
Supplementary Materials for

“Integrated study of copy number states and genotype calls

using high density SNP arrays”

A HapMap samples

Originally, Illumina performed 73 CEU samples, 77 YRI samples, and 75 CHB+JPT sam-
ples on Human 610-Quad arrays. Since one of our criteria for results evaluation is the
overlap of the CNVs between offspring and parents, we only use the CEU and YRI sam-
ples that are form complete parents-child trios, which correspond to 14 CEU trios and 20
YRI trios. Two CEU trios and three YRI trios are excluded for further analysis due to high
noise of the data or chromosome-wide copy number aberrations, which are not expected
in normal tissue. CHB+JPT samples are independent individuals and we do not observe
serious low-quality arrays, so all the 75 CHB+JPT samples are used in our study.

Figure A-1 illustrate the BAF and LRR data of chromosome 2 of sample NA12006,
which is one member of a deleted CEU trio. The LRR data appears to be quite noisy
and in need of further normalization. Similar patterns are observed for other chromosomes
of this sample. Another sample NA12264 suffers similar problem (Figure A-2). Figure
A-3 and A-4 show two YRI individuals (NA19208 and NA19193) with chromosome wide
amplification. Another YRI sample NA18870 has large variance for LRR, and many scat-
tered SNPs with low or extremely low LRR (Figure A-5). These five samples and their
corresponding families are excluded from our studies.
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Figure A-1: BAF and LRR for chromosome 2 of HapMap sample NA12006 (mother of
a CEU trio: NA12005, NA12006, and NA10839). Compared with other individuals, the
LRR has large variance and the lowess fit of LRR (the solid red curve) fluctuates, which
indicate either a bad array or insufficient normalization.
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Figure A-2: BAF and LRR for chromosome 4 of HapMap sample NA12264 (father of a
CEU trio: NA12264, NA12234, and NA10863). Similar to the sample NA12006, the LRR
has large variance and the lowess fit of LRR (the solid red curve) fluctuates, which indicate
either a bad array or insufficient normalization.
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Figure A-3: BAF and LRR for chromosome 9 of HapMap sample NA19208 (offspring of a
YRI trio: NA19207, NA19206, and NA19208). This is obviously a pattern of chromosome-
wide amplification.
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Figure A-4: BAF and LRR for HapMap sample NA19193 (mother of a YRI trio: NA19192,
NA19193, and NA19194). This is obviously a pattern of chromosome-wide amplification.
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Figure A-5: BAF and LRR for HapMap sample NA18870 (mother of a YRI trio: NA18871,
NA18870, and NA18872). The LRR has large variance, and many scattered SNPs have
low or extremely low LRR.
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Table A-1: Comparison of PennCNV (P) and xCNV (X) by the number/proportion of
CNVs that are shared between the offspring and the parents in 12 CEU trios.

Family Father Mother Offspring Total Matched Proportion
ID P X P X P X
1 NA12003 NA12004 NA10838 31 26 11 8 0.35 0.31
2 NA11992 NA11993 NA10860 34 35 14 12 0.41 0.34
3 NA07357 NA07345 NA07348 38 54 12 12 0.32 0.22
4 NA06994 NA07000 NA07029 34 38 13 15 0.38 0.39
5 NA11839 NA11840 NA10854 35 33 18 17 0.51 0.52
6 NA12264 NA12234 NA10863 46 46 19 17 0.41 0.37
7 NA12716 NA12717 NA12707 39 36 22 20 0.56 0.56
8 NA12891 NA12892 NA12878 53 47 18 16 0.34 0.34
9 NA12812 NA12813 NA12801 26 38 7 12 0.27 0.32
10 NA12874 NA12875 NA12865 48 48 21 21 0.44 0.44
11 NA12762 NA12763 NA12753 52 38 31 24 0.60 0.63
12 NA06993 NA06985 NA06991 38 41 20 20 0.53 0.49
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Table A-2: Comparison of PennCNV (P) and xCNV (X) by the number/proportion of
CNVs that are shared between the offspring and the parents in 17 YRI trios.

