCASE negative-binomial over-dispersion estimates and
(b) TReCASE beta-binomial over-dispersion estimates. We trimmed over-
dispersion values from TReCASE output to [−3,1] range.

3.9.5 Discrepancy of the results between TReCASE and RASQUAL

For each gene, we took the smallest p-value across multiple rSNPs by TReCASE

and RASQUAL, truncated them at 10−15, and refer them as TReCASE p-value and

RASQUAL p-value, respectively. We sought to explore the discrepancies of

TReCASE and RASQUAL p-values by a linear regression with

y = log10(TReCASE p-value) − log10(RASQUAL p-value)

as the response variable and 16 covariates (Tables 3.19-3.20):

� alternative allele frequency

� log10 p-value of χ
2 test for Hardy Weinberg equilibrium

� estimated mapping error (Delta), which is an output of RASQUAL
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� reference allele bias (Phi Bias), which is an output of RASQUAL

� the number of feature SNPs per gene, centered to median.

� the number of rSNPs per gene, log scale.

� over-dispersion from total read counts (ODNB) estimated by TReCASE, in log

scale and centered.

� over-dispersion from allele-speci�c counts (ODBB) estimated by TReCASE, in

log scale and centered.

� the total allele-speci�c counts by RASQUAL, in log scale and centered.

� the total allele-speci�c counts by TReCASE, in log scale and centered.

� interaction of the previous two counts. Two methods approach di�erently to

count allele-speci�c reads. TReCASE count them at gene level while

RASQUAL count them SNP by SNP. Therefore if one read overlap with two

heterozygous SNPs, it will be counted twice. The potential degree of

over-counting is illustrated at Figure 3.21.

� interactions of three covariates: RASQUAL allele-speci�c counts, the number of

fSNPs, and beta binomial over-dispersion. Based on our simulations and study

of information matrix we believe that p-value in�ation of RASQUAL is caused

by its model of ASReC. These three covariates are all important for the ASReC

model.

� median p-value of RASQUAL across all rSNPs of a gene, using permuted

genotype. This quantity measures the magnitude of RASQUAL type I error for

this gene.
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Table 3.19: Type 1 (sequential) and Type 3 (added last) ANOVAs for linear
regression analysis of log10(TReCASE p-value) - log10(RASQUAL p-value).
The direction (Dir.) indicates whether RASQUAL (R) or TReCASE(T)
has smaller p-value.

Parameter Dir. Type 1 R2 P-val Type 3 R2 P-val Marg. R2

ODBB R 6.7 6e-244 8.2 3e-294 6.7

ASReCR R 2.7 8e-101 1 2e-39 0.6

n-fSNP R 1.9 1e-71 1.6 4e-63 2.7

ASReCR :n-fSNP R 0.5 2e-19 0.7 4e-26 0

ASReCR :ODBB R 5 1e-185 3.2 1e-118 1.3

n-fSNP:ODBB R 0.8 6e-31 1 1e-37 0.4

ASReCR :n-fSNP:ODBB R 0.2 4e-8 0.2 2e-10 0.1

n-rSNP T 0 0.73 0 0.52 1

ODNB T 0 0.009 0 0.004 0.8

ASReCT T 0.4 1e-15 0.4 3e-16 0.1

ASReCR :ASReCT R 0.3 6e-13 0.2 1e-10 0

AF T 0 0.004 0.1 0.002 0

HWE χ2 T 0.2 5e-9 0.2 1e-8 0.3

Mapping error T 0 0.09 0 0.24 1.1

Ref. Allel Bias R 0.3 2e-13 0.3 2e-13 2.1

Med(perm-p) T 0 0.97 0 0.97 0.4

All covariates were normalized to have standard deviation of 1.

This linear model explains 15% of the variance of y. More variance of y can be

explained by this model if we only consider a subset of genes with more discrepant

p-values. For example, for a subset of genes passing a cuto� of ∣y∣ ≥ 5 or ∣y∣ ≥ 10, this

linear model explains 42% or 57% of the variance of y, respectively. We note that the

more discrepant set of genes we select, the higher fraction of genes with smaller

p-values by RASQUAL (Figure 3.20 (a)), suggesting stronger discrepancies are more

likely due to the in�ation of Type I error by RASQUAL.

We observe that three factors, beta-binomial over-dispersion (ODBB), the number

of fSNPs (n-fSNP), and RASQUAL style ASReC (ASReCR), along with interactions

of these terms have strongest associations with the discrepancy of the two methods

(Table 3.20). Larger values of these three factors are all associated with smaller

RASQUAL p-value. This is consistent with our �ndings that the beta-binomial
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Table 3.20: Linear regression of y = log10(TReCASE p-value) -
log10(RASQUAL p-value) versus a set of potential factors. ODBB and ODNB

indicate log10 over-dispersion for beta-binomial and negative binomial, re-
spectively. n-fSNP and n-rSNP indicate the number of feature SNPs and
regulatory SNPs, respectively. Subscript R and T indicate RASQUAL and
TReCASE, respectively.

Parameter Est. SE P-val Marg.Est Marg P-val

intercept 0.18 0.14 0.2 0.31 1.6e-43

ODBB 1.04 0.03 3e-294 0.68 3e-213

ASReCR 0.81 0.06 2e-39 0.20 4e-19

n-fSNP 0.44 0.03 4e-63 0.43 4e-84

ASReCR :n-fSNP 0.24 0.023 4e-26 0.013 0.51

ASReCR :ODBB 0.52 0.022 1e-118 0.26 7e-42

n-fSNP:ODBB 0.29 0.022 1e-37 0.13 2e-12

ASReCR :n-fSNP:ODBB 0.11 0.017 2e-10 -0.04 0.0027

n-rSNP -0.014 0.022 0.52 0.26 6e-32

ODNB -0.07 0.024 0.004 0.24 1e-26

ASReCT -0.46 0.056 3e-16 0.084 2e-4

ASReCR :ASReCT 0.12 0.019 1e-10 0.037 0.048

AF -0.061 0.02 0.002 -0.044 0.046

HWE χ2 -0.12 0.02 1e-8 -0.16 3e-12

Mapping Error -0.028 0.024 0.24 0.28 2e-36

Ref. Allel Bias 0.19 0.026 2e-13 0.38 6e-65

Med(perm p) -0.001 0.034 0.97 -0.16 5e-13

component of RASQUAL treats multiple fSNPs within a sample as independently

distributed, which causes larger in�ation of type I error. In addition, more discrepant

genes also tend to have weaker correlations of over-dispersion estimates between

TReCASE and RASQUAL (Figure 3.20 (c)).

Among other covariates, the following relations are notable. Signi�cant associations

with reference allele bias and Hardy-Weinberg disequilibrium suggest the advantage of

RASQUAL to model these factors. Smaller TReCASE p-values are associated with

the case when we observed relatively higher TReCASE style allele-speci�c counts

(ASReCT ), which suggests that the ASReC by RASQUAL and TReCASE are

di�erent, most likely due to double counting by RASQUAL (Figure 3.21).

Median RASQUAL p-value using permuted data (Med(perm p)) is very signi�cant
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Figure 3.20: Comparison of TReCASE and RASQUAL results using 1KGP
dataset. We use �T p-val� and �R p-val� as abbreviations of �TReCASE
p-value� and �RASQUAL p-value�, respectively. �%p(R) < p(T)� denotes
the proportion of genes with RASQUAL p-value smaller than TReCASE p-
value. (a) Genes with more discrepant p-values tend to smaller RASQUAL
p-values. (b) The genes with larger number of fSNPs also tend to have
smaller RASQUAL p-values. Di�erent point symbols indicate the genes
with the absolute value of the di�erence between log10(TReCASE p-value)
and log10(RASQUAL p-value) is larger than certain threshold. (c) When
there are larger discrepancies of p-values, the over-dispersion estimates
by RASQUAL are less similar to either negative binomial (NB) or beta-
binomial (BB) over-dispersion estimates by TReCASE.

in marginal model, but becomes much less signi�cant in the joint model. This is

expected because in�ation of type I error is also associated with other factors in the

join model (see Section 3.5.4 for more details). In both cases, smaller RASQUAL

p-value using permuted data are associated with smaller RASQUAL p-values.

