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Summary. Despite recent flourish of proposals on variable selection, genome-wide multiple loci mapping remains to be
challenging. The majority of existing variable selection methods impose a model, and often the homoscedastic linear model,
prior to selection. However, the true association between the phenotypical trait and the genetic markers is rarely known
a priori, and the presence of epistatic interactions makes the association more complex than a linear relation. Model-free
variable selection offers a useful alternative in this context, but the fact that the number of markers p often far exceeds the
number of experimental units n renders all the existing model-free solutions that require n > p inapplicable. In this article,
we examine a number of model-free variable selection methods for small-n-large-p regressions in the context of genome-wide
multiple loci mapping. We propose and advocate a multivariate group-wise adaptive penalization solution, which requires no
model prespecification and thus works for complex trait-marker association, and handles one variable at a time so that works
for n < p. Effectiveness of the new method is demonstrated through both intensive simulations and a comprehensive real data
analysis across 6100 gene expression traits.
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1. Introduction
Modern technologies routinely produce massive amounts of
data, and such data deluge now engulfs every branch of science
and public life. A typical example is multiple loci mapping in
genetics, where a few loci affect the variation of some biolog-
ical trait, while one has to search over hundreds of thousands
of candidate loci on the entire genome. A striking feature
of these types of problems is that the number of covariates
p often far exceeds the sample size n. In a typical multiple
loci mapping problem, the covariates are genotype or copy
number of individual genetic markers, the number of which
ranges from thousands to millions, whereas the experimen-
tal units typically numbers in hundreds to thousands. This
challenging small-n-large-p setup renders many classical sta-
tistical methods inapplicable. Moreover, the association be-
tween the genetic markers and the biological trait can be
complex.

In the context of statistical regression modeling, multiple
loci mapping manifests itself as the problem of variable se-
lection. An enormous literature on variable selection has ap-
peared lately; see, e.g., Breiman (1995), Tibshirani (1996),
Fan and Li (2001), Zou (2006), Yuan and Lin (2006, 2007),
Candés and Tao (2007), Fan and Lv (2008), among many oth-
ers. Most existing approaches assume that the true underlying
model is known up to a finite dimensional parameter, and in
most cases a linear homoscedastic model is imposed. How-
ever, the true model is rarely known in practice, and the true
association is very likely to be more complex than a linear

relationship. For instance, the genetic effect of copy number
variations may exhibit a piece-wise linear pattern—the trait
value is proportional to the copy number within a certain
range then remains unchanged when the copy number exceeds
a threshold, due to the buffering of other factors. Presence
of epistatic interactions gives rise to another commonly seen
nonlinear pattern in genetics. Although in principle one may
include, say, all two-way interactions of the covariates into a
linear model, the resulting number of predictors (in the order
of p2) is staggeringly huge given a very large p initially.

In this article, we propose a number of model-free
variable selection approaches that do not impose any para-
metric model before variable selection. This characteristic dis-
tinguishes our proposals from the majority of model-based
variable selection methods in the literature. The methods can
handle nonlinear associations, as often encountered in multi-
ple loci mapping studies, and are shown to perform superior
than the model-based approaches when the true underlying
association is different from the imposed linear model. Our
proposals stem from the general framework of sufficient di-
mension reduction (SDR; Cook, 1998), and the model-free
variable selection methods developed within that framework
(Cook, 2004; Li, Dennis Cook, and Nachtsheim, 2005; Ni,
Cook, and Tsai, 2005; Ni et al., 2008; Zhou and He, 2008;
Bondell and Li, 2009). However, in all those previous model-
free variable selection works, the sample size n is required
to be larger, and usually much larger, than the number of
covariates p. By contrast, the focus of this article is model-
free variable selection when p far exceeds n.
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Specifically, we propose and examine two strategies of
model-free selection for small-n-large-p regressions. Let Σ =
Cov(X) be the p × p sample covariance matrix of the p co-
variates. The first strategy aims to avoid inversion of Σ, which
is singular when n < p. A ridge estimate and a partial least
squares (PLS) estimate are employed for that purpose. Nev-
ertheless, this strategy requires estimation of the matrix Σ,
and thus in effect handles all p covariates simultaneously. For
this reason, we view it as a global strategy. The second strat-
egy, which we view as a local strategy, refrains from dealing
with all covariates together, but instead conducts selection
one variable at a time. Toward that end, a multivariate group-
wise adaptive penalization (mGAP) approach is proposed. In
mGAP, the coefficient of each covariate is updated sequen-
tially by a coordinate decent algorithm, which shares a simi-
lar spirit as the classical forward stepwise variable selection,
and the latter is shown to possess competent theoretical and
empirical advantages for linear models when n < p (Wang,
2009). We investigate both global and local strategies and
compare with the model-based solutions, all in the context of
genome-wide multiple loci mapping in experimental cross. We
find the local strategy achieves a superior performance among
all those solutions.

The rest of the article is organized as follows. Sections 2
presents the ridge regression solution and the PLS solution.
Section 3 proposes the mGAP solution. An extensive sim-
ulation study is carried out in Section 4 to examine the
performance of the two proposed strategies, as well as to com-
pare with the existing model-based solutions. Section 5 illus-
trates the advantages of the new method by a real multiple
loci mapping data analysis across 6100 gene expression traits.
Section 6 concludes the article with a discussion.

