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Abstract

Genome-wide multiple loci mapping can be viewed as a variable selec-

tion problem where the major objective is to select genetic markers related

with a trait of interest. This is a challenging variable selection problem be-

cause the number of genetic markers is large (often much larger than the

sample size) and there are often strong linkage or linkage disequilibrium be-

tween markers. In this paper, we developed two methods for genome-wide

multiple loci mapping: the Bayesian adaptive Lasso and the iterative adap-

tive Lasso. Compared to the existing methods, the advantages of our meth-

ods come from the assignment of adaptive weights to different genetic mak-

ers, the iterative updating of these adaptive weights, and the ability to penal-

ize most regression coefficients to be exactly zero. We evaluate these two

methods as well as several existing methods in the application of genome-

wide multiple loci mapping in experimental cross. Both large-scale simula-

tion and real data analysis show that the proposed methods have improved

variable selection performance. The iterative adaptive Lasso is also compu-

tationally much more efficient than the commonly used marginal regression

and step-wise regression methods.

1 Introduction

It is well known that complex traits, including many common diseases, are con-

trolled by multiple loci (Hoh and Ott, 2003). With the rapid advance of genotyping

techniques, genome-wide high density genotype data can be measured accurately.

However, multiple loci mapping remains one of the most attracting and most dif-
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ficult problems in genetic studies, mainly due to the high dimensionality of the

genetic markers as well as the complicate correlation structure among genotype

profiles (throughout this paper, we use the term “genotype profile” to denote the

genotype profile of one marker, instead of the genotype profile of one individual).

Suppose a quantitative trait and the genotype profiles of p0 markers (e.g., Single

Nucleotide Polymorphism’s, SNPs) are measured in n individuals. We treat this

multiple loci mapping problem as a linear regression problem:

yi = b0 +

p∑
j=1

xijbj + ei, (1.1)

where yi (i = 1, ..., n) is the trait value of individual i, b0 is the intercept, ei ∼

N(0, σ2
e). Here p is the total number of covariates. If we only consider the main

effect of each SNP, p = p0; and if we consider the main effects and all the pair-

wise interactions of binary markers p = p0 + p0(p0 − 1)/2. xij is the value of

the j-th covariate of individual i. The specific coding of xij depends on the study

design and the inheritance model. For example, if additive inheritance is assumed,

the main effect of a SNP can be coded as 0, 1, and 2 based on the number of

minor allele (i.e., the less frequent allele). Let y = (y1, ..., yn)T , X = (xij)n×p,

b0 = b011×p, b = (b1, ..., bp)
T , and e = (e1, ..., en)T , equation (1.1) can be written

as y = b0 + Xb + e. We use this matrix form in some following derivations to

simplify the notation. The major objective of multiple loci mapping is to identify

the correct subset model, i.e., to identify those js, such that bj 6= 0, and estimate

the bj’s.

Marginal regression and step-wise regression are commonly used for multi-

ple loci mapping. Permutation-based thresholds for model selection have been
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proposed for marginal regression (Churchill and Doerge, 1994) and forward re-

gression (Doerge and Churchill, 1996). Broman and Speed (2002) proposed a

model selection criterion named BICδ, which was further rewritten into a penal-

ized LOD score criterion and implemented within a forward-backward model se-

lection framework (Manichaikul et al., 2009). The threshold of the penalized LOD

score is also estimated by permutations.

Several simultaneous multiple loci mapping methods have been developed,

among which two commonly used approaches are Bayesian shrinkage estimates

and Bayesian model selection. The existing Bayesian shrinkage methods are hi-

erarchical models based on the additive linear model specified by equation (1.1),

with covariate-specific priors: p(bj|σ2
j ) ∼ N(0, σ2

j ). The coefficients are shrunk

because their prior mean values are 0. The degree of shrinkage is related to the

prior specification of the covariate-specific variance σ2
j . An inverse-Gamma prior:

p(σ2
j |δ, τ) = inv-Gamma(δ, τ) =

τ δ

Γ(δ)
(σ2

j )
−1−δ exp(−τ/σ2

j ), (1.2)

leads to an unconditional prior of bj as a Student’s t distribution (Yi and Xu, 2008).

We refer to this method as the Bayesian t. Another choice is an exponential prior

for σ2
j :

p(σ2
j |a2/2) = Exp(a2/2) =

a2

2
exp

(
−a

2

2
σ2
j

)
, (1.3)

where a is a hyper-parameter. In this case, the unconditional prior of bj is a

Laplace distribution: p(bj) = a
2
e−a|bj | that is closely related to the Bayesian

interpretation of the Lasso (Tibshirani, 1996); therefore it has been referred to

as the Bayesian Lasso (Yi and Xu, 2008). Park and Casella (2008) constructed
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the Bayesian Lasso using a similar but distinct prior: p(bj|σ2
j ) ∼ N(0, σ2

eσ
2
j )

and p(σ2
j |a2/2) = Exp(a2/2). Several general Bayesian model selection meth-

ods have been applied for multiple loci mapping, for example, the Stochastic

Search Variable Selection (George and McCulloch, 1993) and the reversible jump

Markov Chain Monte Carlo (MCMC) method (Richardson and Green, 1997). One

example is the composite model space approach (CMSA) (Yi, 2004).

We propose two variable selection methods: the Bayesian adaptive Lasso

(BAL) and the iterative adaptive Lasso (IAL). The BAL is a full Bayesian ap-

proach while the IAL is an (Expectation Conditional Maximization) ECM algo-

rithm (Meng and Rubin, 1993). Both the BAL and the IAL are related with the

adaptive Lasso (Zou, 2006), which extends the Lasso (Tibshirani, 1996) by al-

lowing different penalization parameters for different regression coefficients. The

adaptive Lasso enjoys the oracle property (Fan and Li, 2001), i.e., the covariates

with nonzero coefficients will be selected with probability tend to 1, and the esti-

mates of nonzero coefficients have the same asymptotic distribution as the correct

model. However, the adaptive Lasso requires consistent initial estimates of the re-

gression coefficients, which are generally not available in the high dimension low

sample size (HDLSS) setting where the number of covariates (p) is larger than the

sample size (n). Huang et al. (2008) showed that with initial estimates obtained

from the marginal regression, the adaptive Lasso still has the oracle property in the

HDLSS setting under a partial orthogonality condition: the covariates with zero

coefficients are weakly correlated with the covariates with nonzero coefficients.