We further examine the discrepancy of signi�cant �ndings by RASQUAL and

TReCASE with respect to the number of fSNPs. We classi�ed the genes to be

signi�cant or not at several FDR cuto�s and plotted them versus the number of

fSNPs. The fraction of signi�cant �ndings of both methods generally grows with

respect to the number of fSNPs (Figure 3.22(a) and (d)), which is expected since the

number of allele-speci�c reads would also be higher with more fSNPs. However, this

fraction grows quicker for RASQUAL than TReCASE, and it increases regardless the
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Figure 3.21: Estimating double-count in real data. We again used 30 sam-
ples from PRJNA385599. For each sample we counted number of allele-
speci�c reads using our TReCASE procedure and produced fraction with
respect to total number of reads (x) and will plot on x scale. In addition
for the reads overlapping several heterozygous SNPs we counted such read
several time - once for each SNP (de�ne this number as z) Z is in�ated with
overcounting. We quantify this excess of counts by de�ning y = z/x − 1 and
plotting them on the y axis. 10 of the samples in this dataset were measured
with both 150bp reads and shorter 75bp reads. They are plotted separately
with 10 points around 3% allele-speci�c counts representing summary for
shorter reads.

signi�cance level of TReCASE (Figure 3.22(b) and (c)). This suggests that the

association between the number of fSNPs and RASQUAL p-values may not depend

on the actual strength of eQTL signals and thus implies in�ated type I error. In

contrast, conditioning on being signi�cant or insigni�cant using RASQUAL method

we see much weaker association between the number of fSNPs and the fraction of

signi�cant TReCASE �ndings (Figure 3.22(e) and (f)). In fact, given signi�cant

RASQUAL results, the number of signi�cant TReCASE �ndings has slight decrease

as number of fSNPs increases (Figure 3.22(e)). This is likely because RASQUAL

tends to �nd higher fraction of false positive when the number of fSNPs is large.
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Figure 3.22: Method discrepancy conditioned on signi�cance status of each
method. We classify the genes into signi�cant or not signi�cant category
using FDR cuto�s presented in the legend: 0.05, 1e-3, 1e-4 and 1e-5 plotted
vs number of fSNPs. The curve is obtained using a spline. Panels (a) and
(d) consider overall dependency of fraction of genes found to be signi�cant
plotted versus number of fSNPs. Panel (b) considers proportion of genes
passing a cuto� in RASQUAL model for all the genes passing cuto� for
TReCASE. Panel (e) does it other way around - fraction of signi�cant genes
found by TReCASE among the genes signi�cant in RASQUAL. Panels (c)
and (f) provide similar curves for fraction of genes found to be signi�cant
by one of the methods, given that they weren't found to be signi�cant by
the other method.
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3.9.6 eQTL mapping using permuted genotype data

In this subsection, we evaluate potential type I error in�ation of TReCASE and

RASQUAL using permuted genotype data. We only include the potential cis-acting

eQTLs in our evaluation because ASE is only informative for cis-eQTL mapping. To

identify cis-acting eQTLs, we test whether the eQTL e�ects estimated by TReC and

ASE are the same by a cis-trans test (Sun 2012), and consider the cases with cis-trans

test p-value > 0.05 as the potential cis-acting eQTLs. For TReCASE method, we

consider the standard TReCASE using likelihood ratio test (LRT) (Sun 2012) as well

as another version using score test (Hu et al. 2015).

From the distribution of all the eQTL p-values, it is clear that RASQUAL has

severe in�ated type I error (Figure 3.23(c,f)). This is consistent with our analysis of

likelihood model (Section 3.5.4), simulation results, and comparison of the results on

1KGP dataset between RASQUAL and TReCASE (Section 3.9.5). At this large

sample size of 280, the p-value distribution from TReCASE (score) is slightly

deviated from uniform distribution (Figure 3.23(a,d)), though such deviation becomes

larger for smaller sample size of 100 (Figure 3.24(a,d)). Therefore when using

TReCASE (score) method for small sample size, we recommend using permutation

p-values rather than the p-values from asymptotic distribution.

We observed that TReCASE also has slight in�ated type I error. This may be due

to model mis-speci�cation for some genes, either because the distribution assumption

is not accurate or missing some covariates (e.g., genetic e�ect are missing after

permuting genotype data). Such in�ation of type I error can be removed after

trimming outlier values using an approach implemented in DESeq2 Love et al. (2014).

An observation is de�ned as an outlier if it Cook's distance is larger than a

thresholds, and found the threshold of 4/n e�ectively removes the in�ation of type I

error (Figure 3.25).
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Figure 3.23: The distributions ((a)-(c)) and QQ-plots ((d)-(f)) of eQTL
p-values using permuted genotypes by three methods: TReCASE (LRT),
TReCASE(Score) and RASQUAL, using 1KGP dataset with sample size
280.
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Figure 3.24: The distributions ((a)-(c)) and QQ-plots ((d)-(f)) of eQTL
p-values using permuted genotypes by three methods: TReCASE (LRT),
TReCASE(Score) and RASQUAL, using 1KGP dataset with sample size
100.

Figure 3.25: Fitting the data with permuted genotypes using TReC model
after trimming counts with signi�cant Cook's distances
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3.9.7 eQTL positions with respect to transcription start and

transcription end

We examine the locations of eQTLs. For each gene, we chose the SNP with the

smallest p-value as its eSNP and further select gene-eSNP pairs using di�erent

permutation p-value cuto�s. Then for those selected gene-eSNP pairs, we ask where

those eSNPs are located with respect to the locations of their associated genes. We

found that eSNPs are enriched at Transcription Starting Sites (TSS) or the end of the

transcript. We observe strong enrichment on TSS for genes in both positive and

negative strand. (Figure 3.26).
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Figure 3.26: Distance from most signi�cant SNP to transcription starting
site (Using FDR cuto� 0.01 applied to permutation p-values): (a) Positive
strand and (b) Negative strand. For each of three methods genes are classi-
�ed into 7 categories with respect to gene-body: those that are more than
10K bases from transcription starting site (TSS), those within 10K bases
from TSS, but more than 100 bases from TSS, 100 bases around TSS, within
body genes, within 100 bases around transcription end site (TES), 100 to
10K bases from TSS and more than 10K from TSS plotted in this order.
To adjust for the fact that each category had di�erent width we normalized
counts to adjust for interval length.
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3.10 Compare the eQTLs identi�ed by TReCASE versus MatrixEQTL

using both 1KGP and GTEx data

We compare the number of �ndings by TReCASE and MatrixEQTL at di�erent

q-value thresholds using the results of 1KGP dataset (Table 3.21). MatrixEQTL was

able to produced 3,356 genes passing q = 0.01 cuto� versus 6,715 found by TReCASE.

Applying eigenMT to MatrixEQTL results would make the results even more

conservative declaring only 2,773 genes to be signi�cant at q-value 0.01. This decrease

of power is more visible after applying FDR correction, since for more conservative

eigenMT method estimated fraction of null genes π0 is much higher: while for

TReCASE permutation p-values it is estimated to be 23.5%, for MatrixEQTL

permutation p-value estimate of π0 is 41.5% and for eigenMT - 94.2%.

