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ABSTRACT
Genomewide multiple-loci mapping can be viewed as a challenging variable selection problem

where the major objective is to select genetic markers related to a trait of interest. It is challenging
because the number of genetic markers is large (often much larger than the sample size) and there is
often strong linkage or linkage disequilibrium between markers. In this article, we developed two
methods for genomewide multiple loci mapping: the Bayesian adaptive Lasso and the iterative
adaptive Lasso. Compared with eight existing methods, the proposed methods have improved variable
selection performance in both simulation and real data studies. The advantages of our methods come
from the assignment of adaptive weights to different genetic makers and the iterative updating of
these adaptive weights. The iterative adaptive Lasso is also computationally much more efficient than
the commonly used marginal regression and stepwise regression methods. Although our methods are
motivated by multiple-loci mapping, they are general enough to be applied to other variable selection
problems.

IT is well known that complex traits, including many
common diseases, are controlled by multiple loci

(Hoh and Ott 2003). However, multiple-loci mapping
remains one of the most attracting and most difficult
problems in genetic studies, mainly due to the high
dimensionality of the geneticmarkers as well as the com-
plicated correlation structure among genotype profiles
(throughout this article, we use the term ‘‘genotype
profile’’ to denote the genotype profile of one marker,
instead of the genotype profile of one individual).
Suppose a quantitative trait and the genotype profiles
of p0 markers (e.g., single-nucleotide polymorphisms,
SNPs) are measured in n individuals. We treat this
multiple-loci mapping problem as a linear regression
problem,

yi ¼ b0 1
Xp

j¼1

xij bj 1 ei ; ð1Þ

or y ¼ b0 1 Xb1 e in a matrix form, where y ¼ (y1, . . . ,
yn)T, X ¼ (xij)n3p, b0 ¼ b0113p, b ¼ (b1, . . . , bp)T, e ¼
(e1, . . . , en)T, and e $ N(0n31, s2In3n). yi is the trait value
of the ith individual, and b0 is the intercept. Here p is the
total number of covariates. If we consider only the main
effect of each SNP, p ¼ p0; and if we consider the main
effects and all the pairwise interactions, p¼ p0 1 p0(p0 –

1)/2. xij is the value of the jth covariate of individual i.
The specific coding of xij depends on the study design
and the inheritance model. For example, if additive
inheritance is assumed, the main effect of a SNP can be
coded as 0, 1, and 2 on the basis of the number of minor
alleles. The major objective of multiple-loci mapping is
to identify the correct subset model, i.e., to identify
those j’s, such that bj 6¼ 0, and estimate the bj’s.
Marginal regression and stepwise regression are com-

monly used for multiple-loci mapping. Permutation-
based thresholds for model selection have been used
for these two methods (Churchill and Doerge 1994;
Doerge and Churchill 1996). Broman and Speed
(2002) proposed a modified Bayesian information
criterion (BIC) for model selection, which was further
written as a penalized LOD score criterion and imple-
mented within a forward–backward model selection
framework (Manichaikul et al. 2009). The threshold of
the penalized LOD score is also estimated by
permutations.
Several simultaneous multiple-loci mapping methods

have been developed, among which two commonly
used approaches are Bayesian shrinkage estimation
and Bayesian model selection. Most existing Bayesian
shrinkage methods are hierarchical models based on
the additive linearmodel specified in Equation (1), with
covariate-specific priors: p(bj js2

j ) $ N(0, s2
j ). The

coefficients are shrunk because their prior mean values
are 0. The degree of shrinkage is controlled by the prior
of the covariate-specific variance s2

j . An inverse-Gamma
prior,
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leads to an unconditional prior of bj as a Student’s t
distribution (Yi and Xu 2008). We refer to this method
as the Bayesian t. Another choice is an exponential
prior,

p
!
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j j
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2

"
¼ Exp

!a2

2

"
¼ a2

2
exp

!
% a2

2
s2
j

"
; ð3Þ

where a is a hyperparameter. In this case, the un-
conditional prior of bj is a Laplace distribution, pðbjÞ ¼
ða=2Þe%ajbj j that is closely related to the Bayesian
interpretation of the Lasso (Tibshirani 1996); there-
fore, it has been referred to as the Bayesian Lasso
(Yi and Xu 2008). Park and Casella (2008) con-
structed the Bayesian Lasso using a similar but distinct
prior: p(bj js2

j ) $ N(0, s2
es

2
j ) and p(s2

j j a2/2) ¼
Exp(a2/2). Hans (2009) proposed another Bayesian
Lasso method, with more emphasis on prediction
than on variable selection. Several general Bayesian
model selection methods have been applied for
multiple-loci mapping, for example, the stochastic
search variable selection (George and McCulloch
1993) and the reversible-jump Markov chain Monte
Carlo (MCMC) methods (Richardson and Green
1997). One example is the composite model space
approach (CMSA) (Yi 2004).

We propose two variable selection methods: the
Bayesian adaptive Lasso (BAL) and the iterative adap-
tive Lasso (IAL). The BAL is a fully Bayesian approach
while the IAL is an expectation conditional maximiza-
tion (ECM) algorithm (Meng and Rubin 1993). Both
the BAL and the IAL are related to the adaptive Lasso
(Zou 2006), which extends the Lasso (Tibshirani
1996) by allowing covariate-specific penalties. The
adaptive Lasso enjoys the oracle property (Fan and
Li 2001); i.e., the covariates with nonzero coefficients
will be selected with probability tending to 1, and the
estimates of nonzero coefficients have the same as-
ymptotic distribution as the correct model. However,
the adaptive Lasso requires consistent initial estimates
of the regression coefficients, which are generally
not available in the high dimension, low sample size
(HDLSS) setting. Huang et al. (2008) showed that
with initial estimates obtained from the marginal
regression, the adaptive Lasso still has the oracle
property in the HDLSS setting under a partial orthog-
onality condition: the covariates with zero coefficients
are weakly correlated with the covariates with nonzero
coefficients. However, in many real-world problems,
including the multiple-loci mapping problem, the
covariates with zero coefficients are often strongly

correlated with some covariates with nonzero coeffi-
cients. The BAL and the IAL extend the adaptive
Lasso in the sense that they do not require any
informative initial estimates of the regression coeffi-
cients so that they can be applied in the HDLSS
setting, even if there is high correlation among the
covariates.

After we completed an earlier version of this article,
we noticed an independent work on extending the
adaptive Lasso from a Bayesian point of view (Griffin
and Brown 2007). There are several differences be-
tweenGriffin and Brown’s approach and our work. First,
Griffin and Brown (2007) did not study the fully
Bayesian approach, while we have implemented and
carefully studied the BAL. Second, Hoggart et al.
(2008) implemented Griffin and Brown’s approach
in HyperLasso, a coordinate descent algorithm, which
is different from the IAL at both model setup and
implementation. We showed in our simulation and real
data analysis that the IAL has significantly better vari-
able selection performance than the HyperLasso. The
differences between the IAL and the HyperLasso are
further elaborated in the discussion.

In this article, we focus on the genomewide multiple-
loci mapping in experimental crosses of inbred strains
(e.g., yeast segregants, F2 mice) where typically thou-
sands of genetic markers are genotyped in hundreds
of samples. Another situation is genomewide associa-
tion studies (GWAS) in outbred populations where
millions of markers are genotyped in thousands of indi-
viduals. Multiple-loci mapping in experimental crosses
and GWAS presents different challenges. In experimen-
tal crosses, genotype profiles have higher correlations
in longer genomic regions, which give simultaneous
multiple-loci mapping methods more advantages than
the marginal regression or stepwise regression. In
contrast, GWAS data have higher dimensionality but
the linkage disequilibrium (LD) blocks often have
limited sizes. We focus on the experimental cross in this
study, but similar methods can also be applied to GWAS
data, although preselection or mapping chromosome-
by-chromosome may be necessary to reduce the di-
mension of the covariates.

The remainder of this article is organized as follows.
We first introduce the BAL and the IAL in the following
two sections, respectively, and then evaluate them and
several existing methods by extensive simulations in
simulation studies. A real data study of multiple-loci
mapping of gene expression traits is presented in the
gene expression QTL study section. We summarize
and discuss the implications of our methodology in the
discussion.

THE BAL

The BAL is a Bayesian hierarchical model. The priors
are specified as
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where d . 0 and t . 0 are two hyperparameters. The
unconditional prior of bj is

pðbjÞ ¼
ð‘

0

td

2GðdÞ k
%2%d
j exp

%ð jbj j 1 tÞ
kj

dkj

¼ tdd

2
ð jbj j 1 tÞ%1%d; ð7Þ

which we refer to as a power distribution with parameters
d and t. From this unconditional prior, we can see that
smaller t and larger d lead to bigger penalization. In
practice, it could be difficult to choose specific values
for the hyperparameters d and t. Following a similar
rationale of Yi and Xu (2008), we suggest a joint im-
proper prior p(d, t) } t%1 and let the data estimate d and
t. We suggest the prior of t%1 because in our application
in the HDLSS setting, we encourage larger penalty and
hence smaller t and larger d.

The posterior distribution of all the parameters is
given by

pðb; b0; s2
e ; k1; . . . ; kp j y;XÞ

} pðy jb; X; b0; s2
e Þpðs2

e Þpðb0Þ
Yp

j¼1

pðbj j kjÞ

3 pðkj j d; tÞpðd; tÞ

}
1

s21n
e

exp
%rss

2s2
e

& '
tdp%1

ðGðdÞÞp

3
Yp

j¼1

k%2%d
j exp %

jbj j 1 t

kj

# $
; ð8Þ

where rss indicates residual sum of squares, i.e.,Pn
i¼1ð yi % b0 %

Pp
j¼1xij bjÞ

2. We sample from this poste-
rior distribution using a Gibbs sampler, which is
presented in supporting information, File S1, Section A.