However, in many real-world problems, including the multiple loci mapping prob-

lem, the covariates with zero coefficients are often strongly correlated with some
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covariates with nonzero coefficients. The BAL and the IAL extend the adaptive

Lasso in the sense that they do not require any informative initial estimates of the

regression coefficients. They can be applied in the HDLSS setting, even if there

is high correlation among the covariates. After we completed an earlier version of

this paper, we noticed an independent work on extending the adaptive Lasso from

a Bayesian point of view (Griffin and Brown, 2007). There are several differences

between Griffin and Brown’s approach and our work. First, Griffin and Brown

(2007) did not study the full Bayesian approach, while we have implemented and

carefully studied the BAL. Secondly, Hoggart et al. (2008) implemented Griffin

and Brown’s approach in HyperLasso, a coordinate descent algorithm, which is

different from the IAL at both model setup and implementation. We showed in

our simulation and real data analysis that the IAL has significantly better variable

selection performance than the HyperLasso. The differences between the IAL

and the HyperLasso will be further elaborated in the Discussion section after we

present our methods and results.

In this paper, we focus on the genome-wide multiple loci mapping in exper-

imental cross of inbred strains (e.g., yeast sergeants, F2 mice) where typically

thousands of genetic markers are genotyped in hundreds of samples. Another sit-

uation for multiple loci mapping is genome-wide association studies (GWAS) in

outbred populations where millions of markers are genotyped in thousands of indi-

viduals. Multiple loci mapping in experimental cross and GWAS present different

challenges. In experimental cross, genotype profiles have higher correlations in

larger scale. Typically most markers from the same chromosome have correlated

genotype profiles. Therefore the genotype profiles of QTL in experimental cross
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are more often correlated. In contrast, GWAS data has higher dimensionality but

the LD (linkage disequilibrium) blocks often have limited sizes. Therefore QTL

genotype in GWAS are often independent or weakly correlated. We focus on the

experimental cross because it is a situation where simultaneous multiple loci map-

ping methods have more advantages than the commonly used marginal regression

or step-wise regression methods. However, we note this does not imply multiple

loci mapping in experimental cross is in general easier than in GWAS.

The remainder of this paper is organized as follows. We first introduce the

BAL and the IAL in Sections 2 and 3, respectively. We then evaluate them and

several representative existing methods by extensive simulations in Section 4. A

real data study of multiple loci mapping of gene expression traits is presented in

section 5. Finally, we summarize and discuss the implications of our methodology

in Section 6.

2 The Bayesian adaptive Lasso (BAL)

The BAL is a Bayesian hierarchical model. The priors are specified as follows:

p(b0) ∝ 1, p(σ2
e) ∝ 1/σ2

e , (2.1)

p(bj|κj) =
1

2κj
exp

(
−|bj|
κj

)
, (2.2)

p(κj|δ, τ) = inv-Gamma(κj; δ, τ) =
τ δ

Γ(δ)
κ−1−δj exp

(
− τ

κj

)
, (2.3)

where δ > 0 and τ > 0 are two hyperparameters. The unconditional prior of bj is:

p(bj) =

∫ ∞
0

τ δ

2Γ(δ)
κ−2−δj exp (−(|bj|+ τ)/κj) dκj =

τ δδ

2
(|bj|+ τ)−1−δ, (2.4)
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which we refer to as a power distribution with parameter δ and τ . From this

unconditional prior, we can see that larger δ and smaller τ lead to bigger penal-

ization.

In practice, it could be difficult to choose specific values for the hyper-parameters

δ and τ . We suggest a joint improper prior p(δ, τ) ∝ τ−1, and let the data estimate

δ and τ . Thus the posterior distribution of all the parameters is given by

p(b, b0, σ
2
e , κ1, ..., κp|y,X)

∝ p(y|b,X, b0, σ2
e)p(σ

2
e)p(b0)

p∏
j=1

p(bj|κj)p(κj|δ, τ)p(δ, τ)

∝ 1

σ2+n
e

exp
[
−rss/(2σ2

e)
] τ δp−1

(Γ(δ))p

p∏
j=1

κ−2−δj exp

(
−|bj|+ τ

κj

)
. (2.5)

where rss indicates residual sum of squares, i.e., rss =
∑n

i=1

(
yi − b0 −

∑p
j=1 xijbj

)2
.

We sample from this posterior distribution using a Gibbs sampler, which is pre-

sented in the Supplementary Materials Section A.

The BAL can be better understood by comparing it with the Bayesian Lasso.