2. Ridge and Partial Least Squares Solution
2.1 Simultaneous Dimension Reduction and Variable Selection
We first quickly review the framework of SDR and how vari-
able selection is achieved within this framework.

For a regression of a response Y on a p-dimensional covari-
ate vector X, SDR seeks to replace X with a few of its lin-
ear combinations, while preserving full regression information
and assuming no parametric models. Without loss of general-
ity, we assume X has been standardized to have mean 0 and
variance 1 for each covariate. A central parameter of interest
in an SDR inquiry is the minimum subspace S in RP such
that Y is independent of X given PSX , where PS is the pro-
jection onto S. Such a space is called the central subspace, it
uniquely exists under minor conditions (Cook, 1996), and it
is denoted as SY |X . There have been many approaches pro-
posed to estimate SY |X , most of which can be formulated in
a unified representation and are collectively referred as in-
verse regression estimators (Cook and Ni, 2005). Specifically,
inverse regression estimators starts with the construction of
a p × h matrix θ = (θ1, . . . , θh) satisfying span(θ) = SY |X . It
then obtains its sample estimate θ̂ through

min
η ,γ

{
vec(θ̂) − vec(ηγ)

}
T
{
vec(θ̂) − vec(ηγ)

}
, (1)

over Rη ∈ p × d, Rγ ∈ d × h. Letting (η̂, γ̂) denote the corre-
sponding minimizers, then span(η̂) forms an estimate of SY |X .
To ensure span(θ) ⊆ SY |X , it requires the linearity condition

that E(X |βTX) is linear in βTX , where β denotes a basis of
SY |X . This is usually viewed as a mild condition, is widely im-
posed in the SDR literature, and is true as p tends to infinity
(Hall and Li, 1993). In our multiple loci application, we view
this condition approximately true because p is very large. We
also note that this condition is imposed on the distribution of
X rather than on Y|X. For this reason, this family of SDR es-
timators, as well as the variable selection methods developed
within this family, are regarded as model free.

Simultaneous variable selection within this framework is
based upon the key observation that all the irrelevant covari-
ates to regression Y|X have their corresponding rows of the
basis of SY |X equal to zero and vice versa. This connects se-
lection of variables with estimation of SY |X . Ni et al. (2005)
and Bondell and Li (2009) introduced a p × 1 shrinkage vec-
tor ω, and proposed to first obtain the estimates θ̂, η̂, and γ̂
from (1) and then minimize over ω,

min
ω

[
vec(θ̂) − vec {diag(ω)η̂γ̂}

]
T
[
vec(θ̂) − vec {diag(ω)η̂γ̂}

]

+ λ

p∑

j=1

|ωj |,
(2)

where λ is a nonnegative penalty constant. The term
∑p

j=1|ωj |
in (2) is a Lasso type L1 penalty. As a result, an increasing
λ would force some elements of ω̂ to exactly equal zero. The
resulting diag(ω̂)η̂ is taken as a sparse estimate of the cen-
tral subspace basis, and zero elements of ω̂ shrink the entire
rows of the estimated basis to zero. Consequently, one achieves
variable selection by screening out those variables whose cor-
responding ω̂j ’s are zero. The shrinkage vector ω serves as
an extra garrote parameter (Breiman, 1995), and the Lasso
penalty in (2) can be equivalently replaced by a nonnegative
garrote penalty (Bondell and Li, 2009). For brevity, we refer
this solution as garrote selection.

2.2 Ridge and Partial Least Squares Based Garrote Selection
The garrote selection hinges on the construction of θ. There
are a class of choices of θ that are based upon the first in-
verse moment φ(Y) = Σ−1E(X|Y), which all have roots in
the seminal sliced inverse regression (SIR) (Li, 1991). Letting
t1(Y), . . . , th(Y) denote a set of h transformation functions of
Y, this class of θ takes a common form θs = E{ts(Y)φ(Y)}, s
= 1, . . . , h, where θs denotes the sth column of θ. The original
SIR corresponds to the sliced indicator function, ts(Y) = 1 if
Y is in slice s and 0 otherwise. Other choices of ts include the
B-spline transformation (Fung et al., 2002), the polynomial
transformation ts(Y) = Ys (Yin and Cook, 2002), and the co-
variance estimator ts(Y) = Y if Y is in slice s and 0 otherwise
(Cook and Ni, 2006). Moreover, a number of papers (Li, 1991;
Fung et al., 2002; Cook and Ni, 2006) have found that this
class of methods are not overly sensitive to the choice of h.

We first note that θs can be rewritten as θs = Σ−1σs , where
σs = Cov{X, ts(Y)}. Thus, estimation of θs requires the esti-
mation of Σ−1. When the number of covariates p exceeds the
sample size n, the usual sample estimate of the covariance
matrix Σ is singular and is not invertible. As such, the usual
estimator of θs becomes unavailable. This prevents a direct
application of the aforementioned variable selection method
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to our setup. We next consider two solutions to address this
problem.

One solution is to introduce a ridge type regularization, i.e.,
replacing Σ−1 with (Σ + τ s Ip)−1 for a positive ridge constant
τ s . Tuning of the ridge constant can be based on the general-
ized crossvalidation criterion as in Li and Yin (2008a). This
solution is in spirit similar to Li and Yin (2008b). The differ-
ence is that Li and Yin (2008b) focused on SIR only, whereas
the solution here applies to a class of first inverse moment
based reduction methods.