Our model can also be explained from the perspec-
tive of penalized least squares. Using the unconditional
prior to replace the conditional prior, and taking the
negative logarithm of the posterior probability, we obtain
a penalized least-squares objective function: rss/(2 s2

e )1
(1 1 d) log(jbj j 1 t), with a log penalty for jbj j. Another
form of log penalty is l log(jbj j), which has been
introduced by Zou and Li (2008) as the limit of bridge
penalty jbj jg, as g/0. Comparing these two forms of log
penalties, l and 1 1 d are both tuning parameters that

control the size of the penalty, and our log penalty has an
extra parameter t to give aminimumpenalty when bj¼ 0.
In contrast, if bj¼ 0, the log penalty by Zou and Li (2008)
is infinite, which is not a problem for their one-step
estimate, given the initial estimate of bj is not zero, but will
cause problems in our iterative algorithms. Friedman
(2008) proposed a log penalty, l log((1 –b)jbjj1 b), with
0, b , 1, which is equivalent to the log penalty that we
use. Friedman’smotivation is that this log penalty bridges
the L1 penalty (Lasso) and the L0 penalty (all-subset
selection) as b changes from 1 to 0. In contrast, we
motivate this log penalty and solve the penalized least-
squares problem from a Bayesian point of view.
The BAL can be better understood by comparing it

with the Bayesian Lasso. Recall that in the Bayesian
Lasso, bj js2

j $ N(0, s2
j ), s2

j $ Exp(a2/2), and the
unconditional prior for each bj is a double-exponential
distribution. The conditional normal prior resembles a
ridge penalty and the unconditional Laplace prior
resembles a Lasso penalty. Therefore an intuitive (albeit
not accurate) explanation of the Gibbs sampler for the
Bayesian Lasso is that it approaches a Lasso penalty by
iteratively applying covariate-specific ridge penalties.
Figure 1 in Park and Casella (2008) justifies this intui-
tive explanation: the coefficient paths of the Bayesian
Lasso are a compromise between the coefficient paths of
the Lasso and ridge regression. In contrast, an intuitive
explanation of the BAL is that it approaches the log
penalty by iteratively applying the adaptive Lasso penalty.
Figure 1 illustrates the difference between the uncondi-
tional prior distribution of BAL and the Bayesian Lasso.
The former has a higher peak at zero and heavier tails,
which leads to more penalization for smaller coefficients
and less penalization for larger coefficients. This shape
can potentially be an advantage in the HDLSS setting

Figure 1.—Comparison of the power distribution
f ðx; t; dÞ ¼ ðtdd=2Þðjxj 1 tÞ%1%d, given t ¼ 0.02 and d ¼
0.1, and the Laplace (i.e., double exponential, DE) distribu-
tion f ðx; kÞ ¼ ð1=2kÞexpð%jxj=kÞ, given k ¼ 1 or 0.2. We plot
the density in log scale for better illustration. The power dis-
tribution tends to have a higher peak at zero and heavier tails
for larger values.
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where strong penalty is needed, although as pointed by a
reviewer, what shape works best depends on the data.

THE IAL

Because no point mass at zero is specified in the
Bayesian shrinkage methods (including the BAL), the
samples of the regression coefficients would not be
exactly zero, and thus the Bayesian shrinkage methods
do not automatically select variables. However, if we look
for the mode of the posterior distribution, it could be
exactly zero. This leads to the following ECM algorithm:
the iterative adaptive Lasso. Specifically, under the setup
of the BAL (Equations 4–6), we treat u ¼ (b0, b1, . . . , bp)
as parameter and let f¼ ( s2

e , k1, . . . , kp) be the missing
data. The observed data are yi and xij. The complete data
log-posterior of u is

lðu j y; X; fÞ ¼ C % rss
2s2

e

%
Xp

j¼1

j bj j
kj

; ð9Þ

where C is a constant with respect to u. Suppose in the tth
iteration the parameter estimates are u(t) ¼
ðbðtÞ0 ; bðtÞ1 ; . . . ; bðtÞp Þ. Then after some derivations (File
S1, SectionB), the conditional expectationof l(u j y,X,f)
with respect to the conditional density of f(f j y, X, u(t)) is

Q ðu j uðtÞÞ ¼ C % rss=2

rssðtÞ=n
%
Xp

j¼1

j bj j
ð j bðtÞj j 1 tÞ=ð11 dÞ

; ð10Þ

where rss(t) is the residual sum of squares calculated
on the basis of u(t) ¼ ðbðtÞ0 ; bðtÞ1 ; . . . ; bðtÞp Þ. Com-
paring Equations 9 and 10, it is obvious that to obtain
Q(u j u(t)), we can simply let s2

e ¼ rss(t)/n and kj¼ (j bðtÞj j1
t)/(1 1 d).

On the basis of the above discussions, the IAL is
implemented as follows:

1. Initialization: We initialize bj(0 # j # p) with zero,
initialize s2

e by variance of y, and initialize kj(1 # j #
p) with t/(1 1 d).

2. Conditional maximization (CM) step:
a. Update b0 by its posterior mode (see File S1,

Section B for more details),
b0 ¼ ð1=nÞ

Pn
i¼1 yi %

Pp
j¼1xij bj

( )
.

b. For j ¼ 1, . . . , p, update bj by its posterior mode
(see File S1, Section B),

bj ¼ 0 if % s2
j

kj
# !bj #

s2
j

kj

bj ¼ !bj %
s2
j

kj
if !bj .

s2
j

kj
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%s2
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xikbk

0
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1

A:

3. Expectation (E) step: With the updated bj’s, recalcu-
late the residual sum of squares, rss, and do the
following:

a. Update se
2: se

2¼rss/n.
b. Update kj: kj ¼ (jbjj 1 t)/(1 1d).

We say the algorithm is converged if the coefficient
estimates b̂0; b̂1; . . . ; b̂p have little change.

The above discussions proved that the IAL is an ECM
algorithm, which guarantees its convergence. In each
step of the ECM algorithm, the conditional log poste-
rior is concave, so a local maximum is a global maxi-
mum, and thus it is computationally easy to maximize
the conditional log posterior. However, the uncondi-
tional log prior is not concave; thus for some tuning
parameters, the unconditional log posterior (that is, the
concave log likelihood plus the nonconcave log prior)
could be nonconcave, so that a local maximum many
not be the global maximum. Therefore, similar to other
EM algorithms, it is possible that the IAL identifies a
local mode of the posterior. This is a common problem
for EM algorithms and we address this issue by choosing
appropriate initial values of the coefficients and appro-
priate tuning of the hyperparameters t and d.

In the HDLSS setting, especially where the covariates
are highly correlated, initial estimates from ordinary
least squares (OLS) or ridge regression are unavailable,
unstable, or noninformative. Therefore we initialize all
the coefficients by zero.

To decide d and t, we first consider this problem in an
asymptotic point of view to show that theoretically, we
can identify optimal d and t (see Theorem 1 in File S1,
Section C). However, the theoretical results provide
only a rough scale for d and t. In practice, we select the
specific values of d and t by the BIC, followed by a
variable filtering step. The BIC is written as

BICt;d ¼ log
rss
n

1
logðnÞ

n
d:f :t;d; ð11Þ

where d.f.t,d is the number of nonzero coefficients, an
estimate of the degrees of freedom (Zou et al. 2007).
Given the subset model selected by the BIC, the variable
filtering step can be implemented by a single multiple-
regression or stepwise backward selection. Multiple
regression is computationally more efficient. However,
occasionally, if two highly correlated covariates are both
included in the model, it is possible that both of them
are insignificant by multiple regression. In backward
regression, however, after dropping one of them, the
other one may become significant. We use backward
regression for all the numerical results in this article.
The P-value cutoff for variable filtering can be set as 0.05/
pE, where pE is the effective number of independent tests.
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A conservative choice is pE ¼ p, the total number of
covariates. In this article, we estimate pE by the number
of independent tests; see Sun and Wright (2010) and
File S1, Section D for details. Our approach is closely
related to the screening and cleaning method proposed
by Wasserman and Roeder (2009). Wasserman and
Roeder (2009) use Lasso,marginal regression, or forward
stepwise regression accompanied with cross-validation
for screening and use amultiple regression for cleaning.
We use the IAL for screening and use multiple regres-
sion or backward regression for cleaning. As pointed out
by an anonymous reviewer, a ridge regression using all
the selected covariates may also be an appropriate
choice for cleaning.

In contrast to the BICplus variable filtering approach,
an alternative strategy is to apply an extended BIC,
which provides larger penalty for bigger models (Chen
and Chen 2008). The simulation results in the next
section show that the extended BIC leads to slightly
worse variable selection performance. Our explanation
is that the extended BIC is valid asymptotically and it is
conservative when the sample size is relatively small (n¼
360 in our simulation). Compared with the extended
BIC, the ordinary BIC tends to select larger models with
all or most of the true discoveries plus some false dis-
coveries (Chen and Chen 2008), which can be filtered
out by the variable filtering step.

SIMULATION STUDIES

We first use simulations to evaluate the variable selec-
tion performance of 10 methods: marginal regression,
forward regression, forward–backward regression (with
penalized LOD as the model selection criterion), the
CMSA, the adaptive Lasso (with initial regression co-
efficients from marginal regression), the IAL, the
HyperLasso, and three Bayesian shrinkage methods:
the Bayesian t, the Bayesian Lasso, and the BAL. See File
S1, Section E for the implementation details.