Recall that in the Bayesian Lasso, bj|σ2
j ∼ N(0, σ2

j ), σ2
j ∼ Exp(a2/2), and the

unconditional prior for each bj is a double-exponential distribution. The condi-

tional normal prior resembles a ridge penalty and the unconditional Laplace prior

resembles a Lasso penalty. Therefore an intuitive (albeit not accurate) explana-

tion of the Gibbs sampler for the Bayesian Lasso is: it approaches a Lasso penalty

(which is common to all the covariates) by iteratively applying covariate-specific

ridge penalties. Figure 1 in Park and Casella (2008) justifies this intuitive ex-

planation: the coefficient paths of the Bayesian Lasso is a compromise between

the coefficient paths of the Lasso and ridge regression. In contrast, an intuitive
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explanation of the BAL is that it approaches the power penalty in equation (2.4)

by iteratively applying covariate-specific Lasso penalty, i.e., the adaptive Lasso

penalty. Figure 1 illustrates that the power distribution provides better penalty

than the Laplace distribution (i.e., the Lasso penalty) since it has higher peak at

zero and heavier tails, which leads to more penalization for smaller coefficients

and less penalization for larger coefficients.
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Figure 1: Comparison of the power distribution: f(x; τ, δ) = τδδ
2

(|x| + τ)−1−δ,

given τ = 0.02 and δ = 0.1, and the Laplace (i.e., double exponential, DE)

distribution f(x;κ) = 1
2κ

exp (−|x|/κ), given κ=1 or 0.2. We plot the density in

log scale for better illustration. The power distribution tends to have higher peak

at zero and heavier tails for larger values.

9



3 The Iterative Adaptive Lasso (IAL)

Because no point mass at zero is specified in the Bayesian shrinkage methods (in-

cluding the BAL), the samples of the regression coefficients would not be exactly

zero, so that the Bayesian shrinkage methods do not automatically select vari-

ables. However, if we look for the mode of the posterior distribution, it could be

exactly zero. This leads to the following ECM algorithm: the iterative adaptive

Lasso.

Specifically, under the setup of the BAL (equations (2.1)-(2.3)), we treat θ =

(b0, b1, ..., bp) as the parameter of interest and let φ = (σ2
e , κ1, ..., κp) be the miss-

ing data. The observed data are yi and xij . We are interested in the following

complete data log-posterior of θ:

l(θ|y,X, φ) = C − rss/(2σ2
e)−

p∑
j=1

|bj|
κj
, (3.1)

whereC is a constant with respect to θ. Suppose in the t-th iteration, the parameter

estimates are θ(t) = (b
(t)
0 , b

(t)
1 , ..., b

(t)
p ). Then after some derivations (Supplemen-

tary Materials Section B), the conditional expectation of l(θ|y,X, φ) with respect

to the conditional density of f(φ|y,X, θ(t)) is

Q(θ|θ(t)) = C − (rss/2)/
(
rss(t)/n

)
−

p∑
j=1

|bj|(
|b(t)j |+ τ

)
/(1 + δ)

, (3.2)

where rss(t) is the residual sum of squares calculated based on θ(t) = (b
(t)
0 , b

(t)
1 , ..., b

(t)
p ).

Comparing equation (3.1) and (3.2), it is obvious that in order to obtain Q(θ|θ(t)),

we can simply update σ2
e = rss(t)/n and κj = (|b(t)j |+ τ)/(1 + δ).

Based on the above discussions, the IAL is implemented as follows:
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1. Initialization: We initialize bj(0 ≤ j ≤ p) with zero, initialize σ2
e by vari-

ance of y, and initialize κj(1 ≤ j ≤ p) with τ/(1 + δ).

2. Conditional Maximization (CM) step:

(a) Update b0 by its posterior mode (see Supplementary Materials Section

B),

b0 = (1/n)
n∑
i=1

(
yi −

p∑
j=1

xijbj

)
. (3.3)

(b) For j = 1, ..., p, update bj by its posterior mode (see Supplementary

Materials Section B),
bj = 0 if −σ2

j/κj ≤ b̄j ≤ σ2
j/κj

bj = b̄j − σ2
j/κj if b̄j > σ2

j/κj

bj = b̄j + σ2
j/κj if b̄j < −σ2

j/κj

,

where

σ2
j =

σ2
e∑n

i=1 x
2
ij

, and b̄j =

(
n∑
i=1

x2ij

)−1 n∑
i=1

xij

(
yi − b0 −

∑
k 6=j

xikbk

)
.(3.4)

3. Expectation (E) step:

With the updated bj’s, recalculate the residual sum of squares, rss, and

(a) Update σ2
e : σ2

e = rss/n.

(b) Update κj: κj = (|bj|+ τ)/(1 + δ).

We say the algorithm is converged if the coefficient estimates b̂0, b̂1, ..., b̂p have

little change.
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Being a valid ECM algorithm only guarantees that IAL identifies a local mode

of the posterior probability. In order to obtain desirable variable selection per-

formance, two issues need to be considered. (1) How to choose the initial val-

ues of the coefficients? (2) How to choose the hyper-parameter τ and δ. In the

HDLSS setting, especially where the covariates are highly correlated, initial esti-

mates from ordinary least squares or ridge regression are either unavailable, un-

stable, or none-informative. Therefore we simply initialize all the coefficients by

zero. To decide δ and τ , we first examine the choice of δ and τ in an asymptotic

point of view to estimate their magnitudes.

Theorem 1. Consider the multiple linear regression problem formulated in

equation (1.1) with n samples. Assume the penalization parameters of the IAL

satisfy (1 + δ)/τ = O(n1/2+d), where 0 < d < 1/2. Denote the coefficient

estimates in the t-th iteration as b̂(t). Let X−j be X without the j-th column and

let b̃(t+1)
−j be the coefficient estimates (except bj) before estimating b̂(t+1)

j .

(i) If b̂(t)j = 0 and xj⊥y|X−jb̃(t+1)
−j , then p(b̂(t+1)

j = 0)→ 1.

(ii) If ∃ c > 0, s.t. |corr(xj,y|b̃(t+1)
−j )| > c, then p(b̂(t+1)

j 6= 0)→ 1.

See the Supplementary Materials Section C for the proof.

Theorem 1 can be explained as follows. First, we need to penalize the co-

efficients big enough so that if b̂j = 0 in the previous iteration, it remains 0 if

xj is uncorrelated with y given all the other coefficients estimates. This requires

(1 + δ)/τ = O(n1/2+d) and d > 0. On the other hand, the penalization should be
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small enough so that we can select those xj that are not independent with y, given

all the other covariates. This requires (1 + δ)/τ = O(n1/2+d) and d < 1/2. Com-

bining these two conditions, we need (1+δ)/τ = O(n1/2+d), where 0 < d < 1/2.