Table 3.21: Number of genes passing corresponding cuto� of q-values ap-
plied on permuted p-values in 1000 Genomes dataset. TReCASE vs Ma-
trixEQTL

MatrixEQTL [0.01,1] [10−3,0.01) [10−4,10−3) [10−5,10−4) < 1e-5 total
TReCASE

[0.01,1] 7574 168 38 15 56 7851
[10−3,0.01) 1709 224 60 30 27 2050
[10−4,10−5) 655 147 73 29 55 959
[10−5,10−4) 417 103 72 46 91 729

< 1e-5 855 299 239 223 1361 2977
total 11210 941 482 343 1590 14566

GTEx dataset shows more dramatic gain from MatrixEQTL to TReCASE

Table 3.22 with only 1,878 genes passing q = 0.01 cuto� fpr MatrixEQTL versus 7,850

found by TReCASE. Applying eigenMT to MatrixEQTL results would make the

results even more conservative declaring only 1,662 genes to be signi�cant at the given

level. We do observe similar level of estimate of π0 for TReCASE - 21.2% while higher

than in previous case fractions for either MatrixEQTL permuted p-values or eigenMT

corrected p-values - 57.4% and 100%
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Table 3.22: Number of genes passing corresponding cuto� of q-values ap-
plied on permuted p-values in GTEx. TReCASE vs MatrixEQTL

MatrixEQTL [0.01,1] [10−3,0.01) [10−4,10−3) [10−5,10−4) < 1e-5 total
TReCASE

[0.01,1] 8721 36 11 2 7 8777
[10−3,0.01) 2067 71 26 11 9 2184
[10−4,10−5) 927 78 28 15 11 1059
[10−5,10−4) 543 58 30 20 28 679

< 1e-5 2491 264 212 152 809 3928
total 14749 507 307 200 864 16627

Next we study whether the eSNPs (the most signi�cant eSNPs per gene) found by

MatrixEQTL and TReCASE are located in di�erent genomic regions, in terms of the

18 chromatin states classi�cation provided by Roadmap Epigenomic

Consortium (Kundaje et al. 2015). We consider the results of the two methods are

concordant if their eSNPs of the same gene are within 10kb. Considering the SNPs

signi�cant at permutation p-value α = 0.01 level and contrasting them to the genes

non-signi�cant (at α = 0.1 level). Then each gene can be assigned to one of 8

categories based on 3 factors, whether the eSNPs found by MatrixEQTL and

TReCASE are concordant, and whether the eQTL association is signi�cant for each

method. We observed the distribution of these 8 groups has large di�erence for a few

chromatin states (Figure 3.27). The eQTLs identi�ed by both method or by

TReCASE only are less likely located in the Weak Repressed PolyComb (ReprPCwk)

or Quiescent/Low (Quies) regions. We observed similar patterns in the results from

GTEx dataset (Figure 3.28).

Alternatively we considered a di�erent classi�cation from the same project in which

certain DNase enriched regions were classi�ed as promoter or enhancer. For these

genes we estimated the probability of the SNP falls into a promoter or enhancer

region based on the signi�cance level by each method and distance from gene to SNP

(Table 3.23). We observe that in both datasets stronger TReCASE p-value is
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Figure 3.27: Distribution of eQTLs (from 1KGP dataset) in di�erent chro-
matin states. For each of the 8 categories, we calculated the proportion
of eQTLs located in each of the 18 chromatin states. Only the 5 chro-
matin states with larger di�erence across the 8 categories are shown. The
groups we consider are: (1) TssA - Active TSS, (2) TssFlnkU - Flanking
TSS Upstream, (3) EnhA1 - Active Enhancer 1 and Active Enhancer 2, (4)
ReprPCwk - Weak Repressed PolyComb and (5) Quies - Quiescent/Low

associated with higher chance to be located within enhancer or particularly promoter

while the signal for MatrixEQTL is weaker to non-existent. This observation suggests

that incorporation of ASReC not only increases power, but also improves precision.

Table 3.23: Promoter or enhancer status by signi�cance and two method
concordance. Results of the logistic model �t with p-values and distance
as predictors. P-values are on negative log10 scale, distance is on log10 scale
with 1 added. The distance from the gene to a SNP within this gene is
considered to be 0.

1000 Genomes GTEx
promoter enhancer promoter enhancer
coef p-val coef p-val coef p-val coef p-val

Intercept -2.5 0 -3.21 8e-290 -3.7 4e-254 -3.6 8e-253
pmEQTL 0.01 0.37 -0.02 0.07 -5e-5 0.99 -0.02 0.07

pTReCASE 0.05 8e-5 0.02 0.001 0.011 0.03 0.01 0.0003
distance -0.06 1e-15 -0.005 0.58 -0.014 0.18 0.003 0.76
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Figure 3.28: The distribution of eQTLs (from GTEx dataset) in di�erent
chromatin states. Figure uses the same categories as in previous �gure.
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3.11 Analysis of brain tissues using version 8 GTEx data release

We applied our pipeline for multiple tissues from v8 GTEx data release and

updated the results for whole blood tissue.

We obtained access to 76bp paired RNA-seq reads (in BAM format) mapped to

hg38 reference of 670 whole blood samples (V8), and for 5 di�erent brain tissues with

counts listed in the Table 3.24. The RNA-seq data is available from at The NHGRI

AnVIL https://anvil.terra.bio.

We �ltered RNA-seq reads keeping only those uniquely mapped reads limiting only

to proper pairs, by the scanBamFlag function from R package Rsamtools.

Phased genotype calls (in VCF format) from whole genome sequencing of 838

samples (release V8, hg38) were obtained from NHGRI AnVIL. Based on this

genotype dataset, we created a list of heterozygous SNPs for each individual. Then

we applied the same approaches as for 1KPG data to collect Total Read Count

(TReC) and Allele-Speci�c Read Count (ASReC) per gene and per sample for

TReCASE and RASQUAL.

For analysis we used only the genes with at least 20% of samples having at least 10

total read counts. For allele-speci�c counts we added an extra check for genes with

evidence of con�icting SNP information: Alelle-speci�c counts for the whole gene

were removed in the following scenarios: (a) more then 5% of individuals had reads

had con�icting parental information, (b) 1% of individuals had con�icting parental

information and fraction of individuals with extreme allele-speci�c proportion (<0.10

or >0.90) exceeded 20% of the samples, we also removed all individual allele-speci�c

counts if this individual had at least 10% con�icting information allele-speci�c reads.

In the tissues we analyzed only a small fraction of genes had such con�icting

information: allele-speci�c information was lost for 19-38 genes.

Covariates data including 5 genotyping principal components, gender, PCR (an
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indicator whether sequencing protocol for the sample was PCR-based or PCR-free),

platform (a two factor variable for Illumina HiSeq 2000 and Illumina HiSeq X) and

PEER factors (for sample size N: 150 ≤ N < 250 - 30 factors were used, for

250 ≤ N < 350 - 35 factors, and for N ≥ 350 - 60 factors). These covariates were

downloaded from https://gtexportal.org/home/datasets. To adjust for di�erence

in number of reads per sample we included library depth - log number of reads. We

also considered shorter model with PEER factors excluded.

Signi�cant discoveries at q-value= 0.01 are provided in Table 3.24

Table 3.24: GTEX version 8 brain analysis results. Full model, including
all the covariates used in GTEx data analysis: library depth, PCR/PCR-
free �ag, platform, sex, 5 principal components and PEER factors and
short model excluding PEER factors. We presented the results for TRe-
CASE, MatrixEQTL with p-values corrected using our estimated permuta-
tion p-value scheme and MatrixEQTL results with p-values corrected using
EigenMT scheme. We applied q-value 0.01 cuto� to these corrected p-values

Tissue N.sam. N.genes TReCASE MatrixEQTL EigenMT
Full model

Caudate bg 194 21205 10671 3619 3189
Cerebellar 175 21581 11732 5181 4598
Cortex 205 21137 10527 5599 5024
Frontal Cortex 175 21016 10219 3210 2771
Nucleus abg 202 21395 10483 3720 3281

Short model
Caudate bg 194 21205 6876 1979 1681
Cerebellar 175 21581 7813 3130 2699
Cortex 205 21137 7146 2920 2563
Frontal Cortex 175 21016 6418 1860 1596
Nucleus abg 202 21395 7025 2109 1824

We can con�rm previously noted results: TReCASE is much more powerful both in

full and short model compared to simpler total read counts only based analysis. Using

EigenMT is conservative in each of these datasets as well. Including PEER factors

notably increases power which is consistent with GTEx results.