Simulation setup: We first simulate a marker map of
2000 markers from 20 chromosomes of length 90 cM,
with 100 markers per chromosome [using function
sim.map in R/qtl (Broman et al. 2003)]. The chromo-
some length is chosen to be close to the average
chromosome length in the mouse genome. Next we
simulate genotype data of the 360 F2mice on the basis of
the simulated marker map (using function sim.cross in
R/qtl). As expected, the markers from different chro-
mosomes have little correlation, while the majority of
the markers within the same chromosome are positively
correlated (Figure S1). In fact, given the genetic dis-
tance of two SNPs, the expected R 2 between two SNPs in
this F2 cross can be explicitly calculated (Figure S2). For
example, the R 2’s of two SNPs 1, 5, and 10 cM apart are
0.96, 0.82, and 0.67, respectively. Finally, we randomly
choose 10 markers as QTL and simulate quantitative
traits in six situations with 1000 simulations per situa-

tion. Given the 10 QTL, the trait is simulated on the
basis of the linear model in Equation 1, where genotype
(xij) is coded by the number of minor alleles. The QTL
effect sizes across the six situations are listed below:

1. Unlinked QTL: One QTL per chromosome, with
effect sizes 0.5, 0.4,%0.4, 0.3, 0.3,%0.3, 0.2, 0.2,%0.2,
and %0.2; s2

e ¼ 1. Recall that s2
e is the variance of the

residual error.
2. QTL linked in coupling: Two QTL per chromosome,

with effect sizes of the QTL for each chromosome as
(0.5, 0.3), (%0.4, %0.4), (0.3, 0.3), (0.2, 0.2), and
(%0.2, %0.2); s2

e ¼ 1.
3. QTL linked in repulsion: TwoQTLper chromosome,

with effect sizes of the QTL for each chromosome as
(0.5, %0.3), (0.4, %0.4), (0.3, %0.3), (0.2, %0.2), and
(0.2, %0.2); s2

e ¼ 1.

Situations 2, 4, and 6 are the same as situations 1, 3, and
5, respectively, except that s2

e ¼ 0.5. The locations and
effect sizes of the QTL in each situation are illustrated
in Figure 2. To mimic the reality that the genotype of a
QTL may not be observed, we randomly select 1200
markers with ‘‘observed genotype profiles’’ and use
only these 1200 markers in the multiple-loci mapping.
The information loss is limited due to the high density
of the markers. In fact, the vast majority of the 800
markers withmissing genotype can be tagged with R 2.
0.8 by at least one marker with observed genotype
(Figure S3).

Figure 2.—The locations and effect sizes of the QTL in the
simulation study. The markers labeled with red are among the
800 markers with ‘‘missing data’’. (a) Situations 1 and 2. (b)
Situations 3 and 4. The genetic distances/R2 between two
QTL from chromosomes 1, 3, 11, 16, and 18 are 15 cM/
0.63, 7 cM/0.68, 28 cM/0.25, 17 cM/0.56, and 26 cM/0.40,
respectively, where R2 denotes the correlation square. (c) Sit-
uations 5 and 6. The genetic distances/R2 between two QTL
from chromosomes 2, 3, 7, 17, and 18 are 25 cM/0.31, 13 cM/
0.59, 41 cM/0.22, 17 cM/0.55, and 33 cM/0.30, respectively.
The means (standard deviations) of the proportion of trait
variance explained by the 10 QTL in the six simulation situa-
tions are 0.31 (0.02), 0.48 (0.03), 0.44 (0.03), 0.62 (0.04), 0.17
(0.01), and 0.29 (0.02), respectively.
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One important aspect in the implementation of
Bayesian methods is the diagnosis of the convergence
of the MCMC. The results in Figure S4, Figure S5, and
Figure S6 suggest the convergence of the Bayesian
Lasso, Bayesian t, and BAL, respectively.

Results: We divide the methods to be tested into two
groups: the Bayesian methods that do not explicitly
carry out variable selection (since most coefficients
remain nonzero) and the stepwise regression, adaptive
Lasso, and HyperLasso that explicitly select a subgroup
of variables. The IAL is classified into the first group if
we use the ordinary BIC to select the hyperparameters;
and it is classified into the second group if we use the
extended BIC or ordinary BIC plus variable filtering.

For either group, we compare the performance of
different methods by comparing the number of true
discoveries and false discoveries across different cutoffs
of coefficient size or posterior probability. Given a
cutoff, we can obtain a final model. We count the

number of true discoveries in the final model as follows.
For each of the true QTL, we check whether any marker
in the final model satisfies the following three criteria:
(1) it is located on the same chromosome as the QTL,
(2) it has the same effect direction (sign of the co-
efficient) as the QTL, and (3) the R 2 between this
marker and the QTL is .0.8. Different cutoffs such as
0.7 and 0.9 lead to similar conclusions (results not
shown). If there is no such marker, there is no true
discovery for this QTL. If there is at least one suchmarker,
the one with the highest R2 with the QTL is recorded as a
true discovery and is excluded from the true discovery
searching of other QTL. After the true discoveries of
all the QTL are identified, the remaining markers in
the final model are defined as false discoveries. These
false discoveries are further divided into two classes: false
discoveries linked to at least one QTL (linked false
discoveries) and false discoveries unlinked to any QTL
(unlinked false discoveries). A false discovery is linked to a

Figure 3.—Comparison of the number of true
discoveries vs. the total number of false discover-
ies in the simulation study.
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QTL if it satisfies the above three criteria. We summarize
the results of each method by an receiver operating
characteristic (ROC)-like curve that plots the median
numberof truediscoveries vs. themediannumberof false
discoveries across different cutoff values. The methods
with ROC-like curves closer to the upper-left corner of the
plot have better variable selection performance because
they have less false discoveries and more true discoveries.
It is possible that a few cutoff values correspond to the
samemedian of false discoveries but different medians of
true discoveries. In this case, the largest median of true
discoveries is plotted to simplify the figure. In other
words, these ROC-like curves illustrate the best possible
performance of these methods. Forward regression out-
performs marginal regression in all situations. Therefore
we omit the results for marginal regression for readability
of the figures.

We first compare the Bayesian methods and the IAL
(with ordinary BIC). If the linked false discoveries are
counted as false discoveries, the IAL has apparent
advantages in all situations. Approximately, the perfor-
manceof thesemethods canbe ranked as IAL$CMSA$
BAL $ Bayesian t $ Bayesian Lasso (Figure 3). If the
linked false discoveries are counted as true discoveries,
the performances of different methods are not well
separated (Figure S7).Overall the IAL, the BAL, and the
CMSA have similar and superior performance, and the
Bayesian Lasso has inferior performance. We point out
that the comparison of the IAL and the Bayesian
methods should be interpreted with caution. The
posterior mode estimates of parameters by the IAL
provide less information than the fully Bayesian meth-
ods. For example, the Bayesian methods provide the
distribution of the regression coefficients or the distri-
bution of the probability of being included in the
model, while the IAL cannot provide such information.

Next we compare the stepwise regressionmethod, the
HyperLasso, the adaptive Lasso (with initial estimates
from marginal regression), and the IAL with extended
BIC or ordinary BIC plus variable filtering. These
methods tend not to select the unlinked false discover-
ies. In fact, the ROC-like curve for each of these
methods is exactly the same whether we count unlinked
false discoveries as true discoveries or not. If the linked
false discoveries are treated as true discoveries, an
additional fine-mapping step is needed to pinpoint
the location of the QTL in a cluster of linked markers.
Therefore, in general, methods that avoid linked false
discoveries should be preferred. As shown in Figure 4,
the IAL with ordinary BIC plus variable filtering has the
best performance while the HyperLasso has the worst
performance in all the situations. When the QTL are
linked in repulsion, the HyperLasso has no power at all.
The adaptive Lasso has similar performance to the IAL
when the signal is strong (i.e., QTL linked in coupling);
otherwise it has significantly worse performance than
the IAL. The stepwise regression and the IAL using the

extended BIC have slightly worse performance than the
IAL using ordinary BIC plus variable filtering.
We have compared different methods by ROC-like

curves and use somewhat ad hoc rules to define true/
false discoveries. In practice, we may need different
criteria to define the true/false discoveries. For exam-
ple, if there is no missing covariate, we may define the
true discovery as the identification of the exact covariate,
insteadof ahighly correlated one. In fact, for prediction,
a small number of false discoveries with small coeffi-
cients may not affect the prediction accuracy.

GENE EXPRESSION QTL STUDY

QTLstudyofoneparticular traitmay favoronemethod
by chance. To evaluate our method in real data in a
comprehensive manner, we study the gene expression
QTL (eQTL) of thousands of genes. The expression of
eachgene, likeothercomplex traits, is often controlledby
multiple QTL (Brem and Kruglyak 2005). Therefore
multiple-loci mapping has important applications for
eQTL studies. In this section, we study eQTL data with
.6000 genes and 2956 SNPs in 112 yeast segregants
(Brem and Kruglyak 2005; Brem et al. 2005). The gene

Figure 4.—Comparison of the number of true discoveries
vs. the total number of false discoveries in the simulation
study.
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expression data are downloaded from Gene Expression
Omnibus (GEO) (GSE1990). The expression of 6229
genes ismeasured in theoriginal data.Wedrop129 genes
that have .10% missing values and impute the missing
values in the remaining 6100 genes by R function
impute.knn (Troyanskaya et al. 2001). The genotype
data were obtained fromRachel Brem. Fifteen SNPs with
.10% missing values are excluded from this study, and
the missing values in the remaining SNPs are imputed
using the functionfill.geno inR/qtl (Broman et al.2003).
The neighboring SNPs with the same genotype profiles
are combined, resulting in 1027 genotype profiles. With
.6000 genes, it is extremely difficult, if not impossible, to
examine the QTL mapping results gene by gene to filter
out possible linked false discoveries. Therefore, the
Bayesian methods that generate lots of linked false
discoveries were not applied to these eQTL data.