Theorem 1 only provides the magnitude of (1 + δ)/τ . In practice, we select δ

and τ by the BIC, followed by a backward filtering. The BIC is written as

BICτ,δ = log(rss/n) +
log(n)

n
dfτ,δ, (3.5)

where dfτ,δ is the number of nonzero coefficients, an estimate of the degrees of

freedom (Zou et al., 2007). Given the τ and δ selected by BIC, we can obtain

a subset model, which usually includes a small number of covariates. Given the

subset model, the backward filtering starts from the covariate with the smallest

coefficient (in terms of absolute value) and iteratively test each covariate follow-

ing the ascending order of their coefficients (absolute values). In each test, the

model with/without the covariate is compared by an F-test. If the covariate can

be dropped (i.e., the p-value is not small enough), the next covariate is tested;

otherwise the backward filtering is terminated and the remaining covariates are

the selected variables. The p-value cutoff can be set as 0.05/pE , where pE is the

effective number of independent tests. A conservative choice is to set pE = p, the

total number of tests. In this paper, we estimate pE by quantifying the relation be-

tween nominal p-value and permutation p-value, see Sun and Wright (2009) and

Supplementary Materials Section D for details. Note this backward filtering step

is computationally efficient for the IAL since the IAL only keeps a small number

of covariates with non-zero coefficients. Similar backward filtering approach can

be applied to the Bayesian methods. However, we did not apply backward filter-
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ing to the Bayesian methods for two practical concerns. First, few coefficients

from the Bayesian methods will be exactly zero, thus backward filtering is com-

putationally intensive. Second, most coefficients from the Bayesian methods are

close to 0, thus their ranks are not quite informative. This will affect the stability

of the backward filtering algorithm since it relies on these ranks.

An alternative strategy is to apply an extended BIC, which provides larger

penalty for bigger models (Chen and Chen, 2008). We compared the extended

BIC with the ordinary BIC plus backward filtering in our simulations. The latter

has better performance. Our explanation is that the extended BIC is valid asymp-

totically and it is conservative when the sample size is relatively small (n=360 in

our simulation). Compared with the extended BIC, the ordinary BIC can better

distinguish the model missing some true discoveries with the model keeping all

the true discoveries; however it is likely to include some false discoveries in ad-

dition to all the true discoveries (Chen and Chen, 2008). Nevertheless, these false

discoveries can be filtered out by the backward filtering.

4 Simulation Studies

We first use simulations to evaluate the variable selection performance of ten

methods: marginal regression, forward regression, forward-backward regression

(with penalized LOD as the model selection criterion), the composite model space

approach (CMSA), the adaptive Lasso (with initial regression coefficients from

marginal regression), the iterative adaptive Lasso (IAL), the HyperLasso, and the

three Bayesian shrinkage methods: the Bayesian t, the Bayesian Lasso, and the
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Bayesian adaptive Lasso (BAL).

4.1 Simulation setup

We employ the R/qtl (Broman et al., 2003) to simulate genotype of 360 F2 mice.

We first simulate a marker map of 2000 markers from 20 chromosomes of length

90 cM, with 100 markers per chromosome (using function sim.map in R/qtl).

The chromosome length is chosen to be close to the average chromosome length

in mouse genome. Then we simulate genotype data of the 360 F2 mice based on

the simulated marker map (using function sim.cross in R/qtl). As expected,

the markers from different chromosomes have little correlation, while the majority

of the markers within the same chromosome are positively correlated (Supplemen-

tary Figure 1). In fact, given the genetic distance of two SNPs, the expected R2

between two SNPs in this F2 cross can be explicitly calculated (Supplementary

Figure 2). For example, the R2s of two SNPs 1cM, 5cM, and 10cM apart are

0.96, 0.82, and 0.67, respectively. Finally, we choose 10 markers from the 2000

markers as QTL, and simulate quantitative traits in six situations with 1000 simu-

lations per situation. Given the 10 QTL, the trait is simulated based on the linear

model in equation (1.1), where genotype (xij) is coded by the number of minor

alleles. The QTL effect sizes across the six situations are listed below:

1. Un-linked QTL: one QTL per chromosome, with effect sizes 0.5, 0.4, -0.4,

0.3, 0.3, -0.3, 0.2, 0.2, -0.2, and -0.2; σ2
e = 1. Recall that σ2

e is the variance

of the residual error.

3. QTL linked in coupling: two QTL per chromosome, with effect sizes of the
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QTL for each chromosome as (0.5, 0.3), (-0.4, -0.4), (0.3, 0.3), (0.2, 0.2),

and (-0.2, -0.2); σ2
e = 1.

5. QTL linked in repulsion: two QTL per chromosome, with effect sizes of the

QTL for each chromosome as (0.5, -0.3), (0.4, -0.4), (0.3, -0.3), (0.2, -0.2),

and (0.2, -0.2); σ2
e = 1.

Situations 2, 4, and 6 are the same as situations 1, 3, and 5, respectively, except

that σ2
e = 0.5. The locations and effect sizes of the QTL in each situation are

illustrated in Figure 2. To mimic the reality that the genotype of a QTL may not

be observed, we randomly select 1200 markers with “observed genotype profiles”,

and only use these 1200 markers in the multiple loci mapping. The information

loss is limited due to the high density of the markers. In fact, the vast majority of

the 800 markers with missing genotype can be tagged with R2 > 0.8 by at least

one marker with observed genotype (Supplementary Figure 3).

4.2 The implementations of different methods

We have implemented marginal regression, forward regression, the adaptive Lasso

(with marginal regression coefficients as initials), the Bayesian t, Bayesian Lasso,

BAL, and IAL in an R package BPrimm (Bayesian and Penalized regression in

multiple loci mapping). The computationally intensive parts are written by C.