Alternatively, one may employ the idea of PLS
(Wold, 1975) to handle n < p. Define RP Ru s =
(σs ,Σσs , . . . ,Σu s −1σs ) ∈ p × us for some positive integer
us . Li, Cook, and Tsai (2007) showed that, under the
linearity condition, Ru s (Ru s

TΣRu s )−1Ru s
Tσs ∈ SY |X . This

is indeed the population PLS estimator. The reason that
PLS works when n < p is that, the matrix Ru s

TΣRu s that
needs inversion in PLS is only us × us , compared to the p
× p matrix Σ in ordinary least squares (OLS). As long as
us < n, the sample counterpart of this matrix is invertible. In
practice, us is often small, and its tuning can be based on the
eigenvalues of the matrix Ru s Ru s

T or some smoothing-based
criterion (Li et al., 2007).

In our context of model-free variable selection for n < p re-
gressions, we thus suggest to employ θs = (Σ + τ s Ip)−1σs or
θs = Ru s (Ru s

TΣRu s )−1Ru s
Tσs as our initial sample estimate

θ̂ for θ. One then follows (2) to achieve variable selection.
Some remarks are noteworthy. First, similar to garrote selec-
tion (Breiman, 1995), variable selection is achieved through a
two-step procedure, i.e., one first carries out a dimension re-
duction basis estimation of θ̂, η̂, and γ̂ in (1), and then selects
variables through the estimate ω̂ in (2). As a result, we obtain
both a dimension reduction basis estimate diag(ω)η̂, and a se-
lection of relevant variables simultaneously. Second, we view
both the ridge and the PLS solutions as global approaches,
in the sense that they handle all p covariates simultaneously
by involving the p × p covariance matrix Σ in estimation.
When p is really large whereas n is small to moderate, such
a global strategy may not be the most effective intuitively.
This motivates us to consider the next local strategy that
conducts variable selection one variable at a time when p far
exceeds n.

3. Multivariate Group-Wise Adaptive Penalization
3.1 Variable Selection without Reduction Basis Estimation
If the analysis goal is variable selection only, one may simplify
the aforementioned two-step procedure to a one-step solution.
Note that θs = Σ−1Cov{X, ts(Y)}; that is, a sample estimate
of θs can be obtained by OLS estimation of regressing ts(Y)
on X. As such, θ can be estimated by applying multivariate
OLS to a set of transformations of the response, t1(Y), . . . ,
th(Y), given X. Variable selection can then be achieved by
shrinking the entire rows of θ to zero. Motivated by this ob-
servation, Ni et al. (2008) proposed a method named mul-
tivariate adaptive Lasso (MAL) to couple multivariate OLS
with adaptive group Lasso penalty (Zou, 2006; Yuan and
Lin, 2006). For sample observations {(xi , yi ), i = 1, . . . , n},
let T s =

(
ts (y1), . . . , ts (yn )

)
T, s = 1, . . . , h, let T denote the

n × h matrix with T s as its sth column, and let X denote
the n × p data matrix with xi as its ith row, i = 1, . . . , n. Ni

et al. (2008) considered the minimization

minB

(
h∑

s=1

‖T s − XBs‖2 + λ

p∑

j=1

‖bj ‖
‖b̃j ‖

)
, (3)

over the p × h matrix B = (bjs), where Bs denotes its sth
column, s = 1, . . . , h, bj denotes its jth row, j = 1, . . . , p, and

‖bj ‖ =
√∑h

s=1 b2
j s . Let B̃ be the OLS estimate of B, and b̃j

denotes its jth row. In (3), an adaptive group Lasso penalty
(Yuan and Lin, 2006) is placed on each row bj of B, and as a
consequence, an increasing λ would force some rows of B to
be completely zero, which in turn achieving variable selection.

When n < p, the MAL solution of (3) can not be directly
applied, because the OLS initial estimate B̃ is not available.
Similar to the global strategy in Section 2.2, however, one may
substitute in (3) a ridge estimator or a PLS estimator for B̃.
We adopt this strategy in our numerical studies so that we
can compare MAL with other methods when n < p. On the
other hand, as we have discussed at the end of Section 2.2,
given that p is much larger than n and the signal in multiple
loci mapping is generally weak, such a global estimator of B
using ridge or PLS may not be accurate, which in turn causes
inaccuracy in variable selection. Our simulations in Section 4
would further confirm this intuition.

Alternatively, motivated by both forward regression (Wang,
2009) and an iterative adaptive Lasso (IAL) solution devel-
oped by Sun, Ibrahim, and Zou (2010), we next propose an it-
erative variable selection method that extends MAL but han-
dles variables one at a time rather than all together. Unlike
forward regression and IAL which assume the linear model,
the new solution is model free and can handle a variety of
models such as the piece-wise linear model and the epistatic
models. The new method originated from the MAL solution of
Ni et al. (2008), but as we will show next, the extension is far
from incremental. We call our proposal the mGAP solution.