We apply the IAL, marginal regression, forward re-
gression, forward–backward regression, and Hyper-
Lasso to these yeast eQTL data to identify multiple
eQTL of each gene separately. In other words, we
examine the performances of these methods across
6100 traits. The permutation P-value cutoff for marginal
regression and stepwise regression is set at 0.05. The
parameters d and t of the IAL are selected by ordinary
BIC followed by backward regression, with a P-value
cutoff 0.05/412, which is based on a conservative
estimate of 412 independent tests (see File S1, Section
D). For theHyperLasso, the ‘‘lambda’’ parameter is set atffiffiffi
n

p
F%1ð1% 0:05=412=2Þ, and the ‘‘shape’’ parameter is

set to be 1. The IAL and stepwise regressions have similar
power to identify the genes with at least one eQTL
(Table 1). Apparently, the IAL is the most powerful
method in terms of identifyingmultiple eQTL per gene,
and the HyperLasso has least power to identify either
single eQTL or multiple eQTL per gene (Table 1).

Next we focus on the results of the IAL.Many previous
studies have identified one-dimensional (1-D) eQTL
hotspots. A 1-D eQTL hotspot is a genomic locus that
harbors the eQTL of several genes. Similarly, if the
expressions of several genes are associated with the
same k loci, these k loci are referred to as a k-D eQTL
hotspot. The results of the IAL reveal several 1-D eQTL
hotspots (Figure 5), as well as many eQTL hotspots of
higher dimensionality. We illustrate the 2-D eQTL

hotspots in a two-dimensional plot where one point
corresponds to one 2-D eQTL and the x, y coordinates of
the point are the locations of the two eQTL (Figure 6).
Comparing Figures 5 and 6, it is interesting that a 1-D
eQTL can be further divided into several groups on the
basis of the results of 2-D eQTL, which is consistent with
the finding of Zhang et al. (2010).

We divide the whole yeast genome into 600 bins of 20-
kb regions, which lead to 600 3 599/2 ¼ 179,700 bin
pairs as potential ‘‘2-D eQTL hotspots’’. Eleven bin pairs
are linked to.15 genes (Table S1). The cutoff is chosen
arbitrarily so that we can focus on a relatively small
group of 2-D hotpots with definite significant enrich-
ment. Due to space limits, we discuss in detail only the
largest 2-D hotspot located at chromosome (Chr)15,
160–180 kb and Chr15, 560–580 kb. There are 46 genes
linked to these two loci simultaneously, and among
them16 are involved in ‘‘generation of precursormetab-
olites and energy’’ (P-value 3.60 3 10%13). A closer look
reveals that 41 of the 46 genes are linked to one marker
block at Chr15, 170,945–180,961 bp, and one marker at
Chr15, 563,943 bp. One potential causal gene nearby
Chr15, 171–181 kb is PHM7 (Zhu et al. 2008), and one
potential causal gene nearby Chr15, 564 kb is CAT5
(Yvert et al. 2003). Interestingly, both PHM7 and CAT5
are among the 46 genes linked to both loci.

There are also several cases that one group of genes
linked to three loci ($35.8 million possible three-loci
combinations, Table S2) or even four loci ($5.3 billion
possible four-loci combinations, Table S3). For exam-
ple, three genes, KGD2, SDH1, and SDH3 are all linked
to four loci: Chr2, 240–260 kb; Chr13, 20–40kb; Chr15,
160–180 kb; and Chr15, 560–580 kb. Interestingly, all
three genes are involved in an ‘‘acetyl-CoA catabolic
process’’ (P-value 1.93 3 10%7).

DISCUSSION

In this article, we proposed two variable selection
methods, namely the BAL and the IAL. These two
methods extend the adaptive Lasso in the sense that
they do not require any informative initial estimates of
the regression coefficients. The BAL is implemented by
MCMC. Through extensive simulations, we observe the
BAL has apparently better variable selection perfor-

TABLE 1

The number of genes with a certain number of eQTL

Method
Total no. of genes
with at least 1 eQTL

No. of genes with

1 eQTL 2 eQTL 3 eQTL .3 eQTL

IAL 3199 1934 771 301 193
Marginal 3289 2536 667 82 4
Forward 3298 2365 734 171 28
Forward–backward 3294 2089 724 294 183
HyperLasso 128 95 20 4 8
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mance than the Bayesian Lasso, slightly better perfor-
mance than the Bayesian t, and slightly worse perfor-
mance than the CMSA. The IAL, which is an ECM
algorithm, aims at finding the mode of the posterior
distribution. The IAL has uniformly the best variable
performance among all the 10 methods we tested.
Coupled with a variable filtering step, type I error of
the IAL can be explicitly controlled.

The IAL differs from the HyperLasso (Griffin and
Brown 2007; Hoggart et al. 2008) in at least two
aspects. First, the HyperLasso specifies inverse gamma
distribution for kj2/2, and the resulting unconditional
posterior relies on a numerical function. In contrast, we
specify inverse gamma distribution for kj, and it has a
much simpler unconditional posterior (Equation 7).
The difference is not trivial since it leads not only to
convenient theoretical studies in Theorem 1 (File S1,
Section C), but also to better numerical stability. For
example, the HyperLasso becomes unstable for small
shape parameter while IAL is stable for all possible
values of d and t. Second, we select d and t by BIC and
further filter out covariates with insignificant effects. In
contrast, the HyperLasso directly assigns a large penal-
ization to control the type I error. As shown in theResults
section, the strong penalization of HyperLasso leads to
little power to detect relatively weaker signals.

The IAL is computationally very efficient. For example,
it takes 4 hr to carry out themultiple-locimapping for the
yeast eQTL data with 6100 genes and 1017 markers. In

contrast, marginal regression, forward regression, and
forward–backward regression take $60, 100, and 200 hr.
All of the computation was done using a Dual Xenon 2.0-
Ghz Quadcore server. One additional computational
advantage of the IAL is that the type I error is controlled
by the computationally efficient variable filtering step.
The IAL results can be reused for different type I errors.
In contrast, for the stepwise regression, all the computa-
tion needs to be redone for each type I error.
Our results seem to contradict the results of Yi andXu

(2008) that the Bayesian Lasso has adequate variable
selection performance. This inconsistency can be ex-
plained by the fact that we are studying the variable
selection problem with a much denser marker map. It is
known that the Lasso does not have variable selection
consistency if there are strong correlations between
the covariates with zero and nonzero coefficients (Zou
2006). Since the Bayesian Lasso has similar penalization
characteristics to the Lasso (Park and Casella 2008)
and the denser marker map leads to higher correlations
among genotype profiles, it is not surprising that the
Bayesian Lasso has inferior performance in our simu-
lations. In fact, in our simulations, the Bayesian Lasso
overpenalizes the regression coefficients (Figure S8).
This is consistent with the findings that ‘‘Lasso has
had to choose between including too many variables or
overshrinking the coefficients’’ (Radchenko and James
2008, p. 1310). In contrast, the Bayesian t, the BAL, and
the IAL have increasingly smaller penalization on the

Figure 5.—Illustration of the eQTL mapping
results in 112 yeast segregants. In the top panel,
each point corresponds to a 1-D eQTL result,
where the x-coordinate is the location of the
eQTL and the y-coordinate is the location of
the gene. Different colors indicate different sizes
of the regression coefficients. The diagonal band
indicates the cis-eQTL, where expression of one
gene is associated with the genotype of a nearby
marker. The vertical bands indicate 1-D eQTL
hotspots. In the bottom panel, the number of
genes linked to each marker is plotted. Several
1-D eQTL hotspots are apparent for those
markers that harbor the eQTL of hundreds of
genes.
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coefficients estimates. The IAL seems to provide un-
biased coefficient estimates. This leads to an assumption
that the IAL has the oracle property, which warrants
further theoretical study.

Due to the computational cost and the need to
further filter out false discoveries, the Bayesian shrink-
age methods are less attractive for large-scale computa-
tion such as eQTL studies. However, there is room to
improve these Bayesian shrinkage methods, such as the
equi-energy sampler approach (Kou et al. 2006). Alter-
native prior distribution for hyperparmeters may also
lead to better variable selection performance of the
BAL. These strategies are among our future studies.
Specifically, for the gamma prior in the BAL, we have
tried the strategy to set the hyperparameters d and t as
fixed numbers. In general, the results are not very
sensitive to the choices of d and t, and no combination
of d and t leads to significantly better results than
assigning the joint prior for d and t; i.e., p(d, t) } t%1.

In the current implementation, we handle missing
genotype data by imputing them first (using the Viterbi
algorithm implemented in R/qtl) and then taking the
imputed values as known.Amore sophisticated approach
for the BAL is to take the genotype data as unknown and
sample them within MCMC; and for the IAL, we can
summarize its results across multiple imputations (Sen
and Churchill 2001). However, these sophisticated
approaches are computationally more intensive and are
mainly designed for relatively sparse marker maps.
The current high-density SNP arrays often have high-

confidencegenotype call rates.98%(Rabbee andSpeed
2006). Imputation methods are also an active research
topic. Haplotype information from related or unrelated
individuals can be used to obtain accurate genotype
imputation (Marchini et al. 2007). Therefore simply
imputing the genotype data and then taking it as known
may be sufficient formany studies usinghigh-density SNP
arrays, although careful examination of missing data
patterns is always important.

We have mainly discussed our method in a linear
regression framework. Extension to the generalized
linear model (e.g., logistic regression for binary re-
sponses) is possible. The generalized linear model can
be solved by iterated reweighted least squares. Similar to
the approach used in Friedman et al. (2009), ourmethod
can be plugged in to solve the least-squares problem
within the loop of iterated reweighted least squares.
However, this approach is computationally intensive. Yi
and Banerjee (2009) proposed an intriguing and effi-
cient EM algorithm for multiple-loci mapping by gener-
alized linear regression. In their EM algorithm, many
correlated covariates can be simultaneously updated,
which has the advantage of accommodating the correla-
tion among the covariates. However, our method uses a
different model setup and cannot adopt the same
approach of Yi and Banerjee (2009). Computationally
efficient extension of our method to a generalized linear
model warrants further studies.

