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Statistical model for one reciprocal cross (autosome)

For a particular gene of interest, let ni be the total number of AS reads in the i-th sample,

and let niB be the number of AS reads mapped to strain B in the i-th sample. We model

niB by a beta-binomial distribution, which is an extension of a binomial distribution to

allow for possible over-dispersion. Specifically, let niB follow a binomial distribution with the

number of trials ni, and the probability of success pS. If pS follows a beta distribution with

parameters α and β, the resulting distribution for niB is a beta-binomial distribution

h(niB;ni, αi, βi) =

(
ni
niB

)
B(niB + αi, ni − niB + βi)

B(αi, βi)
. (1)

For ease of modeling, we adopt a commonly used strategy to parameterize a beta-binomial

distribution by πi = αi/(αi + βi) and φ = 1/(αi + βi) (?):

h(niB;ni, πi, φ) =

(
ni
niB

)∏niB−1
k=0 (πi + kφ)

∏ni−niB−1
k=0 (1− πi + kφ)∏ni−1

k=1 (1 + kφ)
, (2)

where πi is the expected proportion of AS reads from strain B. If there is no over-dispersion,

then φ = 0 and niB follows a binomial distribution. We further model the relation between

πi and paternal/maternal status by

log

(
πi

1− πi

)
= b0 + b1xi (3)

where xi = 1 if strain B is the paternal strain, and xi = −1 if strain B is the maternal

strain. Now we can test for strain effect and parent of origin effect as follows

Strain effect: H0 : b0 = 0 vs. H1 : b0 6= 0 (4)

Parent of origin effect: H0 : b1 = 0 vs. H1 : b1 6= 0 (5)

Let µ
(p)
B and µ

(m)
B be the expected expression of strain B in one cell when it is the

paternal and maternal allele, respectively. Similarly define µ
(p)
A and µ

(m)
A . Then the above

parameterization can be written as

log
(
µ
(p)
B /µ

(m)
A

)
= b0 + b1, and log

(
µ
(m)
B /µ

(p)
A

)
= b0 − b1, (6)
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Therefore

b0 = log


√√√√µ

(p)
B µ

(m)
B

µ
(p)
A µ

(m)
A

 and b1 = log


√√√√ µ

(p)
B µ

(p)
A

µ
(m)
B µ

(m)
A

 . (7)

We further assume

µ
(p)
B

µ
(p)
A

=
µ
(m)
B

µ
(m)
A

= exp(b0), and
µ
(p)
B

µ
(m)
B

=
µ
(p)
A

µ
(m)
A

= exp(b1).

Next we consider the modeling of Total Read Counts (TReC). Throughout this paper, we

denote a cross by Maternal Strain × Paternal Strain. We consider four groups of mice: inbred

strain A (A×A), inbred strain B (B×B), F1 cross of A×B, and F1 cross of B×A. Without

any other covariates, the expected expression (in terms of Total Read Counts (TReC)) in

the four groups of mice can be written as

µA×A = µ
(m)
A + µ

(p)
A = µ

(p)
A {1 + exp(−b1)} , (8)

µB×B = µ
(p)
B + µ

(m)
B = µ

(p)
A {exp(b0) + exp(b0 − b1)} , (9)

µB×A = µ
(p)
A + µ

(m)
B = µ

(p)
A {1 + exp(b0 − b1)} , (10)

µA×B = µ
(p)
B + µ

(m)
A = µ

(p)
A {exp(b0) + exp(−b1)} . (11)

There is a linear dependence among µA×A, µB×B, µA×B, and µB×A: µA×A + µB×B = µA×B +

µB×A. Thus µA×A, µB×B, µA×B, and µB×A only account for three independent observations.

Furthermore, in real data analysis, we need to consider at least one covariate, the total

number of reads per sample, denoted by κi. Therefore the total read counts themselves vary

across samples due to other covariates and only the relative ratios among µA×A, µB×B, µA×B,

and µB×A are identifiable. Let ηi be the log ratio of the TReC of the i-th sample vs. the

TReC of a “comparable” sample, except that it is from strain A. Here “comparable” means
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all the covariates except strain have the same values. From the above equations, we have

ηi =



0 if sample i ∈ A× A

b0 if sample i ∈ B ×B

−b1 + log {1 + exp(b0 + b1xi)} − log {1 + exp(−b1)} if sample i ∈ A×B

log {1 + exp(b0 + b1xi)} − log {1 + exp(−b1)} if sample i ∈ B × A

Finally, we can model the TReC ni by a negative binomial distribution with mean µi and

over-dispersion parameter ϕ:

ni ∼ NB(µi, ϕ), log(µi) = β0 + β1κi + ηi. (12)

Statistical model for one reciprocal cross (X chromosome)

The above formula are for a single cell. We apply the formula to RNA-seq data from

autosome while implicitly assuming the RNA-seq data are extracted from a homogenous

cell population. However, this assumption is not valid for X chromosome. In each cell, only

one copy of the X chromosomes is expressed. In F1 mice of AxB, let τi,A and τi,B be the

proportions of cells where the A allele of X chromosome is expressed at individual i. Thus