This analysis can easily be extended to other GTEx tissues.
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CHAPTER 4: STUDYING ADDITIVE, SEX AND TREATMENT
EFFECTS IN DIVERSE RECOMBINANT INBRED CROSS (RIX)

RNA-SEQ DATA

4.1 Introduction

Schizophrenia is a chronic brain disorder that a�ects about 1% of the population

worldwide, and it is associated with substantial loss in life expectancy and personal

costs. Haloperidol is the �rst generation antipsychotic treatment of choice. It is

known to have signi�cant side e�ects often a�ecting the patient behavior which leads

to frequent discontinuation of a treatment after relatively short term use.

Additionally, there is large inter-individual variation in both side-e�ects and

signi�cant heterogeneity in therapeutic response to antipsychotics with variety of

literature suggesting a role of genetic variation (Lerer et al. 2005, Lieberman et al.

2005, Patsopoulos et al. 2005, Bakker et al. 2006).

Consequently, a better understanding of haloperidol e�ects on organism could lead

to a safer and more e�cient use of existing drugs as well as lead to ideas about future

drug development.

Mouse model is appropriate in this study not only because mice are practical

replacement of human subjects, but also because it is well known that mice often

develop side-e�ects similar to human side-e�ects of haloperidol, including variety of

motoric disorders such as jaw tremors, tongue protrusions, and vacuous chewing

movements (Tomiyama et al. 2001, Turrone et al. 2002, Crowley et al. 2012; 2014).

This suggests that haloperidol e�ects on nervous system of mice and on nervous
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Figure 4.1: Experiment design. (a) Derivation of Recombinant Inbred (RI)
strain, (b) RIX cross production and haloperidol exposure.

system of humans are similar in at least some important regards.

A more recent study by Kim et al. (2018) using RNA sequencing of striatal tissue

from C57BL6/J mice chronically treated with haloperidol, observed an overlap

between the genetic variation underlying the pathophysiology of schizophrenia and

the molecular e�ects of haloperidol con�rming a potential of mouse model.

Strong strain-by-treatment interactions were observed for various phenotypes in

another recent study by Giusti-Rodríguez et al. (2019) using genetically diverse mice,

which points towards the need to evaluate haloperidol e�ects in diverse populations.

We intend to extend the analysis by studying treatment e�ects of haloperidol along

with additive genetic and sex e�ects in a diverse population of crosses between

recombinant inbred mouse strains. For these purposes in this study we also use use

genetically diverse Collaborative Cross (CC) recombinant inbred inter-cross (RIX)

mice (Threadgill et al. 2002, Churchill et al. 2004, Consortium et al. 2012).

The CC recombinant inbred (RI) lines were produced as illustrated in panel (a) of

Figure 4.1: eight founders ordered randomly, �rst went through funnel breeding and

then went through inbreeding process. Since recombination of eight founders happens
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independently, each RI at the end of multiple generations of inbreeding is nearly

inbred and genetically diverse. At the same time most of the locations of genome can

be traced back to one of the founders which makes an analysis using RIX crosses both

diverse and precise.

4.2 Data collection and processing

We used 24 recombinant inbred (RI) strains to generate 22 F1 hybrids (RIX) as

outlined in panel (b) of Figure 4.1. We target to have 6 treated and 6 control mice

per cross balanced between male and female mice leading to 3 mice per treatment-sex

combination.

Due to variety of issues at the mice production stage we got 232 mice, with number

of mice per cross summarized in Table 4.1. Most of the crosses included 12 animals,

which is close to the original 6 male and 6 female design; although some crosses had

fewer animals (one cross was composed of only 2 male and 2 female animals).

We obtained striatum tissue for these 232 mice, and collected 100bp stranded

single-end RNA reads. These reads were mapped using Tophat2 to the appropriate

cross pseudogenomes modi�ed from mm10 reference. The data was processed at a

lane level with each sample being split into up to 6 lanes. Quality control had shown

signi�cant issues with quality for a notable fraction of lanes, particularly in terms of

duplication level, fraction of mapped reads and, after summarizing reads at a gene

level, fraction of mapped reads among the reads that were mapped to an exon.

After several rounds of quality control we dropped the lanes with duplication level

greater than 40%, the fraction of mapped reads less than 75% or the fraction of reads

mapped to exons (among mapped reads) less than 65% (for details see Appendix C).

Such �ltering reduced number of lanes from 1,904 to 1,658, which, after collapsing the

data to the sample level, left us with 198 remaining unique samples. We also noted
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Table 4.1: Initial number of mice per cross and number of mice after QC
Filtering

cross all samples �ltered
Drug Placebo Drug Placebo

13140x3015 6 6 5 5
15156x1566 6 5 4 3
1566x8002 4 6 4 6
16188x3252 6 5 6 5
16211x13140 6 6 5 6
16211x559 5 6 4 4
16211x8043 4 3 4 3
16441x8005 6 6 6 6
3015x15156 6 6 5 5
3154x16211 5 6 3 6
3252x3154 6 6 3 4
5119x13067 6 6 5 6
5489x16188 2 2 1 2
559x8031 5 6 3 5
8005x16188 5 4 5 4
8005x8024 5 5 5 4
8008x8016 6 3 6 2
8016x8034 4 6 3 5
8026x8042 6 5 5 4
8042x8008 6 5 6 5
8042x8043 6 7 6 7
867x3252 6 5 4 3

121



some mismatches in labeling and used Y chromosome data to �x several sex

mismatches. After discarding 4 more mice for which we could not con�dently recover

cross information and one more mouse that looked as a clear outlier after principal

component analysis, performed on the normalized gene expression, we ended up with

the �nal set of 193 mice from 22 crosses available for further analysis. In this analysis

the typical cross still had about 4.5 mice per treatment-cross combination with one

cross having just 1 treated and 2 placebo mice.

4.3 Total Read Count Model

4.3.1 Modeling autosomes and X chromosome

For a gene of interest on autosomes, for each RIX we can infer founder status to be

one of eight original inbred strains. Given F - number of founders for the gene (up to

8), we denote the genotype of each gene from a RIX as AiAj where Ai, Aj denote a

particular founder allele (i, j = 1...F ) - with the �rst allele (Ai) coming from mother

and the second allele (Aj) coming from father. For more than a third of the genes F is

as high as 8, but for the rest of the genes it is lower: in the dataset of interest we

observed F as low as 3 with overall distribution provided in Table 4.2.

For the gene of interest, denote the total number of reads from samples as ys, with

s = 1,2, ...,N . We modeled ys as Negative-Binomial distribution with mean µs and

over-dispersion parameter φ.

We considered following covariates to be included in Equation 4.1: library depth,

treatment, founder information and principal components with corresponding

variables encoded as κs, sexs, trts, fnd1,s, ... fndF,s, PC1,s,... PCP,s, respectively. We

used the �rst P principal components calculated from the normalized gene expression

as covariates.