3.2 Objective Function
We first develop the objective function for mGAP. We start
with a modification of (3):

h∑

s=1

‖T s − XBs‖2

ws
+ λ

p∑

j=1

‖bj ‖
κj

. (4)

Compared to (3), we introduce two changes. First, we assign
different weights ws to the residual sum of squares of T s on X .
This is based upon the intuition that those transformations
T s ’s are not equally informative for our purpose of variable
selection. Second, we replace the OLS estimates b̂j ’s with a set
of parameters κj ’s. If n > p, the parameters ws and κj can be
naturally estimated by ŵs = σ̂2

s = ‖T s − XB̂s‖2/n, and κ̂j =
‖b̂j ‖.

Next we observe that, without any restriction, ws ’s and κj ’s
in (4) are not estimable, because one can always multiply a
constant to them to reduce the objective function (4). We thus
add restrictions on the sizes of ws ’s and κj ’s by considering a
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modified objective function of (4):

h∑

s=1

‖T s − XBs‖2

ws
+ λ

p∑

j=1

‖bj ‖
κj

+ λ

p∑

j=1

log(κj )

+ n

h∑

s=1

log(ws ). (5)

The new restrictions make ws ’s and κj ’s identifiable. A closer
examination reveals that, for a given B, the solutions of κj ’s
that minimize (5) are of the form,

κ̂j = arg minκ j

{
‖bj ‖
κj

+ log(κj )
}

= ‖bj ‖, j = 1, . . . , p.

A drawback of this solution is that, if ‖bj ‖ = 0, κ̂j = 0, then
an infinite penalty is added to the jth covariate so that it
would never enter the model again, even when the estimates
of other coefficients change and this covariate may now have
a significant effect in reducing the residual sum of squares.
Taking this into consideration, we further modify the objec-
tive function (5) by adding another tuning parameter τ , and
come to its final form:

h∑

s=1

‖T s − XBs‖2

ws
+ λ

p∑

j=1

‖bj ‖ + τ

κj
+ λ

p∑

j=1

log(κj )

+ n

h∑

s=1

log(ws ). (6)

We now propose to minimize (6) over the p × h matrix
B, the h × 1 vector w = (w1, . . . , wh )T, and the p × 1 vec-
tor κ = (κ1, . . . , κp )T, for some tuning parameters λ > 0 and
τ > 0. To see how variable selection is achieved one at a time
through (6), we first observe that, in (6), the group Lasso type
penalty is placed on each row bj of B. As a consequence, for
some λ, the solution b̂j will be exactly zero, which in effect
leads to variable selection. Next, as we will see in Section 3.3,
the update of B is to carry out row by row by cycling through
bj ’s for j = 1, . . . , p, and as such selection is performed in a
one variable at a time fashion. We next develop an alternating
optimization algorithm to solve (6) with fixed λ and τ , and
then propose a criterion for the tuning of λ and τ .

3.3 Optimization and Tuning
We cycle through the steps of fixing B to solve w and κ, and
fixing w and κ to solve B. More specifically, for a given B̂(t)

at iteration t, we have,

κ̂(t+1)
j = arg minκ j

{∥∥b̂(t)
j

∥∥ + τ

κj
+ log(κj )

}
=

∥∥b̂(t)
j

∥∥ + τ,

ŵ(t+1)
s = arg minw s

{∥∥T s − XB̂(t)
s

∥∥2

ws
+ n log(ws )

}

=

∥∥T s − XB̂(t)
s

∥∥2

n
.

For κ(t+1)
j , we note that the tuning parameter τ > 0 now gives

any covariate with a zero coefficient estimate a large (in the
scale of λ/τ ) but finite penalty. Moreover, the above solutions

of w(t+1)
s and κ(t+1)

j are intuitively reasonable, because they re-
semble the solutions when n > p, as discussed at the beginning
of Section 3.2. Next, given κ̂(t+1)

j and ŵ(t+1)
s , we update B by

B̂(t+1) = arg minB

(
h∑

s=1

‖T s − XBs‖2

ŵ(t+1)
s

+ λ

p∑

j=1

‖bj ‖
κ̂(t+1)

j

)
.

This optimization problem can be solved numerically by a
coordinate descent algorithm, i.e., by updating one row bj at
a time for j = 1, . . . , p. Details are given in the Web Appendix
A. By default, the initial values of all the coefficients in B̂(0)

are set to be zero.
In (6), λ and τ are two tuning parameters that control the

amount of penalty imposed on B. Next we employ a Bayesian
information criterion (BIC) to tune these two parameters. Af-
ter BIC, we further amend our procedure with a backward
filtering.

Specifically, we choose λ and τ that minimize the criterion,

BIC = n log(|Ω̂|) + ν × log(n),

where Ω̂ denotes the sample estimate of the h × h covariance
matrix Cov(T − XB̂), |Ω̂| is its determinant, and ν is the
degrees of freedom of the form,

ν =
p∑

j=1

[
I(‖b̂j ‖ > 0)

{
h∑

s=1

r̂j s

r̂2
j s − (r̂j s − 1)b̄j s b̂j s /‖b̂j ‖2

}]
,

where

b̄j s = ‖xj ‖−2
n∑

i=1

xij

{
ts (yi ) −

∑

k (=j

xik bk s

}
, and

r̂j s = 1 +
λŵs

2(‖b̂j ‖ + τ )‖b̂j ‖‖xj ‖2
.