We tested the robustness of our methods by addi-
tional sets of simulations where the traits are log or

Figure 6.—The distribution of the locus pairs
linked to the same gene. Here each point corre-
sponds to a 2-D eQTL, and the background color
reflects the density of the distribution. If the ex-
pression of one gene is linked to more than two
loci, we plot each pair of linked loci. For exam-
ple, if one gene is linked to three markers 1, 2,
and 3, which are located at positions p1, p2,
and p3, respectively, this gene corresponds to
three points in the figure, (p1, p2), (p1, p3), and
(p2, p3).
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exponentially transformed (results not shown). The
conclusion is that our methods are robust to mild
violations of linearity assumption. However, we still
expect that the additive linear model assumption is
severely violated in some situations, e.g., when epistatic
interactions are present. As mentioned in the Introduc-
tion, we can include pairwise interactions in our model,
similar to the approaches used by Zhang andXu (2005)
and Yi et al. (2007). In practice, prioritizing interactions
by the significance of main effects or biological knowl-
edge may help to reduce the multiple-testing burden
and to improve the power. How to penalize the in-
teraction term also warrants further study. Grouping the
interaction terms and the corresponding main effects
together and applying group penalties (Yuan and Lin
2006) may be a better approach than penalizing the
main effects and interactions separately.

In summary, we have developed iterative adaptive
penalized regression methods for genomewide multiple-
loci mapping problems. Both theoretical justifications
and empirical evidence suggest that our methods have
superior performance than the existing methods. Al-
though our work is motivated by genetic data, our
methods are general enough to be applied to other
HDLSS problems.
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A: The Gibbs Sampler for the Bayesian adaptive Lasso

1. Initialization. We initialize (b0, b1, ..., bp) with zero and initialize (σ2
e ,κ1, ...,κp)

with a positive number.

2. Update b0: Let Θ−parameter1 denote all of the parameters except parameter1.

The conditional posterior distribution of b0 is

p(b0|Θ−b0) ∼ N(b̄0, s
2
0), (1)

where b̄0 = (1/n)
�n

1 (yi −
�p

j=1 xijbj), and s20 = (1/n)σ2
e .

3. Update bj: The conditional posterior distribution of bj is

p(bj|Θ−bj) ∝ exp

�
−(bj − b̄j)2

2σ2
j

− |bj|
κj

�
, (2)

where

σ2
j =

σ2
e�n

i=1 x
2
ij

, and b̄j =

�
n�

i=1

x2
ij

�−1 n�

i=1

xij

�
yi − b0 −

�

k �=j

xikbk

�
. (3)

Although p(bj|Θ−bj) has no closed form, it is log-concave. Thus we sample bj
by Adaptive Rejection Sampling (ARS) [Gilks, 1992]. Note that whenever one

of the bj’s is updated, it is used immediately for updating the other bj’s.

4. Update σ2
e :

p(σ2
e |Θ−σ2

e
) ∝ (σ2

e)
−1−n/2 exp

�
−rss/(2σ2

e)
�
, (4)

which is inv-Gamma(σ2
e ;n/2, rss/2).
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5. Update κj:

p(κj|Θ−κj) ∝ κ−2−δ
j exp

�
− |bj|+ τ

κj

�
, (5)

which is inv-Gamma(κj; 1 + δ, |bj|+ τ).

6. Update τ :

p(τ |Θ−τ ) ∝ τ pδ−1 exp

�
−τ

p�

j=1

κ−1
j

�
. (6)

Therefore τ |Θ−τ ∼ Gamma(pδ,
�p

j=1 κ
−1
j ).

7. Update δ:

p(δ|Θ−δ) ∝
�

τ p�p
j=1 κj

�δ

Γ(δ)−p. (7)

It is easy to show that p(δ|Θ−δ) is log-concave, so we sample δ using ARS.

B: Derivations of Iterative Adaptive Lasso

CM step of the iterative adaptive Lasso

As shown in Section A, the conditional posterior distribution of bj is

p(bj|Θ−bj) ∝ exp

�
−(bj − b̄j)2

2σ2
j

− |bj|
κj

�
, (8)

where

σ2
j =

σ2
e�n

i=1 x
2
ij

, and b̄j =

�
n�

i=1

x2
ij

�−1 n�

i=1

xij

�
yi − b0 −

p�

k �=j

xikbk

�
. (9)

Let ζj be the mode of the conditional posterior distribution of bj, then ζj = argminbj f(bj),

where f(bj) = (bj − b̄j)2/(2σ2
j ) + |bj|/κj. Therefore ζj can be solved by letting the
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derivative of f(bj) to be 0. One extra complexity arises because the derivative of

|bj|/κj does not exist at bj = 0. This problem can be circumvented by considering

three situations: b̄j > 0, b̄j = 0, and b̄j < 0. It is easy to show that






ζj = 0 if b̄j = 0

ζj ∈ [0, b̄j] if b̄j > 0

ζj ∈ [b̄j, 0] if b̄j < 0

.

• If b̄j > 0, we can first consider the derivatives of f(bj) in (0, b̄j]: f �(bj) =

bj/σ2
j − b̄j/σ2

j + 1/κj, and f ��(bj) = 1/σ2
j . If b̄j ≤ σ2

j/κj, f �(bj) > 0, therefore

f(bj) may achieve its minimum at 0. This is can be proved as follows.

– If 0 < b̄j ≤ σ2
j/κj, ∀ bj ∈ [0, b̄j]

f(bj)− f(0) = (bj − b̄j)
2/(2σ2

j ) + |bj|/κj − b̄2j/(2σ
2
j ) = b2j/(2σ

2
j )− bj b̄j/σ

2
j + bj/κj

= b2j/(2σ
2
j ) + (bj/σ

2
j )(σ

2
j/κj − b̄j) ≥ 0,

therefore ζj = 0.

– If b̄j > σ2
j/κj, when bj = b̄j − σ2

j/κj f �(bj) = 0, and f ��(bj) > 0. Therefore

ζj = b̄j − σ2
j/κj

• If b̄j < 0, similar to the situation of b̄j > 0, we can first consider the derivatives

of f(bj) in [b̄j, 0): f �(bj) = bj/σ2
j − b̄j/σ2

j − 1/κj, and f ��(bj) = 1/σ2
j . If b̄j ≥

−σ2
j/κj, f �(bj) < 0, therefore f(bj) may achieve its minimum at 0. This is can

be proved as follows:

– If −σ2
j/κj ≤ b̄j < 0, ∀ bj ∈ [b̄j, 0]

f(bj)− f(0) = (bj − b̄j)
2/(2σ2

j ) + |bj|/κj − b̄2j/(2σ
2
j ) = b2j/(2σ

2
j )− bj b̄j/σ

2
j − bj/κj

= b2j/(2σ
2
j )− (bj/σ

2
j )(b̄j + σ2

j/κj) ≥ 0,

therefore ζj = 0.

– If b̄j < −σ2
j/κj, when bj = b̄j+σ2

j/κj f �(bj) = 0, and f ��(bj) > 0. Therefore

ζj = b̄j + σ2
j/κj
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Summarizing the above results, we have





ζj = 0 if −σ2
j/κj ≤ b̄j ≤ σ2

j/κj

ζj = b̄j − σ2
j/κj if b̄j > σ2

j/κj

ζj = b̄j + σ2
j/κj if b̄j < −σ2

j/κj

.

Note that this CM-step update is actually quite similar to the shooting method for

the Lasso calculation [Fu, 1998].

E-step of the iterative adaptive Lasso

The complete data log-posterior is

l(θ|y,X,φ) = C − rss/(2σ2
e)−

p�

j=1

|bj|
κj

, (10)

where C is a constant with respect to θ. Suppose in the t-th iteration, the parameter

estimates are θ(t) = (b(t)0 , b(t)1 , ..., b(t)p ). Then the conditional expectation with respect

to the conditional density of f(φ|y,X, θ(t)) is

Q(θ|θ(t)) =

�
l(θ|y,X,φ)f(φ|y,X, θ(t))dφ

=

� �
C − rss/(2σ2

e)−
p�

j=1

|bj|
κj

�
f(φ|y,X, θ(t))dφ. (11)

From the derivation of the Bayesian adaptive Lasso, we have

f(φ|y,X, θ(t)) =
Cf

σ2+n
e

exp
�
−rss(t)/(2σ2

e)
� p�

j=1

κ−2−δ
j exp

�
−
|b(t)j |+ τ

κj

�
, (12)

where rss(t) is the residual sum of squares calculated using θ(t), Cf is the normalizing

constant. By letting
�
f(φ|y,X, θ(t))dφ = 1, it is easy to show that

Cf =

�
1

Γ(n/2)

�
rss(t)/2

�n/2
�



p�

j=1

�
|b(t)j |+ τ

�1+δ

Γ(1 + δ)



 . (13)
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Therefore

Q(θ|θ(t)) = C − (rss/2)
�
rss(t)/2

�n/2 1

Γ(n/2)

�
σ−4−n
e exp

�
−rss(t)/(2σ2

e)
�
dσ2

e

−
p�

j=1

|bj|
�
|b(t)j |+ τ

�1+δ

Γ(1 + δ)

�
κ−3−δ
j exp

�
−
|b(t)j |+ τ

κj

�
dκj

= C − (rss/2)/
�
rss(t)/n

�
−

p�

j=1

|bj|�
|b(t)j |+ τ

�
/(1 + δ)

. (14)

C: Choosing tuning parameters, an asymptotic point of view.