We assume founder e�ects to be additive for the purpose of this analysis, so for a
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RIX cross with founders AiAj (i ≠ j) covariates fndi,s and fndj,s equal to 1 and for a

cross with AiAi covariate fndi,s equals to 2. Consequently, for a given sample we can

have one or two non-zero values of fndf , s with all of them adding up to 2. To avoid

over-parametrization we remove the last founder category and treat it as a reference.

ys ∼ fNB(ys;µs, φ), for s = 1,2, ...,N,with (4.1)

log(µs) = β0 + βκ × κs + βsex × sexs + βtrt × trts +
F−1
∑
f=1

βf × fndf,s +
P

∑
k=1

βPCk,s × PCk,s

We test treatment, sex or additive e�ects with likelihood ratio test H0 ∶ βtrt = 0,

H0 ∶ βsex = 0 or H0 ∶ β1 = ...βF−1 = 0, respectively.

Modeling X chromosome

To model X chromosome we modify the de�ned above autosomal model by

accounting for the fact that in male mice only maternal chromosome is present. Thus

female mice are treated similarly to autosomal subsection model and male mice, any

cross with founders AiAj are treated as AiAi setting fndi,s to 2 and leaving all the

other founder variables to be 0.

4.4 Analysis

In this analysis we compared RIX results with those from Kim et al. (2018),

because that study analyzed haloperidol e�ect on C57BL/6J mice using similar tissue

(striatum) with a relatively large sample size of 28 mice.

We �tted the model to 13,523 genes with mean expression of at least 20 counts.

80% of the genes had at least 7 founders present and over 98% had at least 6

founders, but in a few cases number of founders could go to as little as 3 founders, as

presented in Table 4.2.
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Table 4.2: Distribution of number of founders in the analyzed genes

founders 3 4 5 6 7 8
genes 1 24 210 2439 6157 4692

Table 4.3: Number of signi�cant results by number of PCs

PC Additive Sex Treatment
5 10578 230 104
10 10661 330 196
15 9822 378 340
20 9075 531 372
25 8258 459 467
27 7542 297 514
30 7029 284 427

For the main analysis using all the mice jointly and incorporating the founder

information to capture additive genetic e�ect along with sex and treatment e�ects, we

considered using di�erent number of principal components. We observed that using

fewer principal components to �t RIX dataset, lead to smaller number of signi�cant

treatment or sex discoveries (at a q-value cuto� 0.10). We also observed that the

number of discoveries of cis-acting eQTLs in this analysis is consistent with previous

studies such as Crowley et al. (2015). Increasing the number of principal components

lead to higher number of signi�cant treatment and sex e�ects at a cost of reducing

number of signi�cant additive genetic e�ects as can be seen in Table 4.3. To �nalize

the number of principal components in our analysis we applied several methods

suggested in the literature on selection of number of principal components

(summarized in Appendix C Table 7). Using the consensus results of more

numerically stable Kaiser, Parallel analysis and Optimal Coordinates methods, we

ended up selecting 27 principal components for autosomal analysis and 20 for X

chromosome analysis as shown in Figure 4.2.

To evaluate our method performance with various number of principal components

included in the model, we checked for the overlap with Kim et al. (2018) dataset as a
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comparison. We observe that using 27 principal components (a consensus choice of

number of principal components) produces the best overlap as shown in Table 4.4.

Figure 4.2: Final subset of methods for PC selection: Kaiser method - se-
lecting PC's with eigenvalues bigger than 1, Parallel analysis - a sample
based adaptation of the population based Kaiser rule and Optimal Coor-
dinates - an extrapolation of the preceding eigenvalue by a regression line
between the eigenvalue coordinates and the last eigenvalue coordinates.

The overlap of the genes found to be signi�cant in RIX dataset and in Kim et al.

(2018) dataset is higher than one would expect to observe by chance. To assess

robustness of RIX results we included the results with lower number of principal

components included to the model as presented in Table 4.4. We observed that using

di�erent number of PCs we still observe higher overlap and we also can see that 27

principal components provide the highest number of discoveries as well as the best

overlap.

Overall, in Kim et al. (2018) dataset 78 (36 down/42 up-regulated or 54% of genes

being up-regulated) genes were found to be signi�cant at q-value cuto� 0.05 and 1,510

(729 down/781 up-regulated or 52% of genes being up-regulated) at q-value cuto�

0.10. While imbalance between up-regulated and down-regulated genes in Kim et al.
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Table 4.4: Between dataset overlap for expressed genes. RIX dataset �t-
ted with 15, 20 and 27 principal components compared to Kim et al. (2018)
results. At several q-value cuto�s we counted number of genes having signif-
icant treatment e�ect in reference Kim et al. (2018) dataset (Ref), number
of genes having signi�cant treatment e�ect in RIX dataset, number of genes
declared signi�cant by both methods, and provided an estimate of excess
number of signi�cant genes under assumption that both lists produced ran-
domly. The between method overlap is calculated using 12,589 genes that
were expressed in both datasets. Note, this excludes several genes that were
found to be signi�cant in RIX dataset, but were not tested in Kim et al.
(2018) dataset and several genes that were found signi�cant in Kim et al.
(2018) dataset, but were not tested in RIX dataset.

15 PC 20 PC 27 PC
q-val Ref. RIX Both Exc. RIX Both Exc. RIX Both Exc.
0.05 56 326 15 13.5 361 15 13.4 492 17 14.8
0.1 1264 541 129 74.7 578 123 65.0 774 164 86.3
0.15 3947 748 301 66.5 780 308 63.4 1013 395 77.4
0.2 5734 977 477 32.0 1028 504 35.8 1311 634 36.9
0.25 7116 1252 748 40.3 1349 803 40.5 1608 928 19.1

(2018) dataset is not statistically signi�cant, we noticed that RIX dataset has the

same direction of imbalance - more up-regulated than down-regulated genes, and in

RIX dataset this imbalance is statistically signi�cant irrespectively whether we select

signi�cant genes at 0.05 and 0.10 q-value cuto�s with various number of principal

components in the model. For the model with 27 principal components, we got 198

down versus 316 up-regulated genes at 0.05 q-value cuto�, which corresponds to 61%

of signi�cant genes being up-regulated. Applying two-sided binomial test we get a

highly signi�cant p-value 2e− 7, rejecting a hypothesis that percentage of up-regulated

genes is 50%. At 0.10 q-value cuto� we observed 342 down to 473 up-regulated genes

or 58% of signi�cant genes being up-regulated and corresponding p-value 5e − 6.

This result holds even if we include as little as 15 PCs: we still observed more

up-regulated than down-regulated genes - 309 versus 260 genes which constitutes 54%

of signi�cant genes being up-regulated. This percentage of up-regulated genes is still
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Figure 4.3: E�ect size of the genes found to be signi�cant (a) treatment and
(b) sex e�ects. (a) Treatment e�ect - comparing haloperidol versus placebo,
(b) Sex e�ect - male expression vs female expression

signi�cantly di�erent from 50% (two sided binomial test yields p-value 0.044). At a

stronger q-value cuto� 0.05 we observed 56% of signi�cant genes being up-regulated

which again is signi�cantly di�erent from 50% (p-value 0.023). Thus, we conclude

that RIX dataset strongly indicates that haloperidol tends to up-regulate genes.

Using only the genes that were declared signi�cant in both datasets (at q-value

cuto� 0.10) we considered a �nal cross-check by looking at the direction of the

haloperidol e�ect. Figure 4.4 shows that both in autosomes and in X chromosome

RIX and Kim et al. (2018) datasets are generally in agreement regarding the direction

of the haloperidol e�ect.

4.5 Pathway categories discussion

We performed a pathway analysis of genes targeting categories from GO database.