In above evaluations of BIC, B̂ =
(
b̂j s

)
p×h

and ŵ denote the
estimate of B and w at convergence. This BIC can be derived
following a setup of seemingly unrelated regressions (Zellner,
1962), although we do not impose such a model in our solu-
tion. The degrees of freedom formula can be obtained follow-
ing Yuan and Lin (2006); see Web Appendix B.

BIC may be too liberal in the small-n-large-p setting (Chen
and Chen, 2008), so we further supplement the BIC selection
with a backward filtering step. Given the model selected by
BIC, the backward filtering iteratively tests the significance of
each selected covariate following the ascending order of their
coefficient norms. For each selected covariate, we apply a like-
lihood ratio test (LRT) to test the null hypothesis that the
corresponding h coefficients of this covariate are 0 for all h
regressions. Specifically, if the jt th covariate has the largest
coefficient norm at the tth step of backward filtering, then
LRT = n

(
log |Ω̂1|− log |Ω̂0|

)
, where Ω̂1 and Ω̂0 are the resid-

ual covariance estimates before and after dropping the jt th
covariate. If the resulting LRT p-value is larger than a given
threshold, that covariate is dropped, and the next covariate is
tested; otherwise the backward filtering is terminated, and all
the remaining covariates are retained. The p-value threshold
is set as 0.05/pE , where pE is the effective number of indepen-
dent tests. A conservative choice is to set pE = p, the total
number of tests. In this article, we estimate pE by the ratio of
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permutation p-value over nominal p-value (Sun and Wright,
2010).

4. Simulations
4.1 Simulation Setup and Summary
Sun et al. (2010) proposed IAL for multiple loci mapping as-
suming a linear model, and compared IAL with nine existing
model-based variable selection methods, including marginal
regression, forward regression, forward-backward regression,
the composite model space approach (Yi, 2004), the adap-
tive Lasso (Zou, 2006) (with initial regression coefficients from
marginal regression because least square solution is not avail-
able when p > n), the HyperLasso (Hoggart et al., 2008),
the Bayesian t (Yi and Xu, 2008), the Bayesian Lasso (Park
and Casella, 2008), and the Bayesian adaptive Lasso (Sun
et al., 2010). It was found that IAL achieves the best per-
formance among all the competitors, when the underlying
model is indeed linear. For this reason, in our study, we fo-
cus the comparison of our newly proposed selection meth-
ods with IAL. We also compare with the modified MAL with
ridge or PLS initial estimate, and elastic net (Zou and Hastie,
2005).

We briefly describe the implementation of different meth-
ods. For mGAP, we have experimented with different θ via
different transformations of Y, as we discussed in Section 2.2.
We found the results are similar, whereas the spline trans-
formation shows some edge over other choices. For brevity,
we only report here the results with the spline transforma-
tion. By default, we employ a simple quadratic spline with
one inner knot, which delivers a competent performance in
both simulations and real data analysis. The results of ridge-
and PLS-based garrote selections are similar and thus we only
report the results of PLS-based solution and refer it as gar-
rote selection. Similarly for MAL, we only present the results
using PLS as initial estimate. The elastic net penalty has the
form of λ(α|bj |1 + (1 − α)‖bj ‖2), where λ > 0 is the pa-
rameter that controls the overall penalty, |bj |1 and ‖bj ‖ de-
note the L1 and L2 norms of bj , respectively. The parameter
0 ≤ α ≤ 1 controls the proportion of L1 and L2 penalties, which
is often fixed in applications. To fully explore the potential ad-
vantage of elastic net, we tune both λ and α. All tunings are
based on BIC, followed by the backward filtering. Our BIC for
MAL is slightly different from the definition in Ni et al. (2008)
because their BIC definition assumes p < n and use RSSols/
(n − p − 1) in the goodness-of-fit part of their BIC, where we
replace by log(|Ω̂|).

We first consider the linear model setup, then the nonlin-
ear model setting, including piecewise linear pattern, epistatic
interaction, and interaction with unobserved subgroups. In
summary, our general finding is that, when the true underly-
ing model is linear, mGAP that assumes no model retains a
comparable performance as IAL that assumes a linear model.
On the other hand, when the true model is nonlinear, mGAP
has a superior performance than IAL, elastic net, and MAL.
Moreover, in our simulation setup that mimics the real multi-
ple loci mapping where the signal is relatively weak and p far
exceeds n, the mGAP solution that adopts a one variable at
a time local strategy is far superior than the global strategy
of the ridge and PLS solutions.