Our implementation of the Bayesian t and Bayesian Lasso are mainly based on Yi

and Xu (2008), but with small modifications for the Bayesian t to further improve

its computational efficiency. We leave the details of the Gibbs samplers for both

methods in the Supplementary Materials Section E and F. The R package BPrimm
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Figure 2: The locations and effect sizes of the QTL in simulation study. The

markers labeled with red color are among the 800 markers with “missing data”.

(a) Situations 1 or 2. (b) Situations 3 or 4. The genetic distances/r2 between two

QTL from chromosome 6, 7, 10, 15, and 19 are 15cM/0.63, 7cM/0.68, 28cM/0.25,

17cM/0.56, and 26cM/0.40, respectively, where r2 denotes the correlation square.

(c) Situations 5 or 6. The genetic distances/r2 between two QTL from chromo-

some 7, 8, 14, 18, and 19 are 25cM/0.31, 13cM/0.59, 41cM/0.22, 17cM/0.55, and

33cM/0.30, respectively. The mean (standard deviation) of the proportion of trait

variance explained by the 10 QTL in the six simulation situations are 0.31 (0.02),

0.48 (0.03), 0.44 (0.03), 0.62 (0.04), 0.17 (0.01), and 0.29 (0.02), respectively
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can be downloaded from http://www.bios.unc.edu/∼wsun/software/.

We use 10,000 permutations to calculate permutation p-value for both marginal

and step-wise regression, and use permutation p-value 0.05 as cutoff. For marginal

regression, we only keep the most significantly linked marker in each chromosome

to eliminate redundant loci, a strategy that has been used elsewhere (Wang et al.,

2006). Some criteria can be used to dissect multiple QTL in one chromosome

from the results of marginal regression. However the implementation of such cri-

teria requires ad-hoc considerations and is beyond the scope of this paper. For for-

ward regression, we use permutation-based residual empirical threshold (RET) to

select variables (Doerge and Churchill, 1996). We employ the function stepqtl

in R/qtl (Broman et al., 2003) for the forward-backward regression with penalized

LOD score as the model selection criterion. The function stepqtl allows user to

add two loci into the model each time. We use this option for simulation situations

3-6 where two QTL are simulated from the same chromosome.

There are two options for the priors of the Bayesian Lasso: p(bj|σ2
j ) ∼ N(0, σ2

j )

(Yi and Xu, 2008), and p(bj|σ2
j ) ∼ N(0, σ2

eσ
2
j ) (Park and Casella, 2008), where

σ2
e is the variance of the residual errors. The results we shall discuss are based on

the former, while the latter yields similar results (data not shown). The Bayesian

Lasso uses two hyperparameters r and s to specify the prior of κ2/2 as Gamma(s,

r). Following Yi and Xu (2008), we set both r and s as small numbers such as

r = 0.01 and s = 0.01. Values smaller than 0.1 yield similar results in terms of

the number of true/false discoveries.

We use the implementation of CMSA in R/qtlbim (Yandell et al., 2007). We

choose not to carry out interval mapping because the genetic markers are already
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dense enough. The CMSA method requires an additional input, namely the ex-

pected number of QTL. We supply this parameter with the true number of simu-

lated QTL. For each marker, we record its posterior probability belonging to the

true model from the output of the CMSA.

Both extended BIC and ordinary BIC plus backward filtering are implemented

for the IAL and the AL (with marginal regression coefficients as initials). The ex-

tended BIC is the ordinary BIC plus 2γ log τ(Sj), where Sj indicates a model of

size j and τ(Sj) =
(
p
j

)
is the total number of models with j covariates. Following

Chen and Chen (2008), we set γ = 1 − 1/(2κ), where κ is solved from p = nκ.

In the BIC plus backward filtering approach, we use 0.05/pE as p-value cutoff,

where pE is the effective number of independent tests. A conservative estimate of

pE is 320. See Supplementary Materials Section D and Sun and Wright (2009)

for more details. In the implementation of the adaptive Lasso, given the weights

estimated from marginal regression, the Lasso problem is solved by R function

glmnet (Friedman et al., 2009). A combinations of L1 and L2 penalty are al-

lowed in R function glmnet, i.e., the elastic net penalty (Zou and Hastie, 2005):∑p
j=1

[
(1− α)β2

j /2 + α|βj|
]
. The high correlations among the covariates may

cause degeneracies for Lasso calculation. Following Friedman et al. (2009), we

choose to set α = 0.95 to obtain a solution much like the Lasso, but removes the

degeneracy problem.

The HyperLasso software is downloaded from http://www.ebi.ac.uk/projects/BARGEN/.

The “-linear” option is used to fit linear model. The “-iter” option is set as 50 to

choose highest posterior mode among 50 runs of the HyperLasso. The “lambda”

parameter is set as
√
nΦ−1(1 − 0.05/pE/2), where pE is the effective number of
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independent tests which is set as 320. As suggested by the author of the Hyper-

Lasso (personal communication), the “shape” parameter should be between 1 and

5. We tried three values 1, 3, and 5, and chose to set shape=1 since it gave slightly

better performance than 3 and 5.

All the Bayesian methods use 10,000 burn-in iterations followed by 10,000

iterations to obtain 1000 samples, one from every 10 iterations. To monitor the

convergence, we calculate the Gelman and Rubin scale reduction parameter (for 5

parallel chains) and the Geweke’s statistic for each of the 1,200 coefficients (Sup-

plementary Figure 4-6). For all the three Bayesian methods, the vast majority of

the Gelman and Rubin statistics are smaller than 1.05, and the Geweke’s statis-

tic are approximately normally distributed. The auto correlation of the markers

at the simulated QTL (or the marker that has the highest correlation with a QTL

if the QTL genotype is not observed) is smaller than 0.15 for all the 5 chains.