We separately considered the genes that were either down-regulated or up-regulated

upon haloperidol treatment using GOrilla (http://cbl-gorilla.cs.technion.ac.il); for

genes with a q-value < 0.10 and q-value < 0.05). Using GOrilla we were able to
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Figure 4.4: Between dataset direction consistency (a) autosomes, (b) X
chromosome using genes with haloperidol e�ect signi�cant at q-value cuto�
0.10 in both datasets. Figure is based on log fold change estimates for
129 autosomal and 3 X chromosome genes with circle size proportional to
corresponding −log10(q − value) in RIX dataset.

examine processes, functions, and components associated with the up or

down-regulated genes. In this analysis we see mostly up-regulated categories: none of

down-regulated categories was found to be signi�cant at FDR 0.05 level with couple

signi�cant at FDR 0.10 level. At the same time for up-regulated categories we

observed 43 component categories (Table 4.5) and 10 process categories (Table 4.6).

No GO Function terms passed FDR correction for either up or down-regulated genes.

For up-regulated genes (q-value < 0.05), the top terms for GO Component included

synapse part, neuron part, plasma membrane, vesicles, neuronal cell body, and neuron

projection, suggesting that haloperidol may be altering neuronal morphology and/or

density. The top terms associated with GO Process are related to cell secretion,

transmembrane transporter activity, ion transport, and synaptic plasticity, which

suggests that haloperidol is altering synaptic plasticity and cell signaling, via

alterations in channel expression, localization, or modulation.

We observed similar pattern with up-regulated genes creating more signi�cant
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Table 4.5: Signi�cant GO Component categories (all up-regulated)

GO Term Description FDR Enr. Genes
GO:0044456 synapse part 1.62e-9 2.27 82
GO:0097458 neuron part 2.93e-9 1.89 115
GO:0005886 plasma membr. 5.42e-8 1.58 161
GO:0016020 membr. 1.70e-6 1.31 261
GO:0031410 cytoplasmic vesicle 3.82e-5 1.76 86
GO:0097708 intracellular vesicle 3.52e-5 1.75 86
GO:0099503 secretory vesicle 3.85e-5 2.74 33
GO:0043025 neuronal cell body 3.85e-5 2.32 44
GO:0043005 neuron projection 4.17e-5 1.85 72
GO:0044433 cytoplasmic vesicle part 5.84e-5 2.41 39
GO:0031982 vesicle 5.39e-5 1.7 88
GO:0120025 plasma membr. bounded cell proj. 9.58e-5 1.66 91
GO:0045202 synapse 9.18e-5 1.85 66
GO:0042995 cell projection 1.00e-4 1.59 102
GO:0044297 cell body 1.88e-4 2.1 46
GO:0120038 plasma membr. bounded cell proj.p 8.12e-4 1.64 77
GO:0044463 cell projection part 7.64e-4 1.64 77
GO:0030133 transport vesicle 7.80e-4 2.81 23
GO:0070382 exocytic vesicle 7.45e-4 3.08 20
GO:0044425 membr. part 1.37e-3 1.28 193
GO:0030425 dendrite 1.47e-3 2.12 36
GO:0008021 synaptic vesicle 1.57e-3 3.12 18
GO:0044459 plasma membr. part 1.79e-3 1.5 95
GO:0098793 presynapse 1.86e-3 2.62 23
GO:0098590 plasma membr. region 3.10e-3 1.75 53
GO:0097060 synaptic membr. 3.49e-3 2.26 28
GO:1990761 growth cone lamellipodium 3.65e-3 26.66 3
GO:0098563 intr. comp. of syn. vesicle membr. 5.43e-3 4.37 10
GO:0030141 secretory granule 8.77e-3 2.68 18
GO:0042734 presynaptic membr. 1.00e-2 4.04 10
GO:0033267 axon part 1.18e-2 2.02 30
GO:0030054 cell junction 1.20e-2 1.62 56
GO:0030659 cytoplasmic vesicle membr. 1.23e-2 2.77 16
GO:0012506 vesicle membr. 1.72e-2 2.59 17
GO:0005938 cell cortex 2.05e-2 2.74 15
GO:0044306 neuron projection terminus 2.90e-2 2.89 13
GO:0005576 extracellular region 3.07e-2 1.65 45
GO:0030139 endocytic vesicle 3.22e-2 2.84 13
GO:0098831 presynaptic active zone cyto. comp. 3.40e-2 6.66 5
GO:0005905 clathrin-coated pit 3.95e-2 3.95 8
GO:0098805 whole membr. 4.06e-2 1.77 34
GO:0030285 int. comp. of syn. vesicle membr. 4.46e-2 4.34 7
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Table 4.6: Signi�cant GO Process categories (all up-regulated)

GO Term Description FDR Enr. Genes
GO:0032879 reg. of localization 2.47e-3 1.55 123
GO:0065008 reg. of biological quality 4.19e-3 1.46 140
GO:0022898 reg. of transmembr. transp. act. 3.66e-2 2.89 22
GO:0003008 system process 3.06e-2 1.82 56
GO:1903530 reg. of secr. by cell 2.52e-02 2.02 43
GO:0051049 reg. of transp. 2.40e-2 1.59 84
GO:0032409 reg. of transp. act. 2.91e-2 2.78 22
GO:0032412 reg. of ion transmembr. transp. act. 2.63e-2 2.86 21
GO:0051046 reg. of secretion 2.54e-2 1.95 44
GO:0043269 reg. of ion transport 2.70e-2 2.02 40

pathways than down-regulated genes with DAVID (https://david.ncifcrf.gov)

Functional Annotation Analysis. Though DAVID was less powerful, it also provided

an additional useful feature of clustering categories together. We observed that the

most signi�cant of these cluster categories were often haloperidol related (such as

Sprouty2) and, even for the clusters with less signi�cant enrichment, we observed very

consistent results: if a cluster was enriched with up-regulated genes, it was either

completely absent or severely depleted when the similar analysis was applied to

down-regulated genes and if a cluster was enriched with down-regulated genes, it

would be depleted with up-regulated genes (for details see Appendix C Table 8). We

consider such consistent enrichment to be an additional way to con�rm consistency of

the genes discovered in this study, including the categories that weren't found to be

signi�cant at an individual level in DAVID analysis.

4.5.1 Locations of discovered e�ects

Illustration of the locations of the genes with signi�cant (at q-value 0.10) e�ects

doesn't show obvious spatial patterns (Figure 4.5). The genes with the most

signi�cant additive e�ect include Rpl18-ps1 on chromosome 1, Atp6v0c on

chromosome 17 and Scg5 on chromosome 2. For sex e�ect top genes are Akr1e1 on
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Figure 4.5: Positions of discovered e�ects. Golden dots represent genes with
q-values signi�cant at the level of 0.01, while black represent non-signi�cant
genes.

chromosome 13, Ptgfrn on chromosome 3, A2m on chromosome 6 and Pisd-ps1 on

chromosome 11. The two genes with the most signi�cant haloperidol e�ect are Strip2

on chromosome 6 and Tomm70 on chromosome 16

4.6 Conclusions

In conclusion we show that while using RIX is a more complicated task, it is also

quite productive: we were able to con�rm some of the previous results: Kim et al.

(2018) in terms of haloperidol e�ect and Crowley et al. (2015) in terms of additive

genetic e�ect. We also got more power and were able to test for imbalance between
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haloperidol up-regulated and down-regulated genes, for which Kim et al. (2018)

dataset had shown direction concordant to RIX, but was not statistically signi�cant

due to lower power to discover genes signi�cantly a�ected by treatment. In addition,

this analysis identi�ed signi�cant haloperidol e�ect for 522 genes at q-value 0.05 (827

at q-value 0.10) unobserved in previous Kim et al. (2018) dataset.

Attempt to analyze haloperidol e�ect for each cross separately proved to be

extremely unstable to outliers and didn't replicate previous results.