4.2 Linear Model Setting
For the linear model setting, we adopt the same simulation
setup as in Sun et al. (2010), so that the results of our model-
free methods are directly comparable to the methods exam-
ined in Sun et al. (2010). For self-completeness, we briefly de-
scribe the simulation setup here. We first simulate a marker
map of 2000 markers from 20 chromosomes of length 90 cM,
with 100 markers per chromosome (using function sim.map”
in R/qtl (Broman et al., 2003)). The chromosome length is
chosen to be close to the average chromosome length in the
mouse genome. Then we simulate genotype data of the 360
F2 mice based on the simulated marker map (using function
sim.cross” in R/qtl). Finally, we choose 10 markers from the
2000 markers as QTL (quantitative trait locus), and simulate
quantitative traits in six cases, as described below, with 100
simulations per case. Given the 10 QTLs, the trait is sim-
ulated based on the linear model yi = β0 +

∑p
j=1xijβ j + ei ,

where yi is the trait value in the ith individual, xij is the geno-
type of the jth SNP in the ith individual, which is coded by
the number of minor alleles, and ei is the error term that is
normally distributed with mean zero and standard deviation
σe . Six cases with varying QTL effect sizes are examined:

(1) Case 1—Unlinked QTLs: one QTL per chromosome,
with effect sizes 0.5, 0.4, −0.4, 0.3, 0.3, −0.3, 0.2, 0.2,
−0.2, and −0.2; σ2

e = 1.
(2) Case 2—QTLs’ linked in coupling: two QTLs per chro-

mosome, with effect sizes across five chromosomes as
(0.5, 0.3), (−0.4, −0.4), (0.3, 0.3), (0.2, 0.2), and (−0.2,
−0.2); σ2

e = 1.
(3) Case 3—QTLs’ linked in repulsion: two QTLs per chro-

mosome, with effect sizes across five chromosomes as
(0.5, −0.3), (0.4, −0.4), (0.3, −0.3), (0.2, −0.2), and
(0.2, −0.2); σ2

e = 1.

Cases 4, 5, and 6 are the same as cases 1, 2, and 3, respec-
tively, except that σ2

e = 0.5. The locations and effect sizes
of the QTLs in each case are illustrated in Figure C.1 of the
Web Appendix C. Moreover, to mimic the reality that the
genotype of a QTL may not be observed, we randomly select
1200 markers as “markers with observed genotype profiles,”
and only use these 1200 markers in the multiple loci mapping.
There are still high correlations among these 1200 markers.
We estimate the effective number of tests as pE = 320 (Sun
et al., 2010), and set the p-value cutoff at backward filtering
as 0.05/320.

An identified marker is defined as a true discovery of a QTL
if it is on the same chromosome as the QTL and the R2 be-
tween the marker genotype and the QTL genotype is larger
than 0.8. Here 0.8 is chosen so that most unobserved markers
can be tagged by an observed marker. We compare variable
selection performance of different methods by receiver operat-
ing characteristic (ROC)-like curves that plot the number of
true discoveries versus the number of false discoveries across
different cutoffs of the coefficient sizes. The ROC-like curve
that is close to the upper-left corner indicates a better per-
formance in that it corresponds to more true discoveries and
fewer false discoveries.

Figure 1 reports the results. It is seen from the figure that,
overall IAL achieves the best variable selection performance,
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Figure 1. Comparison of IAL, elastic net, mGAP, pSDR (PLS solution), and MAL (PLS initial estimates) under the linear
model setting.

which is expected, because it is designed for the linear model.
mGAP has a slightly inferior but comparable performance
as IAL, although it often outperforms elastic net, which in
turn outperforms the garrote selection. For instance, for case 4
(unlinked QTLs, σ2

e = 0.5), given zero false discovery, garrote,
MAL, elastic net, mGAP, and IAL identify 1, 3, 3, 4, 5 true
discoveries, respectively. The poor performance of the garrote
selection is because the signal is rather weak and p is much
larger than n, and as a consequence, the initial estimate of the
dimension reduction basis is poor, and so is variable selection.
Figure 1 depicts the performance of various methods along
a range of coefficient cutoffs. In practice, one may often be
interested in the case when the cutoff is 0. The corresponding
results are shown as the points at the right-upper end of each

ROC-like curve in Figure 1. In addition, we also summarize
those numbers in Tables D.1 in the Web Appendix D.

4.3 Nonlinear Model Setting
We next consider a number of nonlinear models, each of which
is biologically meaningful and is likely to be encountered in
real QTL data analysis. For the covariates, we continue to
employ the same simulated genotype data as described in the
previous section, with the same six cases of varying QTL effect
sizes, except that σe is now taken as 0.2 and 0.1, respectively.

(1) Model 1—Piecewise linear model: let x·jk
be the jk th

column of X, where jk is the index of the kth QTL. Let
x̃ =

∑9
k=1 x·jk

bjk
, and q̃ = median(x̃). Let yi = x̃i + ei
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Figure 2. Illustration of the three simulated nonlinear models. Two types of points indicate two subgroups of the samples.
Xb1 and Xb2 indicate two linear combinations of the covariates.

if x̃ ≤ q̃, and yi = q̃ + ei if x̃ > q̃, where ei ∼ N(0,
σ2

e). Figure 2a illustrates this piecewise linear relation,
which, as seen from the plot, is only a mild deviation
from the linear model. Such a relation is often seen when
the genetic effect is buffered by some other factors.

(2) Model 2—Epistatic interaction: let x̃ =
∑9

k=1 x·jk
bjk

,
and yi = (x̃i + 3)I(xj10 ≥ 1) + ei , where I(xj10 ≥ 1) is
an indicator function. Note the genotype is coded as
0, 1, and 2 for genotype AA, AB, and BB; therefore
I(xj10 ≥ 1) equals to 1 if the genotype is AB or BB, and
0 otherwise. For the particular marker j10, 275 of the 360
samples have genotype AB or BB, and thus the other
nine QTLs only affect the trait in the 275 samples. See
Figure 2b. This type of interaction effect is often ob-
served in genetic studies and is referred to as epistatic
interaction (Carlborg and Haley, 2004).