Theorem 1. Consider the multiple linear regression problem formulated with n sam-

ples. Assume the penalization parameters of the IAL satisfy (1 + δ)/τ = O(n1/2+d),

where 0 < d < 1/2. Denote the coefficient estimates in the t-th iteration as b̂(t). Let

X−j be X without the j-th column and let b̃(t+1)
−j be the coefficient estimates (except

bj) before estimating b̂
(t+1)
j .

(i) If b̂(t)j = 0 and xj⊥y|X−jb̃
(t+1)
−j , then p(b̂(t+1)

j = 0) → 1.

(ii) If ∃ c > 0, s.t. |corr(xj,y|b̃(t+1)
−j )| > c, then p(b̂(t+1)

j �= 0) → 1.

We first prove conclusion (i) of Theorem 1. Whether b̂(t+1)
j is penalized to zero

amounts to whether

|b̄(t+1)
j | ≤ σ2

e(1 + δ)

ns2j(τ + |b̂(t)j |)
, (15)

where s2j = xT
j xj/n. Based on the assumption that xj⊥y|X−jb̃

(t+1)
−j , we have

√
nb̄

(t+1)
j = O(1). Given that b̂

(t)
j = 0, (1 + δ)/τ = O(n1/2+d), equation (15) can

be written as

√
n|b̄(t+1)

j | ≤ σ2
e(1 + δ)√
ns2jτ

⇔ O(1) ≤ O(nd). (16)

thus p(b̂(t+1)
j = 0) → 1.
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Since ∃ c > 0, s.t. |corr(xj,y|b̃(t+1)
−j )| > c, then b̄j = O(1). Based on the

assumption that (1 + δ)/τ = O(n1/2+d), where 0 < d < 1/2, we have (1 + δ)/(nτ) =

O(n−1/2+d) = o(1), therefore asymptotically

|b̄j| >
σ2
e(1 + δ)

ns2jτ
, (17)

which means bj will be selected into the model even if it is 0 in the previous step.

An intuitive explanation of Theorem 1 is as follows. First, we need to penalize

the coefficients big enough so that if b̂j = 0 in the previous iteration, it remains 0

if xj is uncorrelated with y given all the other coefficients estimates. This requires

(1 + δ)/τ = O(n1/2+d) and d > 0. On the other hand, the penalization should be

small enough so that we can select those xj that are not independent with y, given

all the other covariates. This requires (1+δ)/τ = O(n1/2+d) and d < 1/2. Combining

these two conditions, we need (1 + δ)/τ = O(n1/2+d), where 0 < d < 1/2.

D: The number of independent tests

We estimate the number of independent tests by examining the relation between

nominal p-values and permutation p-values. Let pp and pn be permutation p-value

and nominal p-value, respectively. We found that the relation between log10(pp) and

log10(pn) can be fitted a linear regression [Sun and Wright, 2009]:

log10(pp) = a+ b log10(pn) (18)

The number of independent tests at nominal p-value pn, can be estimated by pp/pn.

Therefore, based on the above linear model:

pp = 10
a
p
b
n ⇒ pp/pn = 10

a
p
b−1
n (19)

We have found from both simulated data and real data that b is often smaller than

1, thus the number of independent tests increase as pn decreases. We provided

an geometric interpretation of this observation in [Sun and Wright, 2009]. Suppose

association to K markers need to be tested. Any p-value smaller than 0.05/K passes
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the Bonferroni correction, hence is significant. Therefore we only need to consider the

p-values that are larger than 0.05/K, and then the maximum number of independent

tests we need to correct is 10a(0.05/K)b−1.

In order to estimate a and b for our simulated data, we randomly choose 10

simulated traits, calculate their minimum nominal p-values and the corresponding

permutation p-values in each chromosome and in each of the six simulation situations.

Those pairs of nominal p-value and permutation p-value are then merged together.

We use those pairs with nominal p-value larger than 10−5 and permutation p-value

smaller than 0.1 to fit a linear model:

log10(pp) = 2.1459 + 0.9179 log10(pn) (20)

As shown in the following figure, this linear relation (red line) capture the relation

between log10(pp) and log10(pn) very well. At the nominal p-value cutoff 0.05/1200

(the vertical line in the following figure indicates log10(0.05/1200)), the number of

independent tests is

102.1459(0.05/1200)0.9179−1 ≈ 320.
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For the yeast eQTL study, we have estimated in our previous work [Sun and Wright, 2009]
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that

log10(pp) = 2.52 + 0.978 log10(pn) (21)

Hence at the nominal p-value cutoff 0.05/1027, the number of independent tests is

102.52(0.05/1027)0.978−1 ≈ 412.

E: The implementations of different methods

We have implemented marginal regression, forward regression, the adaptive Lasso

(with marginal regression coefficients as initials), the Bayesian t, Bayesian Lasso,

BAL, and IAL in an R package BPrimm (Bayesian and Penalized regression in

multiple loci mapping). The computationally intensive parts are written by C.

Our implementations of the Bayesian t and Bayesian Lasso are mainly based on

[Yi and Xu, 2008], but with small modifications for the Bayesian t to further im-

prove its computational efficiency. We leave the details of the Gibbs samplers for

both methods in the Supplementary Materials Section F and G. The R package

BPrimm can be downloaded from http://www.bios.unc.edu/∼wsun/software/.

We calculate permutation p-values (by 10,000 permutations) for both marginal

and step-wise regression, and use permutation p-value 0.05 as cutoff. For marginal

regression, we only keep the most significantly linked marker in each chromosome to

eliminate redundant loci, a strategy that has been used elsewhere [Wang et al., 2006].

For forward regression, we use permutation-based residual empirical threshold (RET)

to select variables [Doerge and Churchill, 1996]. We employ the function stepqtl

in R/qtl [Broman et al., 2003] for the forward-backward regression with penalized

LOD score as the model selection criterion. The function stepqtl allows user to

add two loci into the model each time. We use this option for simulation situations

3-6 where two QTL are simulated from the same chromosome.

There are two options for the priors of the Bayesian Lasso: p(bj|σ2
j ) ∼ N(0, σ2

j )

[Yi and Xu, 2008], and p(bj|σ2
j ) ∼ N(0, σ2

eσ
2
j ) [Park and Casella, 2008], where σ2

e is

the variance of the residual errors. The results we shall discuss are based on the

former, while the latter yields similar results (data not shown). The Bayesian Lasso

uses two hyperparameters r and s to specify the prior of κ2/2 as Gamma(s, r).
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Following [Yi and Xu, 2008], we set both r and s as small numbers such as r = 0.01

and s = 0.01. Values smaller than 0.1 yield similar results in terms of the number of

true/false discoveries.

We use the implementation of CMSA in R/qtlbim [Yandell et al., 2007]. We

choose not to carry out interval mapping because the genetic markers are already

dense enough. The CMSA method requires an additional input, namely the expected

number of QTL. We supply this parameter with the true number of simulated QTL.

For each marker, we record its posterior probability belonging to the true model from

the output of the CMSA.

Both extended BIC and ordinary BIC followed by variable filtering are im-

plemented for tuning parameter selection of the IAL and the AL (with marginal

regression coefficients as initials). The extended BIC is the ordinary BIC plus

2γ log τ(Sj), where Sj indicates a model of size j and τ(Sj) =
�
p
j

�
is the total

number of models with j covariates. Following [Chen and Chen, 2008], we set γ =

1 − 1/(2κ), where κ is solved from p = nκ
. In the BIC plus variable filtering ap-

proach, we use 0.05/pE as p-value cutoff, where pE is the effective number of in-

dependent tests. A conservative estimate of pE is 320. See Supplementary Materi-

als Section D and [Sun and Wright, 2009] for more details. In the implementation

of the adaptive Lasso, given the weights estimated from marginal regression, the

Lasso problem is solved by R function glmnet [Friedman et al., 2009]. A combi-

nations of L1 and L2 penalty are allowed in R function glmnet, i.e., the elastic

net penalty [Zou and Hastie, 2005]:
�p

j=1

�
(1− α)β2

j /2 + α|βj|
�
. The high correla-

tions among the covariates may cause degeneracies for Lasso calculation. Following

[Friedman et al., 2009], we choose to set α = 0.95 to obtain a solution much like the

Lasso, but removes the degeneracy problem.

The HyperLasso is downloaded from http://www.ebi.ac.uk/projects/BARGEN/.

The “-linear” option is used to fit linear model. The “-iter” option is set as 50 to

choose highest posterior mode among 50 runs of the HyperLasso. The “lambda”

parameter is set as
√
nΦ−1

(1 − 0.05/pE/2), where pE is the effective number of

independent tests, which is set as 320. The “shape” parameter is set as 1.

All the Bayesian methods use 10,000 burn-in iterations followed by 10,000 it-

erations to obtain 1,000 samples, one from every 10 iterations. To monitor the
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convergence, we calculate the Gelman and Rubin scale reduction parameter (for 5

parallel chains) and the Geweke’s statistic for each of the 1,200 coefficients (Sup-

plementary Figure 4-6). For all the three Bayesian methods, the vast majority of

the Gelman and Rubin statistics are smaller than 1.05, and the Geweke’s statistic

are approximately normally distributed. The auto correlation of the markers at the

simulated QTL (or the marker that has the highest correlation with a QTL if the

QTL genotype is not observed) is smaller than 0.15 for five chains. The default

options in R/coda are used to calculate these diagnostic statistics. We note that “no

diagnostic can ‘prove’ convergence of a MCMC” [Carlin and Louis, 2000]. However,

these diagnostic statistics do suggest convergence of all the three Bayesian shrinkage

methods.