RIX dataset also produced more consistent results in pathway analysis showing

more signi�cant results in up-regulated pathway categories. Additional look at the

top terms associated with GO Process suggests that haloperidol is altering synaptic

plasticity and cell signaling, via alterations in channel expression, localization, or

modulation.
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APPENDIX A: TECHNICAL DETAILS FOR CHAPTER 2

A.1 eQTL consistency with respect to GEUVADIS dataset

Overall consistency of 30 trios additive e�ects vs E-GEUV-1 dataset (Figure 9)

which is likely to be due to the problems with SNP genotypes for those samples.

Figure 6: Consistency of additive e�ects in 30 trios vs 227 samples from
E-GEUV-1 dataset

Note, we do observe that either using smaller dataset or larger dataset (for example,

in our two data sets with very di�erent sample sizes > 200 vs. 32), we observe similar

distribution of distances from a SNP to transcription start of a gene (Figure 7).
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Figure 7: Distance to transcription start site: left - 227 samples from E-
GEUV-1 dataset, right - 30 children from trios dataset. Genes on positive
or negative strands were plotted separately

A.2 Additional simulations

A.2.1 Checking whether proposed algorithm converges to the proper

maximum

One of the concerns was whether our algorithm converges to the proper place. We

considered two additional checks whether algorithm converges to the maximum. To

do this we took one of the pro�les of original simulations (with additive genetic e�ect

and parent of origin e�ects values 1) and added extra layer of re�tting:

First, since in our algorithm we �t 8 parameters, grid search around local maximum

would be either too consuming or too imprecise; we considered a following alternative

simulation:

1. Perform initial run according to our initial scheme. This run gives us a good

impression of variability of the parameters for a given sample size and we
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compare these maximum points to the re�ts produced in the next steps.

2. Estimate standard deviation for each of the parameters typical for such sample

size (Table 7). This would give us a reasonable distribution to sample initial

values around local maximum.

3. Randomly sample 1000 points around local optimum using MLE from the �rst

step and standard deviations from the second step from normal distribution and

re�t the model from those starting points. If they lead to a di�erent location

also check likelihood if it is comparable. With this step we avoid running the

8-dimensional grid around local optimum and can see whether we see any signs

of optimizing at the wrong place.

For 10,000 datasets 1000 re-sampling for each all the samples converged in the

vicinity of original �t (Table 8). We also don't see potential source for bias - on

average deviation of parameter estimates from re�tted iterations are located very

close to the �ts from original scheme.

Table 7: Standard deviations for all 8 parameters in an initial simulation
used to select initial values

φ ϕ b0 b1 γ0 β1 β2 βκ
sd 0.26 0.47 0.31 0.31 0.34 0.738 0.33 0.17

Second approach to evaluate how likely we were to end up in some local maximum

was to choose initial values in a less informed fashion than initially suggested and to

see whether we would get a di�erent and better result. For each of 10,000 simulations

we �tted 100 more models with di�erent initial values selected from a multivariate

normal distribution around mean 0 and with standard deviations (Table 7) produced

to mimic observed standard deviations for each parameter for such sample size

multiplied by 3.
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Table 8: Di�erences of re�tted likelihoods, b0's and b1's from initial likelihood
�t, b0 and b1

deviation e�ect size min 1% 50% 99% max

log-lik - -1.9e-02 -5.1e-04 -6.1e-11 3.0e-04 1.5e-02

b0 1.0 -4.7e-02 -6.1e-03 1.4e-08 5.2e-03 3.5e-02

b1 1.0 -9.7e-03 -7.7e-04 1.5e-08 9.8e-04 7.8e-03

log(φ) -0.3 -1.8e-02 -2.1e-03 -3.9e-09 1.5-03 1.8e-02

log(ϕ) -0.3 -3.1e-02 -3.3e-03 -1.2e-07 2.4e-03 3.5e-02

γ0 3.5 -3.5e-02 -5.0e-03 -7.2e-09 5.9e-03 4.7e-02

β1 2.1 -4.7e-02 -2.4e-03 1.5e-11 2.4e-03 3.7e-02

β2 0.05 -1.8e-02 -1.1e-03 3.4e-12 1.1e-03 1.5e-02

βκ 0.5 -6.9e-03 -6.8e-04 -7.6e-10 6.4e-04 1.3e-02

As result of those 100 reruns for 10,000 simulated datasets we've observed 353 cases

when one of 100 runs deviated from the consensus location (our initial scheme always

landed at the same location as consensus). Each of deviating runs also had inferior

likelihood which suggests that poorly chosen initials may reduce stability of algorithm

convergence. However, with reasonably selected initial values we didn't observer any

cases when algorithm didn't converge to inferior location.

A.3 Additional real data analysis results

A.3.1 E�ect locations

Figure 8: Positions of discovered parent-of-origin e�ects.
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APPENDIX B: TECHNICAL DETAILS FOR CHAPTER 3

B.1 Additional data preparation details

Creating the lists of heterozygous SNPs for each sample

We obtained the list of heterozygous SNPs for each sample from the results of

imputation. The main output �le (other �les have additional extensions to the name

as _haps, _allele_probs etc) has 3 columns with genotype probabilities per SNP,

which represent the probability of observing genotype G = 0, 1, or 2 respectively. We

selected heterozygous locations (i.e. with high probability of G = 1) to output phased

genotypes of these locations.

Removing abnormal samples in 1000 Genomes dataset

Once we got a list of heterozygous SNPs, we extracted allele-speci�c reads for two

haplotypes using R function extractASReads from R package asSeq (Sun 2012).

After processing E-GEUV-1 dataset we observed that some samples had abnormal

number of genes having majority of reads classi�ed as one or the other

haplotype (Figure 9) which is likely to be due to the problems with SNP genotypes

for those samples.
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Figure 9: Illustration of a bad vs a good sample: (a) a sample with too
many genes ending up having majority of reads from one of haplotypes (b)
a sample with reasonable distribution of gene level allele speci�c counts
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B.1.1 RASUQAL in�ation in GTEx data

After permutation of whole blood in GTEx data we see in�ation of a similar style

to what we've observed in 1000 Genome dataset dependent on number of fSNPs as

can be seen in Figure 10
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Figure 10: RASQUAL in�ation for permuted GTEx dataset. Figure illus-
trates both generally higher number of fSNPs and in�ation of RASQUAL
depending on number of fSNPs
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B.1.2 Additional cross-method comparisons

Comparing the methods vs full sample TReCASE results we classi�ed genes to be

signi�cant at q-value 0.01 and compare both fraction of recovered results and fraction

of false positives (Table 9)

Table 9: Comparing to TReCASE results

Power FDR
N.samp MatrixEQTL TReC TReCASE MatrixEQTL TReC TReCASE
35 0 0.02 0.05 - 0.26 0.19
70 0.03 0.06 0.14 0.14 0.09 0.08
140 0.19 0.24 0.45 0.06 0.05 0.06
280 0.58 0.67 1 0.05 0 0

Using TReC �t of 280 samples as gold standard (Table 10)

Table 10: Comparing to TReC results

Power FDR
N.samp MatrixEQTL TReC TReCASE MatrixEQTL TReC TReCASE
35 0 0.03 0.07 - 0.36 0.28
70 0.04 0.08 0.18 0.15 0.11 0.17
140 0.27 0.34 0.54 0.08 0.08 0.23
280 0.81 1 1 0.09 0 0.33

Using MatrixEQTL �t of 280 samples as gold standard (Table 11)

Table 11: Comparing to TReC results

Power FDR
N.samp MatrixEQTL TReC TReCASE MatrixEQTL TReC TReCASE
35 0 0.03 0.07 - 0.37 0.28
70 0.05 0.09 0.2 0.09 0.13 0.2
140 0.31 0.37 0.57 0.07 0.12 0.28
280 1 0.91 0.95 0 0.19 0.42
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APPENDIX C: TECHNICAL DETAILS FOR CHAPTER 4

C.1 Additional information on quality control and �ltering

C.1.1 Initial QC �ltering

We only considered samples that passed 3 cuto�s: �ltering by duplication (at most

40% duplication), percentage of mapped reads (at most 25% reads not mapping) and

percentage of mapped reads being mapped to a gene (at most 35% not being mapped

to a gene) 11.