The default options in R/coda are used to calculate these diagnostic statistics. We

note that “no diagnostic can ‘prove’ convergence of a MCMC” (Carlin and Louis,

2000). However, these diagnostic statistics do suggest convergence of all the three

Bayesian shrinkage methods.

4.3 Results

We divide the methods to be tested into two groups: the Bayesian methods that

do not explicitly carry out variable selection (since most coefficients remain non-

zero), and the step-wise regression, adaptive Lasso, and HyperLasso that explicitly

select a subgroup of variables. The IAL is classified into the first group if we use
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the ordinary BIC to select the hyper-parameters; and it is classified into the second

group if we use the extended BIC or ordinary BIC plus backward filtering.

For either group, we compare the performance of different methods by com-

paring the number of true discoveries and false discoveries across different cutoffs

of coefficient size or posterior probability. Given a cutoff, we can obtain a final

model. We count the number of true discoveries in the final model as follows. For

each of the true QTL, we check whether any marker in the final model satisfies the

following three criteria: (1) it is located on the same chromosome as the QTL, (2)

it has the same effect direction (sign of the coefficient) as the QTL, (3) the R2 be-

tween this marker and the QTL is larger than 0.8. The cutoff 0.8 is chosen based

on the R2 between the markers with observed genotype profiles and those with

unobserved genotype profiles so that the vast majority of the unobserved markers

can be tagged. Different cutoffs such as 0.7 and 0.9 lead to similar conclusions

(results not shown). If there is no such marker, there is no true discovery for

this QTL. If there is at least one such marker, the one with the highest R2 with

the QTL is recorded as a true discovery and is excluded from the true discovery

searching of other QTL. After the true discoveries of all the QTL are identified,

the remaining markers in the final model are defined as false discoveries. These

false discoveries are further divided into two classes: false discoveries linked to

at least one QTL (linked false discoveries) and false discoveries un-linked to any

QTL (unlinked false discoveries). A false discovery is linked to a QTL if it sat-

isfies the above three criteria. We summarize the results of each method by an

ROC-like curve that plots the median number of true discoveries versus the me-

dian number of false discoveries across different cutoff values. The methods with

21



ROC-like curves closer to the upper-left corner of the plot have better variable

selection performance because they have less false discoveries and more true dis-

coveries. It is possible that a few cutoff values correspond to the same median of

false discoveries but different medians of true discoveries. In this case, the largest

median of true discoveries is plotted to simplify the figure. In other words, these

ROC-like curves illustrate the best possible performance of these methods. For-

ward regression outperforms marginal regression in all situations. Therefore we

omit the results for marginal regression for readability of the figures.

We first compare the Bayesian methods and the IAL (with ordinary BIC). If

the linked false discoveries are counted as false discoveries, the IAL has apparent

advantages in all situations. Approximately, the performance of these methods can

be ranked as IAL ≥ CMSA ≥ BAL ≥ Bayesian t ≥ Bayesian Lasso (Figure 3).

If the linked false discoveries are counted as true discoveries, the performance of

different methods are not well-separated (Supplementary Figure 7). Overall the

IAL, BAL and the CMSA have similar and superior performance, and the adaptive

Lasso and the Bayesian Lasso have inferior performance.

Next we compare the step-wise regression method, the HyperLasso, the adap-

tive Lasso (with initial estimates from marginal regression) and the IAL with ex-

tended BIC or ordinary BIC plus backward filtering. These methods tend not to

select the unlinked false discoveries. In fact the ROC-like curve for each of these

methods is exactly the same whether we count unlinked false discoveries as true

discoveries or not. If the linked false discoveries are treated as true discoveries,

an additional fine-mapping step is needed to pinpoint the location of the QTL in

a cluster of linked markers. Therefore, in general, methods avoid linked false dis-
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Figure 3: Comparison of the number of true discoveries vs. the total number of

false discoveries in simulation study. 23



coveries should be preferred. As shown in Figure 4, the IAL with ordinary BIC

plus backward filtering has the best performance while the HyperLasso has the

worst performances in all the situations. When the QTL are linked in repulsion,

the HyperLasso has no power at all. The adaptive Lasso has similar performance

as the IAL when the signal is strong (i.e., QTL linked in coupling), otherwise it

has significantly worse performance than the IAL. The step-wise regression and

the IAL using the extended BIC have slightly worse performance than the IAL

using ordinary BIC plus backward filtering.

5 Gene expression QTL study

QTL study of one particular trait may favor one method by chance. In order

to evaluate our method in real data in a comprehensive manner, we study the

gene expression QTL (eQTL) of thousands of genes. The expression of each

gene, like other complex traits, is often controlled by multiple QTL (Brem and

Kruglyak, 2005). Therefore multiple loci mapping has important applications

for eQTL studies. In this section, we study an eQTL data with more than 6000

genes and 2956 SNPs in 112 yeast segregants (Brem and Kruglyak, 2005; Brem

et al., 2005). The gene expression data is downloaded from Gene Expression

Omnibus (GEO, GSE1990). The expression of 6229 genes are measured in the

original data. We drop 129 genes that have more than 10% missing values, and

impute the missing values in the remaining 6100 genes by R function impute.knn

(Troyanskaya et al., 2001). The genotype data is from Dr. Rachel Brem. Fifteen

SNPs with more than 10% missing values are excluded from this study, and the
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Figure 4: Comparison of the number of true discoveries vs. the total number of

false discoveries in simulation study. 25



missing values in the remaining SNPs are imputed using the function fill.geno

in R/qtl (Broman et al., 2003). The neighboring SNPs with the same genotype

profiles are combined, resulting in 1027 genotype profiles. With more than 6000

genes, it is extremely difficult, if not impossible, to examine the QTL mapping

results gene by gene to filter out possible linked false discoveries. Therefore, the

Bayesian methods that generate lots of linked false discoveries were not applied

to this eQTL data.