F: Gibbs sampler for the Bayesian t

The following Gibbs sampler of the Bayesian t is mainly based on [Yi and Xu, 2008],

with small modification to further improve its computational efficiency. The priors

are specified as:

p(b0) ∝ 1, (22)

p(σ2
e) ∝ 1/σ2

e , (23)

p(bj|σ2
j ) = N(0, σ2

j ), (24)

p(σ2
j ) = inv-Gamma(δ, τ) =

τ δ

Γ(δ)
(σ2

j )
−1−δ

exp(−τ/σ2
j ), (25)

where j = 1, ..., p, indicating p covariates (markers). The posterior distribution of

all the parameters is given by

p(b, b0, σ
2
e , σ

2
1, ..., σ

2
p|y,X)

∝ p(y|b,X, b0, σ
2
e)P (σ2

e)

p�

j=1

p(bj|σ2
j )p(σ

2
j )

∝
�

τ δ

Γ(δ)

�p
1

σ2+n
e

exp
�
−rss/(2σ2

e)
� p�

j=1

�
(σ2

j )
−3/2−δ

exp

�
−
b2j + 2τ

2σ2
j

��
. (26)
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It is easy to show that the full conditional posterior distributions of (b0, bj, σ2
e ,

σ2
j ) are

b0|Θ−b0 ∼ N

�
1

n

n�

i=1

�
yi −

p�

j=1

xijbj

�
,
1

n
σ2
e

�
, (27)

bj|Θ−bj ∼ N




�n

i=1 xij

�
yi − b0 −

�p
k �=j xikbk

�

�n
i=1 x

2
ij + σ2

e/σ
2
j

,
σ2
e�n

i=1 x
2
ij + σ2

e/σ
2
j



 , (28)

σ2
e |Θ−σ2

e
∼ inv-Gamma (n/2, rss/2) , (29)

σ2
j |Θ−σ2

j
∼ inv-Gamma

�
1/2 + δ, b2j/2 + τ

�
(30)

Assuming π(δ, τ) ∝ τ−1, the posterior distribution for τ is thus given by

p(τ |Θ−τ ) ∝ τ pδ−1
p�

j=1

exp

�
− τ

σ2
j

�
∝ τ pδ−1 exp

�
−τ

p�

j=1

σ−2
j

�
. (31)

Therefore p(τ |Θ−τ ) ∼ Gamma
�
pδ,

�p
j=1 σ

−2
j

�
. The posterior distribution for δ is

p(δ|Θ−δ) ≡ f(δ) ∝
�

τ δ

Γ(δ)

�p p�

j=1

(σ2
j )

−δ ∝
�

τ p�p
j=1 σ

2
j

�δ

Γ(δ)−p. (32)

There is no closed form for this density, however, it is easy to show that this density

is a log-concave function, and thus we sample δ using the Adaptive Rejection Sam-

pling algorithm [Gilks, 1992] within the Gibbs sampler.

G: Gibbs sampler for the Bayesian Lasso

The following Gibbs sampler of the Bayesian Lasso is based on Park and Casella

[Park and Casella, 2008] and Yi and Xu [Yi and Xu, 2008]. The priors are specified
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as:

p(b0) ∝ 1, (33)

p(σ2
e) ∝ 1/σ2

e , (34)

p(bj|σ2
j ) ∼ N(0, σ2

j ), (35)

p(σ2
j |κ2/2) ∼ Exp(κ2/2) =

κ2

2
exp

�
−κ2

2
σ2
j

�
, (36)

p(κ2/2) = Gamma(s, r) =
rs

Γ(s)

�
κ2/2

�s−1
exp

�
−r

κ2

2

�
, (37)

where j = 1, ..., p, indicating p covariates (markers). Note we model the distribution

of κ2/2 instead of κ, and in the prior of κ2/2, s and r are the shape and rate

parameters, respectively.

The posterior distribution of all the parameters is

p(b, b0, σ
2
e , σ

2
1, ..., σ

2
p,κ

2/2|y,X)

∝ p(y|b,X, b0, σ
2
e)p(σ

2
e)

p�

j=1

�
p(bj|σ2

j )p(σ
2
j |κ2/2)

�
p(κ2/2)

∝ 1

σ2+n
e

exp
�
−rss/(2σ2

e)
� p�

j=1

�
σ−1
j exp

�
−

b2j
2σ2

j

−
κ2σ2

j

2

��

rs

Γ(s)

�
κ2/2

�p+s−1
exp

�
−r

κ2

2

�
. (38)

Then the full conditional posterior distributions of (b0, bj, σ2
e , σ

2
j ,κ

2/2) are

b0|Θ−b0 ∼ N

�
1

n

n�

i=1

�
yi −

p�

j=1

xijbj

�
,
1

n
σ2
e

�
, (39)

bj|Θ−bj ∼ N




�n

i=1 xij

�
yi − b0 −

�p
k �=j xikbk

�

�n
i=1 x

2
ij + σ2

e/σ
2
j

,
σ2
e�n

i=1 x
2
ij + σ2

e/σ
2
j



 ,(40)

σ2
e |Θ−σ2

e
∼ inv-Gamma (n/2, rss/2) , (41)

σ−2
j |Θ−σ2

j
∼ inv-Gauss

�
κ

|bj|
,κ2

�
, (42)

κ2/2|Θ−κ2/2 ∼ Gamma

�
p+ s,

p�

j=1

σ2
j + r

�
, (43)
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where the density of an inverse Gaussian (inv-Gauss) distribution [Chhikara and Folks, 1989]

is given by

f(x;µ,λ) =

�
λ

2π
x−3/2 exp

�
−λ(x− µ)2

2µ2x

�
. (44)

An alternative setup is to assign the priors of bj as

p(bj|σ2
j ) ∼ N(0, σ2

eσ
2
j ), (45)

and leave all the other priors the same [Park and Casella, 2008]. This setup has the

advantage that the joint posterior of (b, σ2
e) has at most one mode. The conditional

posterior distributions remain the same except that

bj|Θ−bj ∼ N




�n

i=1 xij

�
yi − b0 −

�p
k �=j xikbk

�

�n
i=1 x

2
ij + 1/σ2

j

,
σ2
e�n

i=1 x
2
ij + 1/σ2

j



 , (46)

σ2
e |Θ−σ2

e
∼ inv-Gamma

�
(n+ p)/2, rss/2 +

p�

j=1

b2j/(2σ
2
j )

�
, (47)

σ−2
j |Θ−σ2

j
∼ inv-Gauss

�
κσe

|bj|
,κ2

�
. (48)
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Supplementary Figure 1

The distribution of the correlations between genotype profiles from the same chro-

mosome and the genotype profiles from different chromosomes.
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FIGURE S1.—The distribution of the correlations between genotype profiles from the same chromosome and the genotype 

profiles from different chromosomes. 
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Supplementary Figure 2

The relation between genetic distance (centimorgan) and R2
in F2 population. Con-

sider two SNPs in diploid genome. Suppose the two alleles of the first SNP are A and

a, and the two SNPs for the second SNP are B and b. From aabb to AABB, there

are nine possible genotype combinations in F2 offsprings. Given genetic distance, we

calculated recombination fraction by Haldane’s mapping function, then the expected

frequencies of different genotype combinations can be calculated (Table 6.8, page 172

of [Liu, 1998]). These expected frequencies provide the joint distribution of the two

SNP’s genotype, hence we can calculate their R2
.
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FIGURE S2.—The relation between genetic distance (centimorgan) and R2 in F2 population. Con- sider two SNPs in diploid 

genome. Suppose the two alleles of the first SNP are A and a, and the two SNPs for the second SNP are B and b. From aabb to 

AABB, there are nine possible genotype combinations in F2 o!springs. Given genetic distance, we calculated recombination 

fraction by Haldane’s mapping function, then the expected frequencies of di!erent genotype combinations can be calculated 
(Table 6.8, page 172 of [Liu, 1998]). These expected frequencies provide the joint distribution of the two SNP’s genotype, hence 

we can calculate their R2.!
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Supplementary Figure 3

For each of the 800 markers with “unobserved” genotype in our simulation, we cal-

culate its R2 with all the 1200 markers with observed genotype, and then take the

maximum. This figure illustrate the distribution of 800 such maximum R2.

maximum r
2

F
re
q
u
e
n
c
y

0.80 0.85 0.90 0.95 1.00

0
1
0
0

2
0
0

3
0
0

4
0
0

16

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

FIGURE S3.—For each of the 800 markers with “unobserved” genotype in our simulation, we calculate its R2 with all the 1200 
markers with observed genotype, and then take the maximum. This figure illustrates the distribution of 800 such maximum R2. 
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Supplementary Figure 4

The convergence diagnosis of the Bayesian Lasso. The Gelman-Rubin statistics for all

the 1200 coefficients are calculated from 5 chains. The Geweke statistics distribution

are based on 6000 coefficients from the 5 chains. The auto-correlation are calculated

for the 50 covariates that are the QTL or have the highest correlation with the QTL

(with unobserved genotype).
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FIGURE S4.—The convergence diagnosis of the Bayesian Lasso. The Gelman-Rubin statistics for all the 1200 coe"cients are 

calculated from 5 chains. The Geweke statistics distribution are based on 6000 coe"cients from the 5 chains. The auto-
correlation are calculated for the 50 covariates that are the QTL or have the highest correlation with the QTL (with unobserved 

genotype).!
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Supplementary Figure 5

The convergence diagnosis of the Bayesian t. The same statistics in the Web Figure

4 are plotted.
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FIGURE S5.—The convergence diagnosis of the Bayesian t. The same statistics in the Web Figure 4 are plotted.!
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Supplementary Figure 6

The convergence diagnosis of the Bayesian adaptive Lasso. The same statistics in

the Web Figure 4 are plotted.
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FIGURE S6.—The convergence diagnosis of the Bayesian adaptive Lasso. The same statistics in the Web Figure 4 are plotted.!
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Supplementary Figure 7

Comparison of the number of true discoveries vs. the number of unlinked false

discoveries from our simulations, for those method without explicit variable selection.