τi,A + τi,B = 1. Let u
(p)
i,B and u

(m)
i,B be the expression of B allele (across a large number of cells)

at the i-th individual when B allele is paternal or maternal allele, respectively. Similarly we

can define u
(p)
i,A and u

(m)
i,A . Let ρA be the escaping ratio of the gene expression for allele A while

the inactivated copy of X chromosome is from strain A. Then for individual i of A×B:

log

(
u
(p)
i,B

u
(m)
i,A

)
= log

(
τi,Bµ

(p)
B + ρBτi,Aµ

(p)
B

τi,Aµ
(m)
A + ρAτi,Bµ

(m)
A

)
= log

(
τi,B + ρBτi,A
τi,A + ρAτi,B

)
+ b0 + b1, (13)

and for individual i of B × A,

log

(
u
(m)
i,B

u
(p)
i,A

)
= log

(
τi,Bµ

(m)
B + ρBτi,Aµ

(m)
B

τi,Aµ
(p)
A + ρAτi,Bµ

(p)
A

)
= log

(
τi,B + ρBτi,A
τi,A + ρAτi,B

)
+ b0 − b1. (14)

(15)

Then for a single cell from X chromosome, the expected expression (in terms of Total Read
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Counts (TReC)) in the four groups of mice can be written as

ui,A×A = 0.5µ
(m)
A + .5ρAµ

(m)
A + 0.5µ

(p)
A + .5ρAµ

(p)
A

= 0.5(1 + ρA)µ
(p)
A {1 + exp(−b1)} ,

ui,B×B = 0.5µ
(m)
B + .5ρBµ

(m)
B + 0.5µ

(p)
B + .5ρBµ

(p)
B

= 0.5(1 + ρB)µ
(p)
A {exp(b0) + exp(b0 − b1)} ,

ui,A×B = τi,Bµ
(p)
B + ρBτi,Aµ

(p)
B + τi,Aµ

(m)
A + ρAτi,Bµ

(m)
A

= µ
(p)
A {(τi,B + ρBτi,A) exp(b0) + (τi,A + ρAτi,B) exp(−b1)} ,

ui,B×A = τi,Bµ
(m)
B + ρBτi,Aµ

(m)
B + τi,Aµ

(p)
A + ρAτi,Bµ

(p)
A

= µ
(p)
A {τi,A + ρAτi,B + (τi,B + ρBτi,A) exp(b0 − b1)} .

Note that in the above equation, we assume that in inbred mouse strains, 50% of activated

X chromosomes are from maternal strain and 50% of activated X chromosomes are from

paternal strain with same escaping inactivation ratio.

Then we have

ηl =



0 if sample l ∈ strain A

b0 + log
{

1+ρB
1+ρA

}
if sample l ∈ strain B

−b1 + log
{

1 + (τ̂iB/τ̂iA+ρB)
(1+ρAτ̂iB/τ̂iA)

exp(b0 + b1xi)
}

+ log
{

1+ρAτ̂iB/τ̂iA
1+ρA

}
+ log {2τ̂iA} − log {1 + exp(−b1)} if sample l ∈ A×B

log
{

1 + (τ̂iB/τ̂iA+ρB)
(1+ρAτ̂iB/τ̂iA)

exp(b0 + b1xi)
}

+ log
{

1+ρAτ̂iB/τ̂iA
1+ρA

}
+ log {2τ̂iA} − log {1 + exp(−b1)} if sample l ∈ B × A

Statistical model for ASE in three reciprocal crosses

Now we extend our notation with superscript (AB) indicating a cross from strains A and B,

could be either A×B or B ×A. Denote the three strains as A, B, and C. For strain effect,

we have three situations:
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(S1) there is no strain effect:

bAB0 = bBC0 = bAC0 = 0.

(S2) there is consistent strain effect only:

bAB0 6= 0, bBC0 6= 0, and bAC0 = bAB0 + bBC0 .

(S3) there is in-consistent strain effect:

bAB0 6= 0, bBC0 6= 0, and bAC0 6= 0.

Similarly, there are three situations for parent of origin effect:

(P1) there is no parent of origin effect:

bAB1 = bBC1 = bAC1 = 0.

(P2) there is consistent parent of origin effect:

bAB1 = bBC1 = bAC1 6= 0.

(P3) there is inconsistent parent of origin effect:

bAB1 6= 0, bBC1 6= 0, and bAC1 6= 0.

Different hypotheses can be tested by comparing models under different situations. For

example, if we want to ask whether strain background affects the parent of origin effect. We

can compare models of situation (P2) vs. situation (P3). While choose of the the situations

(S1), (S2), and (S3) for strain effect.

Similarly to the previous section, the total read count (TReC) of strains A, B, C, and all

the 6 reciprocal crosses can be modeled by negative binomial distributions, after introducing

parameters β0, β1, b2 and ϕ.

[Table 1 about here.]
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Table 1
Power Analysis

b0 b1 b2 A×B B × A TReC ASE TReCASE
(RC) (RCI) (RC) (RCI)

0 0 0 2 2 0.009 0.016 0.051 0.056 0.051
0 0 0.3 2 2.7 0.004 0.012 0.054 0.054 0.054
0 0.3 0 1.7 2.3 0.008 0.017 0.199 0.193 0.202
0 0.3 0.3 1.7 3.2 0.009 0.013 0.203 0.209 0.219
0.3 0 0 2.3 2.3 0.032 0.080 0.214 0.251 0.311
0.3 0 0.3 2.3 3.2 0.020 0.078 0.215 0.249 0.305
0.3 0.3 0 2 2.8 0.040 0.095 0.422 0.464 0.525
0.3 0.3 0.3 2 3.8 0.042 0.111 0.382 0.431 0.490