We apply the IAL, marginal regression, forward regression, forward-backward

regression, and HyperLasso to this yeast eQTL data to identify multiple eQTL

of each gene separately. In other words, we examine the performances of these

methods across 6100 traits. The permutation p-value cutoff for marginal regres-

sion and step-wise regression are set as 0.05. The parameters δ and τ of the IAL

are selected by ordinary BIC followed by backward filtering. In the backward

filtering step, we use a p-value cutoff 0.05/412, based on a conservative estimate

of 412 independent tests (see the Supplementary Materials Section D). For the

HyperLasso, the “lambda” parameter is set as
√
nΦ−1(1 − 0.05/412/2), and the

“shape” parameter is set to be 1. The IAL and step-wise regressions have similar

power to identify the genes with at least one eQTL (Table 1). Apparently, the IAL

is the most powerful method in terms of identifying multiple eQTL per gene, and

the hyperLasso has least power to identify either single eQTL or multiple eQTL

per gene (Table 1).

Next we focus on the results of the IAL. Many previous studies have identi-

fied 1-D eQTL hotspots. A 1-D eQTL hotspot is a genomic locus that harbors the

eQTL of several genes. Similarly, if the expressions of several genes are associ-
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Table 1: The number of genes with certain number eQTL.

method Total # of genes with The number of genes with

at least one eQTL 1 eQTL 2 eQTL 3 eQTL > 3 eQTL

IAL 3199 1934 771 301 193

marginal 3289 2536 667 82 4

forward 3298 2365 734 171 28

forward-backward 3294 2089 724 294 183

hyperLasso 128 95 20 4 8

ated with the same k loci, these k loci is referred to as a k-D eQTL hotspot. The

results of the IAL reveals several 1-D eQTL hotspots (Figure 5), as well as many

eQTL hotspots of higher dimensionality. We illustrate the 2-D eQTL hotspots in

a two-dimensional plot where one point corresponds to one 2-D eQTL and the X ,

Y coordinates of the point are the locations of the two eQTL (Figure 6). Compar-

ing Figure 5 and Figure 6, it is interesting that a 1D-eQTL can be further divided

into several groups based on the results of 2D-eQTL, which is consistent with the

finding of Zhang et al. (2009).

We divide the whole yeast genome into 600 bins of 20kb regions, which lead

to 600*599/2 = 179,700 bin pairs as potential “2D eQTL hotspots”. Eleven bin

pairs are linked to more than 15 genes (Supplementary Table 1). The cutoff is

chosen arbitrarily so that we can focus on a relatively small group of 2D hotpots

with definite significant enrichment. Due to space limit, we only discuss in deails

the largest 2D hotspot located at chr15:160kb-180kb and chr15:560-580kb. There

are 46 genes linked to these two loci simultaneously, and among them 16 are in-
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Figure 5: Illustration of the eQTL mapping results in 112 yeast sergeants. In the

upper panel, each point corresponds to a 1-D eQTL result, where X-coordinate is

the location of the eQTL and Y-coordinate is the location of the gene. Different

colors indicate different sizes of the regression coefficients. The diagonal band

indicates the cis-eQTL where expression of one gene is associated with the geno-

type of a nearby marker. The vertical band indicate 1D-eQTL hotspots. In the

lower panel, the number of genes linked to each marker are plotted. Several 1-D

eQTL hotspots are apparent for those markers that harbor the eQTL of hundreds

of genes.
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Figure 6: The distribution of the loci pairs linked to the same gene. Here each

point corresponds to a 2-D eQTL, and the background color reflects the density of

the distribution. If the expression of one gene is linked to more than two loci, we

plot each pair of linked loci. For example, if one gene is linked to three markers

1, 2, and 3, which are located at position p1, p2, and p3, respectively, this gene

corresponds to three points in the figure (p1, p2), (p1, p3), and (p2, p3).
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volved in “generation of precursor metabolites and energy” (p-value 3.60×10−13).

A closer look reveals that 41 of the 46 genes are linked to one marker block at

Chr15, 170,945-180,961bp, and one maker at Chr15, 563,943bp. One potential

causal gene nearby chr15:171-181kb is PHM7 (Zhu et al., 2008), and one poten-

tial causal gene nearby chr15:564kb is CAT5 (Yvert et al., 2003). Interestingly,

both PHM7 and CAT5 are among the 46 genes linked to both loci.

There are also several cases that one group of genes linked to three loci (∼35.8

millions possible three loci combinations, Supplementary Table 2) or even four

loci (∼5,346 millions possible four loci combinations, Supplementary Table 3).

For example, three genes KGD2, SDH1, SDH3 are all linked to four loci: chr2:240-

260kb, chr13:20-40kb, chr15:160-180kb, and chr15:560-580kb. Interestingly,

all these three genes are involved in “acetyl-CoA catabolic process” (p-value

1.93× 10−7).

6 Discussion

In this paper, we have proposed two variable selection methods, namely the Bayesian

Adaptive Lasso (BAL) and the Iterative Adaptive Lasso (IAL). These two methods

extend the adaptive Lasso in the sense that they do not require any informative ini-

tial estimates of the regression coefficients. The BAL is implemented by MCMC.

Through extensive simulations, we observe the BAL has apparently better variable

selection performance than the Bayesian Lasso, slightly better performance than

the Bayesian t, and slightly worse performance than the CMSA. The IAL, which

is an ECM algorithm, aims at finding the mode of the posterior distribution. The
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IAL has uniformly the best variable performance among all the ten methods we

tested. Coupled with a backward filtering approach, type I error of the IAL can be

explicitly controlled.