(3) Model 3—Epistatic interaction with unobserved sub-
groups: let z̃ be an unobserved subgroup indicator,
which equals to 0 for 180 samples and 1 for the other
180 samples. Let x̃(1) =

∑
k∈{1,2,7,8,9,10} x·jk

bjk
and x̃(2) =

∑
k∈{3,4,5,6} x·jk

bjk
. Finally, let yi = x̃(1)

i + ei if z̃i = 0,

and yi = −x̃(2)
i + ei if z̃i = 1. See Figure 2c. This is an-

other example of epistatic interaction, but the underly-
ing grouping variable z̃ is unobserved.

Figure 3 shows the results for the epistatic interaction case
as depicted in model 2. This model is substantially different
from a linear model across all samples, and mGAP is seen
to achieve a much better performance than the linear model-
based IAL and elastic net. MAL often have better variable
selection performance than IAL and elastic net, but inferior
performance than mGAP. For instance, for case 4 (unlinked
QTLs and σ2

e = 0.1), given one false discovery, pSDR, elastic
net, IAL, MAL, and mGAP identifies 1, 2, 2, 3, and 5 true
discoveries, respectively. For the sake of space, we report the
results of model 1 and model 3 in Figures C.2 and C.3 of the
Web Appendix C, respectively. We observe that, the results
for model 1 are similar to the linear model case, because the
true association is not far from linear, whereas the results for
model 3 are similar as the epistatic interaction model 2. The
corresponding number of true/false discoveries while coeffi-
cient size cutoff is 0 are listed in Supplementary Tables D.2–
D.4 in the Web Appendix D.

5. Real Data Analysis
We analyzed the gene expression QTL (eQTL) of 6100 genes
in 112 yeast segregants. The expression of each gene, like other
complex traits, is controlled by multiple QTLs (Brem and
Kruglyak, 2005), and is often regulated by epistatic interac-
tions between QTLs (Brem et al., 2005). Therefore multiple
loci mapping methods, in particular those that can handle
epistatic interactions, are important for eQTL studies. In our
study, we treated the expressions of those 6100 genes as sep-
arate traits and map their QTLs separately. In other words,
our method was evaluated by a comprehensive QTL study on
6100 traits, which have various levels of heritability and differ-
ent genetic architectures. We combined the adjacent genetic
markers sharing the same genotype profiles. The final data
we analyzed consists of 6100 genes and p = 1027 genotype
profiles on n = 112 yeast segregants. The effective number of
independent tests across these 1027 genotype profiles was es-
timated as 412 (Sun and Wright, 2010) and thus the p-value
cutoff for backward filtering is set as 0.05/412.

We applied both the linear model-based IAL and the
model-free mGAP to this data. mGAP identified 7594 as-
sociations (if one gene is linked to k loci, we counted them
as k associations), and at least one QTL for 3110 (51.0% of
6100) genes. By contrast, IAL identified 5262 associations,
and at least one QTL for 3199 (52.4% of 6100) genes. Table 1
shows the number of genes grouped by the number of QTLs
identified by IAL and mGAP. For example, the entry at the
first row and the first column is 2345, which indicates that
both IAL and mGAP identify zero QTL for 2345 genes. Next

Table 1
The number of genes with certain number of QTLs identified
by mGAP and IAL. For example, the entry at first row and

first column is 2345, which indicates that both IAL and
mGAP identify zero QTL for 2345 genes.

# of QTLs by mGAP
0 1 2 ≥3

# of QTLs by IAL 0 2345 224 104 228
1 398 1142 185 209
2 152 235 225 159
≥3 95 147 88 164
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Figure 3. Comparison of IAL, elastic net, mGAP, pSDR (PLS solution), and MAL (PLS initial estimates) under the
nonlinear model setting when there are epistatic interactions.

we examine this table entry by entry to see which QTLs are
captured by one method but missed by the other.

First, 1047 associations (corresponding to 645 unique
genes) are missed by mGAP, but captured by IAL. A
closer look reveals that those 1047 associations have rela-
tively smaller coefficient sizes; see Figure C.4 of the Web
Appendix C. Moreover, we conducted a battery of linear
model diagnoses for the 645 linear regression models cor-
responding to those 645 genes, and report the results in
Figure C.5 of the Appendix C. It is seen that, for those genes,
a linear model provides a reasonable fit. As such, IAL is ex-
pected to be more powerful than mGAP, and so identifies
QTLs that are missed by mGAP. On the other hand, 1980

associations (corresponding to 556 unique genes) are missed
by IAL, but captured by mGAP. Many of these associations
have relatively large effect sizes (Figure C.4), indicating that
small effect size is not the major reason that IAL misses those
associations. We then carried out diagnosis tests for the 556
models correspond to those 556 genes, and report the re-
sults in Figure C.6 of the Appendix C. We found the clas-
sical linear model is not sufficient for most of those 556 genes,
which again agrees with our observations in simulations that
IAL may miss those truly important QTLs due to the de-
viation from the linear model (e.g., the epistatic effect). In
this situation, the model-free mGAP achieves a competent
accuracy.
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Figure 4. Comparison of IAL and mGAP in terms of interaction p-values, which are calculated by analysis of variance test
comparing the additive model and the model with both additive and interaction effects. Some genes are linked to two QTLs
by one method but one eQTL by the other method. Here we show that for these genes, the QTL pairs identified by the mGAP
(right panel, 185 genes) are more likely to capture the interaction effect than the QTL pairs identified by the IAL (left panel,
235 genes) because there are more small p-values in the right panel than in the left penal.