Figure 11: Quality control �lters: top-right corner with green color was
deemed adequate to proceed

These criteria lead to �ltering out 34 samples (CEGS001, CEGS002, CEGS003,

CEGS004, CEGS005, CEGS006, CEGS007, CEGS008, CEGS009, CEGS010,

CEGS011, CEGS012, CEGS013, CEGS014, CEGS015, CEGS016, CEGS017,

CEGS018, CEGS021, CEGS022, CEGS023, CEGS026, CEGS028, CEGS031,

CEGS034, CEGS035, CEGS038, CEGS040, CEGS055, CEGS067, CEGS070,

CEGS071, CEGS235, CEGS280).
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C.1.2 Extra �ltering

At the cross recovery step we �ltered out four more samples CEGS072, CEGS178,

CEGS274 and CEGS253.

Finally we removed sample CEGS057 as an obvious outlier which can be seen in

Figure 12. This was a sample for which lane level quality control results were on the

boundary - several of the lanes were removed at in the �rst QC step and the lanes

that remained were close to the cuto�s we de�ned as exclusion criteria in the �rst QC

step. This gives another con�rmation that 34 samples removed at �rst QC step were

unreliable.

C.1.3 Principal Component Analysis

Principal Component selection is a procedure known to have many potential issues.

As a part of the analysis we performed multiple methods of selection in order to get

an idea about the range of the number of principal components that would be

achieved by multiple methods. We found nFactors (Raiche 2010) package to be very

useful in this respect as it combines quite a few of the methods known in the

literature, including Bartlett Test (Bartlett 1950), Lawley Test (Lawley 1956),

Anderson Test (Anderson 1963), Kaiser rule (Kaiser 1960), the Parallel Analysis

(PA) (Horn 1965), and the Scree test (Cattell 1966) as well as Gorsuch scree

test (Gorsuch and Nelson 1981) and Bentler Test (Bentler and Yuan 1998). Finally,

this package also adds two more measures - acceleration factor (AC) - a numeric

solution to the elbow of a scree plot and optimal coordinates (OC) giving an

extrapolation of the preceding eigenvalue by a regression line between the eigenvalue

coordinates and the last eigenvalue coordinates.

We found that these methods can produce extremely di�erent results with more

parsimonious methods being acceleration factor (2 principal components) and
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Table 12: Summary of PC methods. Number of principal components se-
lected by each of the methods.

chr. AC Gorsuch Bentler Bartlett Lawley Anderson Kaiser PA OC
auto 2 3 50 12-21 12-22 18-24 27 27 27
X 1 3 188 18-19 18-19 20-33 20 20 20

Gorsuch scree test (3 principal components). Bentler Test was on the other side of the

range suggesting using 50 principal components.

Some of the classic methods such as Bartlett, Lawley and Anderson tests tended to

be sensitive to number of eigen-values supplied to the procedure producing suggested

numbers of principal components in 12-21 range for Bartlett test, 12-22 for Lawley

test and 18-24 for Anderson test.

Finally, Kaiser rule, Parallel analysis and Optimal Coordinates tended to agree the

most suggesting using 27 principal components for autosomes.

We observed similar pattern when we checked X-chromosome. Overall results can

be summarized in a Table 12

C.1.4 Additional Pathway Analysis

We have looked at the top pathway clusters produced by DAVID Analysis applied

to the gene lists from discussed datasets. All of the pathway clusters in RIX dataset

were consistently either enriched among up-regulated genes or enriched among

down-regulated genes as presented in Table 13: we didn't observe among presented

categories any to be enriched both among up and down-regulated at the same time

and we generally saw higher enrichment for pointed (only up-regulated or only

down-regulated) subset of the genes then in overall list of genes. For the reference we

applied the same procedure to 729 down and 781 up-regulated genes from Kim et al.

(2018). In RIX dataset we saw more categories enriched among up-regulated genes 18

versus 8 among down-regulated - which is concordant with overall results, other
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Table 13: Up or down-regulated pathway clusters in RIX and comparable
groups in Kim et al. (2018) dataset. Searching for pathways among down-
regulated genes, presented �rst, and up-regulated genes presented second.
For reference we always provide overall enrichment score and in parenthesis
up-regulated/down-regulated scores. If in Kim et al. (2018) we observed
similar pathway we provide it in the Ref column. Dash represents that
pathway cluster was not present at all.

Cluster RIX Ref.
Sprouty/SRA -/2.13 -/2.15
EVH1/WH1 -/1.54 1.62./2.15
Rotamase/isomerase act -/1.45 -/-
Neuropeptide -/1.43 -/-
Microtubule 0.04/1.19 0.42/0.76
RGS -/1.18 -/-
protein folding -/1.17 -/0.35
Tubulin -/1.17 -/-
Secreted/Glycoprotein 3.9/0.47 1.75/2.22
Calmodulin-binding 2.51/- 0.37/-
Membrane 2.36/0.15 0.02/2.22
Synapse 2.05/0.3 0.34/5.8
Sodium:neurotransmitter symporter 1.94/- -/-
VWFC 1.82/- -/-
growth cone; dendritic spine 1.82/- -/-
Dilated cardiomyopathy 1.53/- 0.42/1.16
Exocytosis 1.43/- -/-
Ras-GEF 1.39/- 0.32/-
cGMP 1.29/- -/-
TSP1 1.26/- -/0.08
protein kinase 1.19/- 0.15/1.65
ECM-receptor interaction 6 1.12/- -/-
Prenylation 1.1/- -/-
coronary vasculature development 1.07/- -/-
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Table 14: Signi�cant categories in RIX using DAVID

category description FDR Enrich. Genes
Glycoprotein . 0.0025 1.59 83
Signal . 0.001 1.60 78
glycosylation site N-linked (GlcNAc...) 0.020 1.58 104
Disul�de bond . 0.033 1.55 54
signal peptide . 0.061 1.59 62
Secreted . 0.031 1.90 32
GO:0005576 extracellular region 0.060 1.84 34
Calmodulin-binding . 0.030 3.84 11
Membrane . 0.0037 1.29 150
GO:0016020 membrane 0.067 1.21 152
GO:0045202 synapse 0.030 2.27 25
GO:1990761 growth cone lamellipodium 0.091 40.40 3

pathway analysis results and Kim et al. (2018) results. Top signi�cant categories from

this analysis are presented in Table 14. The only individually signi�cant categories

were found among up-regulated genes.

Several enriched clusters were found in both RIX and Kim et al. (2018) dataset and

matched the direction (such as Sprouty and EVH1), however some of them didn't

match (Membrane, Synapse, VWFC, Dilated cardiomyopathy, protein kinase), didn't

show consistent enrichment (Glycoprotein) or were absent (Rotamase, Neuropeptide,

RGS, protein folding, Tubulin, dendritic spine, TSP1, Calmodulin-binding,

Microtubule). Also there are some categories that were found in Kim et al. (2018)

dataset that are not present in our analysis (particularly Zink-�nger, Potassium

channel, C2, circadium rhythm, HECT, secretion, ubiquitin protein, BTB,

GABAergic synapse, Pleckstrin homology).

Literature search shows a lot of connections to schizophrenia related research for

categories found by RIX dataset. For example "Decreased expression of Sprouty2 in

the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder: a correlation

with BDNF expression" by Pillai (2008) and "Pleckstrin homology domain containing

6 protein (PLEKHA6) polymorphisms are associated with psychopathology and
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response to treatment in schizophrenic patients" by Spellmann et al. (2014).
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Figure 12: PC outlier: �nal sample to be removed
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