The IAL differs from the HyperLasso (Griffin and Brown, 2007; Hoggart

et al., 2008) in at least two aspects. First, the HyperLasso specifies inverse gamma

distribution for κ2j/2, and the resulting unconditional posterior relies on a numer-

ical function. In contrast, we specify inverse gamma distribution for κj , and has a

much simpler unconditional posterior (equation (2.4)). The difference is not triv-

ial since it not only leads to convenient theoretical studies in the theorem 1, but

also better numerical stability. For example, the HyperLasso becomes unstable

for small shape parameter while IAL is stable for all possible values of δ and τ .

Second, we select δ and τ by BIC and further filter out covariates with insignifi-

cant effects by backward filtering. In contrast, the HyperLasso directly assigns a

large penalization to control the type I error. As shown in the results section, the

strong penalization of HyperLasso lead to little power to detect relatively weaker

signals.

The IAL is computationally very efficient. For example, it takes 4 hours to

carry out the multiple loci mapping for the yeast eQTL data with 6100 genes

and 1017 markers. In contrast, the marginal regression, forward regression, and

forward backward regression take about 60, 100, and 200 hours. All of the com-

putation was done using a Dual Xenon 2.0 Ghz Quadcore server. One additional

computational advantage of the IAL is that the type I error is controlled by the

computationally efficient backward filtering step. The IAL results can be reused

for different type I errors. In contrast, for the step-wise regression, all the compu-
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tation need to be redone for each type I error.

Our results seems contradict to the results of Yi and Xu (2008) that the Bayesian

Lasso has adequate variable selection performance. This inconsistency can be ex-

plained by the fact that we are studying the variable selection problem with much

denser marker map. It is known that the Lasso does not have variable selection

consistency if there are strong correlations between the covariates with zero and

non-zero coefficients (Zou, 2006). Since the Bayesian Lasso has similar penaliza-

tion characteristics as the Lasso (Park and Casella, 2008) and the denser marker

map leads to higher correlations among genotype profiles, it is not surprising that

the Bayesian Lasso has inferior performance in our simulations. In fact, in our

simulations, the Bayesian Lasso over-penalizes the regression coefficients (Sup-

plementary Figure 8). This is consistent with the findings that “Lasso has had to

choose between including too many variables or over shrinking the coefficients”

(Radchenko and James, 2008). In contrast, the Bayesian t, the BAL and the IAL

have increasingly smaller penalization on the coefficients estimates. The IAL

seems to provide unbiased coefficients estimates. This leads to an assumption that

the IAL has the oracle property, which warrant further theoretical study.

Due to the computational cost and the need to further filter out false discov-

eries, the Bayesian shrinkage methods are less attractive for large scale compu-

tation such as eQTL studies. However, there is room to improve these Bayesian

shrinkage methods, such as the equi-energy sampler approach (Kou et al., 2006).

Alternative prior distribution for hyperparmeters may also lead to better variable

selection performance of the BAL. These strategies are among our future works.

Although for the gamma prior in the BAL, we have tried the strategy to set the
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hyper-parameters δ and τ as fixed numbers. In general, the results is not very sen-

sitive to the choices of the δ and τ , and no combination of δ and τ leads to signif-

icantly better results than assigning the joint prior for δ and τ , i.e., p(δ, τ) ∝ τ−1.

In the current implementation, we handle missing genotype data by imput-

ing it first (using Viterbi algorithm implemented in R/qtl) and then take the im-

puted values as known. A more sophisticated approach for the BAL is to take the

genotype data as unknown and sample them within MCMC; and for the IAL, we

can summarize its results across multiple imputations (Sen and Churchill, 2001).

However, these sophisticated approaches are computationally more intensive and

are mainly designed for relatively sparse marker maps. The current high-density

SNP arrays often have high confidence genotype call rate larger than 98% (Rabbee

and Speed, 2006). Imputation methods are also an active research topic. Haplo-

type information from related or unrelated individuals can be used to obtain ac-

curate genotype imputation (Marchini et al., 2007). Therefore simply imputing

the genotype data and then taking it as known may be sufficient for many stud-

ies using high-density SNP arrays, although careful examination of missing data

patterns is always important.

We have mainly discuss our method in a linear regression framework. Exten-

sion to the generalized linear model (e.g., logistic regression for binary responses)

is straightforward. Generalized linear model can be solved by iterated re-weighted

least squares. Similar to the approach used in Friedman et al. (2009), our method

can be plugged-in to solve the least square problem with in the loop of iterated

re-weighted least squares. Yi and Banerjee (2009) proposed an intriguing and ef-

ficient approach to apply generalized linear model for multiple loci mapping. We
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cannot adopt similar approach since we use different penalties. Yi and Banerjee

(2009) also proposed to study large number of markers chromosome by chro-

mosome, which is plausible solution to apply our method to GWAS data where

millions of genetic markers are available.

We have tested the robustness of our methods by additional sets of simulations

where the traits are log or exponentially transformed (data not shown). The con-

clusion is that our methods are fairly robust to mild violations of the linear model

assumption. Although it has been argued that genetic effects most often contribute

to the complex traits additively (Hill et al., 2008), one may still expect the addi-

tive linear model assumption is severely violated in some situations. For example,

when epistatic interactions are present. As mentioned in the introduction section,

it is straightforward to include the pair-wise interactions in our model, similar to

the approaches used by Zhang and Xu (2005) and Yi et al. (2007). In practice,

prioritizing interactions by the significance of main effects or biological knowl-

edge (e.g., genetic interaction or protein-protein interaction) may help to reduce

the multiple testing burden and to improve the power. How to penalize the inter-

action term also warrants further study. Grouping the interaction terms and the

corresponding main effects together and applying group penalties (Yuan and Lin,

2006) may be a better approach than penalizing the main effects and interactions

separately.

In summary, we have developed iterative adaptive penalized regression meth-

ods for genome-wide multiple loci mapping problems. Both theoretical justifica-

tions and empirical evidence suggest that our methods have superior performance

than the existing methods. Although our work is motivated by genetic data, our
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methods are general enough to be applied to other HDLSS problems as well.
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