Next, we examine the 1142 genes with one QTL identified
by both IAL and mGAP. The results for the two methods are
consistent for those genes, where the locations of the QTLs
from IAL and mGAP are within 50kb for 1074 (94%) genes.

There 420 cases that IAL identifies one QTL for a gene,
but mGAP identifies two QTLs for this gene, and vice versa
(Table 1, cells highlighted by bold typeface). It is often the
case that the two QTLs identified by one method includes the
single QTL identified by the other method (about 92% with
distance < 50kb). The difference is that the QTL pairs that
are identified only by mGAP capture epistatic interactions
more frequently than the QTL pairs that are identified only
by IAL; see Figure 4 of the article.

For the remaining 992 genes in Table 1 that are highlighted
by underscore, similar conclusions can be drawn that a larger
proportion of models identified by mGAP does not fit a linear
model well (Figures C.7 and C.8 of the Web Appendix C). For
example, about 19% (192 out of 992) of the models identified
by IAL show heteroscedasticity (p-value < 0.05), in contrast
to ∼31% (311 out of 992) heteroscedastic models identified by
mGAP. Among the 384 genes where IAL identifies two QTLs,
∼13% (49 out of 384) show significant two-way interaction (p-
value < 0.05); among the 313 genes where mGAP identifies
two QTLs, ∼19% (60 out of 313) show significant two-way
interaction.

6. Discussions
Despite the flourish of proposals on variable selection for high-
dimensional data in recent years, genome-wide multiple loci
mapping has remained to be challenging. This can be at-
tributed to its high dimensionality but a relatively weak sig-
nal, as well as the presence of complex associations such as
epistatic interactions. In this article, we have proposed and
examined a number of model-free variable selection solutions
for small-n-large-p regressions. Compared with the existing
model-based solutions, our proposal of mGAP retains a com-
parable accuracy when the imposed model and the true one

agree, whereas it achieves a far superior performance when the
underlying model deviates from the assumed one. This is par-
ticularly useful, because, as illustrated in our real data studies
across 6100 gene expression traits, the true association in QTL
mapping is often more complex than the usually imposed lin-
ear model, and is generally unknown a priori. In practice,
our proposed method can be used in conjunction with, rather
than as an alternative to, many model-based variable selec-
tion approaches. One example is given in our analysis of yeast
segregants data, where the best practical strategy is a joint
application of both the model-based IAL and the model-free
mGAP.

Within the model-free variable selection framework, we
have also compared the global strategy of the ridge solution
and the PLS solution with the local strategy of the mGAP
solution. The key difference is that the former handles all p co-
variates simultaneously, whereas the latter takes an iterative
approach by updating one variable at a time. Another distinc-
tion is that the ridge and PLS solutions perform simultaneous
dimension reduction basis estimation and variable selection,
while mGAP focuses on variable selection only. We present
the results of the global strategy because both ridge and PLS
are natural extensions of the existing solutions from n > p to
n < p. Based on our simulation studies, we believe the local
strategy is a more effective solution for high dimensional data.

We have implemented mGAP, ridge, PLS methods, as well
as modified version of MAL and elastic net in an R pack-
age BPrimm (Bayesian and penalized regression in multiple
loci mapping), which can be freely downloaded from http://
www.bios.unc.edu/~wsun/software/BPrimm.htm. The com-
putational intensive part of mGAP is implemented by C. The
computational time and memory load of mGAP is reasonable
for large-scale QTL mapping. For example, in our real data
studies across 6100 gene expression traits, with n = 112 and
p = 1027, mGAP takes less than 1G memory in total and
about 50 seconds for multiple loci mapping of each trait. For
studies with a large number of traits, parallel computation
with a small number of traits per CPU is recommended.
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There are a number of avenues for future extensions. First,
we have concentrated on the genome-wide multiple loci map-
ping in experimental cross of inbred strains, while similar
problems exist for genome-wide association studies (GWAS)
in human population. Genetic markers in experimental cross
tend to have higher correlations than in GWAS. Therefore,
simultaneous multiple loci selection is expected to be more
advantageous than marginal regression in experimental cross
than in GWAS. Nevertheless it is of interest to consider the
GWAS data. Second, the mGAP solution has been designed
to handle a univariate response, i.e., a single trait at a time. In
order to perform mGAP across a large number of gene expres-
sion traits, we have chosen to model each trait separately in
our real data analysis, and the multiple testing across gene ex-
pression traits is not corrected for. It is an intriguing question
to study multiple traits simultaneously so to borrow informa-
tion across the correlated traits. These questions are currently
under investigation.

7. Supplementary Materials
The Web Appendix, Tables, and Figures referenced in Sec-
tions 3, 4 and 5 are available under the Paper Informa-
tion link at the Biometrics website http://www.biometrics.
tibs.org.
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