For the IAL, the results before backward filtering.
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FIGURE S7.—Comparison of the number of true discoveries vs. the number of unlinked false discoveries from our simulations, 

for those method without explicit variable selection. For the IAL, the results before backward filtering.!
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Supplementary Figure 8

Distributions of the largest coefficients (in absolute value) from each of the 1000

simulations in simulation situation 2 (unlinked QTL and σ2
e = 0.5).
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FIGURE S8.—!Distributions of the largest coe"cients (in absolute value) from each of the 1000 simulations in simulation situation 

2 (unlinked QTL and !2
e =0.5).!
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Supplementary Table 1

A list of 2D eQTL hotspots. The eQTL location are the staring location of the 20kb

bins. The gene ontology enrichment scores are calculated using SGD go term finder.

QTL1 QTL2 Count Gene Symbols GO Term 

15:160kb 15:560kb 46 ADE3 ALD4 ATP18 ATP20 ATP5 CAT5 

COX5A COX7 DLD3 ECM16 ERS1 GPM3 

INH1 KGD2 LSC1 LSP1 MDH1 MGM101 

MIR1 NCE102 PEX2 PHM7 PIL1 POR1 

RCK2 SDH1 SDH2 SDH3 SDH4 TCB2 

TIM11 XKS1 YBR230C YCP4 YFR057W 

YGL188C YGR046W YJR120W YLL020C 

YLR224W YLR294C YML002W YMR148W 

YMR266W YNL274C YOL048C 

generation of precursor 

metabolites and energy, 

16 out of 46 genes, 1.42e-

12 

2:360kb 15:160kb 26 CRS5 CSI1 DIS3 DPH5 GAC1 HSP104 

NMD5 ROM1 RTN2 SDP1 SDS23 SEN1 

SOL4 SSE2 TPS2 UGP1 XBP1 YCR051W 

YGR052W YGR130C YHL021C YHR080C 

YKL036C YMR090W YNL194C YSC84 

trehalose metabolic 

process, 3 out of 26 

genes, 0.00065 

5:420kb 15:160kb 25 AGX1 ATP5 CIN5 DAK1 DCS1 ECM16 

GTT1 POR1 PRO1 SDH3 SYM1 TFS1 TSA2 

YBR285W YDR070C YHR087W YJL161W 

YJR096W YJR120W YKL151C YLR252W 

YNL200C YNL274C YNR014W YPL014W 

mitochondrion, 12 out of 

25 genes, 0.00404 

14:440kb 15:160kb 20 AAP1 CDC60 CLG1 DED81 DPS1 ERS1 

FPR3 GUS1 MTM1 NAT1 NUP2 THS1 TYS1 

UGP1 URE2 YDL203C YER182W YKR043C 

YMR244C-A YOL073C 

tRNA aminoacylation, 5 

out of 20 genes, 2.64e-06 

12:660kb 14:440kb 18 ADI1 ARF2 CDC48 CPR5 FSH2 GET3 GSP2 

HMX1 IZH2 LPP1 NDE1 PDR17 QRI5 TGL1 

TRX2 UGP1 YDL237W YDR107C 

NA 

3:60kb 13:40kb 17 ALD5 BAT1 BAT2 CHA1 DIC1 ILV2 ILV3 

ILV5 MCT1 OAC1 SAT4 XDJ1 YDR111C 

YDR112W YHR162W YJL213W YLR089C 

branched chain family 

amino acid biosynthetic 

process, 5 out of 17 

genes, 1.55e-09 

4:1480kb 12:1040kb 17 YBL111C YBL113C YDR544C YEL074W 

YEL077C YFL066C YHL050C YHR218W 

YIL177C YJL225C YLL067C YRF1-1 YRF1-

2 YRF1-3 YRF1-4 YRF1-6 YRF1-7 

telomere maintenance via 

recombination, 6 out of 

17 genes, 3.87e-11 

12:660kb 14:480kb 16 CDC53 COX5A ERG26 ERV29 EUG1 KCC4 

MUQ1 PMT3 VPS70 YDL086W YDL193W 

YEL047C YGR058W YJR114W YKL036C 

YNL058C 

NA 

14:480kb 15:160kb 16 ALR1 CBP2 COX5A DCS1 FUN14 MRPL38 

MRPL51 MRPS18 SKO1 SSE2 TAH18 YCP4 

YKL036C YML087C YPL105C YSC84 

mitochondrion, 10 out of 

16 genes, 0.00087 

2:240kb 15:160kb 15 DNM1 GIP2 HXK1 HXT4 HXT6 HXT7 KGD2 

SDH1 SDH3 SDH4 SER1 TYS1 YDL110C 

YHR097C YNL095C 

acetyl-CoA catabolic 

process, 4 out of 15 

genes, 8.72e-07 

2:540kb 14:440kb 15 ARF2 CAP2 DSK2 ERG4 FSH2 IMD1 IMD2 

ISR1 MBF1 MSP1 PFY1 UTH1 YGL199C 

YLR104W YOL073C 

actin binding, 2 out of 15 

genes, 0.00601 
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The eQTL location are the staring location of the 20kb bins. The gene ontology enrichment scores are calculated using SGD go 

term finder. 
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Supplementary Table 2

A list of 3D eQTL hotspots. The eQTL location are the staring location of the 20kb

bins. We note that the group of genes YEL077C, YIL177C, YJL225C, YRF1-1, and

YRF1-2 have very strong sequence similarity, hence they might co-hybridize on the

microarray.

Bin1 Bin2 Bin3 

Chr Start Chr Start Chr Start Count Gene symbols 

4 1480k 12 1040k 15 560k 8 

YEL077C YFL066C YFL068W YHL050C YIL177C 

YJL225C YRF1-1 YRF1-2 

2 240k 13 1b 15 160k 7 DNM1 HXT4 HXT6 HXT7 KGD2 SDH1 SDH3 

2 360k 4 1480k 12 1040k 6 YEL077C YFL068W YIL177C YJL225C YRF1-1 YRF1-2 

2 360k 4 1480k 15 560k 6 YEL077C YFL068W YIL177C YJL225C YRF1-1 YRF1-2 

2 360k 12 1040k 15 560k 6 YEL077C YFL068W YIL177C YJL225C YRF1-1 YRF1-2 

5 400k 15 160k 15 560k 6 ATP5 ECM16 POR1 SDH3 YJR120W YNL274C 

2 360k 11 120k 15 160k 5 CSI1 HSP104 SOL4 UGP1 YKL036C 

12 760k 12 1040k 15 560k 5 YEL077C YFL067W YFL068W YHL050C YJL225C 

2 240k 15 160k 15 560k 4 KGD2 SDH1 SDH3 SDH4 

2 520k 7 40k 14 480k 4 DBP7 PNO1 UTP4 UTP7 

4 1480k 12 760k 12 1040k 4 YEL077C YFL068W YHL050C YJL225C 

4 1480k 12 760k 15 560k 4 YEL077C YFL068W YHL050C YJL225C 

13 1b 15 160k 15 560k 4 KGD2 MDH1 SDH1 SDH3 

14 480k 15 160k 15 560k 4 COX5A ECM16 YCP4 YLR294C 

2 200k 15 240k 15 560k 3 ATP1 ECM38 YBL100C 

2 240k 13 1bp 15 560k 3 KGD2 SDH1 SDH3 

2 280k 14 440k 15 160k 3 DED81 NAT1 THS1 

2 360k 4 1480k 12 760k 3 YEL077C YFL068W YJL225C 

2 360k 11 120k 12 640k 3 HSP104 UGP1 YKL036C 

2 360k 12 640k 15 160k 3 HSP104 UGP1 YKL036C 

2 360k 12 760k 12 1040k 3 YEL077C YFL068W YJL225C 

2 360k 12 760k 15 560k 3 YEL077C YFL068W YJL225C 

2 360k 14 480k 15 160k 3 SSE2 YKL036C YSC84 

2 520k 3 40k 14 480k 3 KCC4 SSP120 YGR219W 

2 520k 13 120k 14 440k 3 IMD1 IMD2 YAR075W 

11 120k 12 640k 15 160k 3 HSP104 UGP1 YKL036C 
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The eQTL location are the staring location of the 20kb bins. We note that the group of genes YEL077C, YIL177C, YJL225C, 

YRF1-1, and YRF1-2 have very strong sequence similarity, hence they might co-hybridize on the microarray. 
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Supplementary Table 3

A list of 4D eQTL hotspots. The eQTL location are the staring location of the 20kb

bins.

Bin1 Bin2 Bin3 Bin4 

Chr Start Chr Start Chr Start Chr Start Count Gene symbols 

2 360k 4 1480k 12 1040k 15 560k 5 YEL077C YIL177C YJL225C YRF1-1 YRF1-2 

2 240k 13 20k 15 160k 15 560k 3 KGD2 SDH1 SDH3 

2 360k 11 140k 12 660k 15 160k 3 HSP104 UGP1 YKL036C 

4 1480k 12 780k 12 1040k 15 560k 3 YEL077C YHL050C YJL225C 

2 360k 4 1480k 12 780k 12 1040k 2 YEL077C YJL225C 

2 360k 4 1480k 12 780k 15 560k 2 YEL077C YJL225C 

2 360k 12 780k 12 1040k 15 560k 2 YEL077C YJL225C 

5 540k 13 40k 14 440k 15 500k 2 OST2 YOR102W 
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TABLE S3 

A list of 4D eQTL hotspots 
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The eQTL location are the staring location of the 20kb bins.!
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