Family Father Mother Offspring Total Matched Proportion
ID P X P X P X
1 NA18501 NA18502 NA18500 47 65 20 19 0.43 0.29
2 NA18504 NA18505 NA18503 36 43 23 20 0.64 0.47
3 NA18507 NA18508 NA18506 26 37 15 17 0.58 0.46
4 NA18516 NA18517 NA18515 46 34 22 14 0.48 0.41
5 NA18871 NA18870 NA18872 54 67 17 24 0.31 0.36
6 NA18853 NA18852 NA18854 59 91 16 15 0.27 0.16
7 NA18856 NA18855 NA18857 46 46 25 25 0.54 0.54
8 NA18913 NA18912 NA18914 29 28 20 16 0.69 0.57
9 NA19092 NA19093 NA19094 32 34 14 15 0.44 0.44
10 NA19138 NA19137 NA19139 55 36 26 23 0.47 0.64
11 NA19200 NA19201 NA19202 60 69 20 21 0.33 0.30
12 NA19171 NA19172 NA19173 51 44 21 21 0.41 0.48
13 NA19203 NA19204 NA19205 45 37 29 24 0.64 0.65
14 NA19160 NA19159 NA19161 35 32 16 16 0.46 0.50
15 NA19223 NA19222 NA19221 45 38 16 16 0.36 0.42
16 NA19119 NA19116 NA19120 32 40 12 18 0.38 0.45
17 NA19141 NA19140 NA19142 59 60 27 22 0.46 0.37
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B HMM Algorithm

B.1 Emission probability for BAF

States 3 is a special case because it has only one normal component, so the weight is always
1. For xCNV, the weights (for any state other than state 3) are decided as follows. Let
pB be the population frequency of B allele in normal tissue, wz,h = ψ(nB;n, pB), where
ψ(nB;n, pB) is the binomial probability of choosing nB of B alleles from a total of n alleles.
For xCNA when genotype in normal tissue is not available, state 1 and 3 have the same
weights as in xCNV. The weights for state 7 are w7,1 = ψ(0; 2, pB), w7,2 = ψ(1; 2, pB),
and w7,3 = ψ(2; 2, pB). Assuming there is tissue contamination, the weights for state 2,
4, 5, 6, 8, and 9 are the same: wz,1 = ψ(0; 2, pB), wz,2 = wz,3 = 0.5ψ(1; 2, pB), and
wz,4 = ψ(2; 2, pB). If there is no tissue contamination, weights for state 5 and 9 remain the
same; for state 2, 4, 6, and 8, wz,1 = pA, wz,2 = wz,3 = 0, and wz,4 = pB.

For xCNA when genotype in normal tissue is available, the emission probability of BAF
is as follows. If the genotype in normal tissue is homozygous,

p(b|z, g = AA) = πb,zI(0 < b < 1) + (1− πb,z)



qeϕ(b; θz,1) +
�

h �=1

pe

1−Hz
ϕ(b; θz,h)



 ,

p(b|z, g = BB) = πb,zI(0 < b < 1) + (1− πb,z)



qeϕ(b; θz,Hz) +
�

h �=Hz

pe

1−Hz
ϕ(b; θz,h)



 ,

where ϕ(b; θz,h) = φ(b; θz,h)I(0<b<1)Φ(0; θz,h)I(b=0) (1− Φ(1; θz,h))
I(b=1), and pe is the geno-

typing error (assume it is a known constant), and qe = 1 − pe. If the genotype in normal
tissue is heterozygous and under the assumption of tissue contamination, for state z = 1, 7,

p(b|z, g = AB) = πb,1I(0 < b < 1) + (1− πb,1)



qeϕ(b; θ1,2) + 0.5pe
�

h=1,3

ϕ(b; θ1,h)





For state z = 2, 4, 5, 6, 8, 9,

p(b|z, g = AB) = πb,zI(0 < b < 1) +

(1− πb,z)



0.5qe
�

h=2,3

ϕ(b; θz,h) + 0.5pe
�

h=1,4

ϕ(b; θz,h)





If it is assumed that there is no tissue contamination, all the above equations hold except
that for states z = 2, 4, 6, 8

p(b|z, g = AB) = πb,zI(0 < b < 1) + (1− πb,z) (0.5ϕ(b; θz,1) + 0.5ϕ(b; θz,Hz)) .
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B.2 Notations

Let L be the number of SNP probes, and letN be the number of distinct states in the HMM.
The input data, denoted as X ={pos, LRR, BAF, λ, G}, includes the probe positions
(pos), the logR ratio (LRR, denoted by ri, 1 ≤ i ≤ L), the B allele frequency (BAF,
denoted by bi, 1 ≤ i ≤ L), parameters of state duration λ = {λj , 1 ≤ j ≤ N}, and an
optional input G = {gi, 1 ≤ i ≤ L}, the genotypes of all the SNPs in normal tissue. The
parameters of the HMM are Θ = {πr,z, µr,σr,πb,z, µb,σb, A}. Specifically, {πr,z, µr,σr} are
the parameters for the emission probability of LRR, where πr,z are the mixture proportions
of the uniform components, µr and σr indicate all the mean, standard deviation parameters
of LRR. Similarly, {πb,z, µb,σb} are the parameters for the emission probability of BAF.
A = {ajk (1 ≤ j �= k ≤ N)} is the transition probability matrix. We need to define some
additional notations:

• qi: the state at position i,

• κz: the probability that state of the first SNP probe is state z,

• e(i, z): the emission probability of state z at position i,

• di: the distance from probe i− 1 to i,

• αi(j, k): the transition probability from state j to k, from probe i− 1 to i. If k �= j,
αi(j, k) = ajk(1− exp(−λjdi)). If k = j, αi(j, j) = exp(−λjdi) = 1−

�
k �=j αi(j, k).

Most of the computations are carried out in log scale to avoid underflow or overflow. A
utility function logsumexp is used to facilitate the computation. Specifically, it is defined

as logsumexpj(v) = log
��

j exp(vj)
�
, where v = {vj} is a vector.

B.3 Viterbi Algorithm

Given all the parameters, find the best path.
Input

X,Θ
Output

path: the most likely path; logPv: the log probability of the most likely path;
Intermediate Variables

v(i, z): p(the most likely path ending at position i | qi = z); path.m(i− 1, z): the most
likely state at position i− 1, given qi = z.
Algorithm

1. Initialization:

v(1, z) = κze(1, z) (B-1)

log(v(1, z)) = log(κz) + log(e(1, z)) (B-2)
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2. Recursion, for i ∈ (2 : L)1 and for z ∈ (1 : N),

v(i, z) = max
j

(v(i− 1, j)αi(j, z))e(i, z) (B-3)

log(v(i, z)) = max
j

[log(v(i− 1, j)) + log(αi(j, z))] + log(e(i, z)) (B-4)

path.m(i− 1, z) = argmaxj [log(v(i− 1, j)) + log(αi(j, z))] (B-5)

where maxj(v) returns the maximum value and argmaxj(v) returns the index of the
maximum value.

3. Termination

path(L) = argmaxz log(v(L, z)) (B-6)

logPv = max
z

log(v(L, z)) (B-7)

For i ∈ ((L− 1) : 1)

path(i) = path.m(i, path(i+ 1)) (B-8)

B.4 Forward Algorithm

Given all the parameters, find the forward probabilities.
Input

X,Θ
Output

f(i, z): forward probability, p(x1, x2, ..., xi, qi = z|Θ); overall likelihood log(p(X|Θ)).
Algorithm

1. Initialization:

f(1, z) = κze(1, z) (B-9)

log(f(1, z)) = log(κz) + log(e(1, z)) (B-10)

2. Recursion, for i ∈ (2 : L) and for z ∈ (1 : N),

f(i, z) = e(i, z)
�

j

f(i− 1, j)αi(j, z) (B-11)

log(f(i, z)) = log(e(i, z)) + logsumexpj [log(f(i− 1, j)) + log(αi(j, z))] (B-12)

3. Termination

p(X|Θ) =
�

z

f(L, z) (B-13)

log(p(X|Θ)) = logsumexpz log(f(L, z)) (B-14)

1we use m : n to indicate a series of m,m + 1, ..., n, if m < n, or a series of m,m − 1, ..., n if m > n,
where m and n are both integers
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B.5 Backward Algorithm

Input

X,Θ
Output

b(i, z): backward probability, p(xi+1, ..., xL, |qi = z,Θ).
Algorithm

1. Initialization:

b(L, z) = 1 (B-15)

log(b(L, z)) = 0 (B-16)

2. Recursion, for i ∈ (L : 2) and for z ∈ (1 : N),

b(i− 1, z) =
�

j

[αi(z, j)e(i, j)b(i, j)] (B-17)

log(b(i− 1, z)) = logsumexp [log(αi(z, j)) + log(e(i, j)) + log(b(i, j))](B-18)

B.6 Posterior Probability

Calculate the posterior probability based on forward and backward algorithm.
Input

Forward probability fL×N = {f(i, z)}, backward probability bL×N = {b(i, z)}, and
overall likelihood logP = log(p(X|Θ)).
Output

γ(i, z): posterior probability p(qi = z|X,Θ).
Algorithm

γ(i, z) =
f(i, z)b(i, z)

p(X|Θ)
(B-19)

log(γ(i, z)) = log(f(i, z)) + log(b(i, z))− logP (B-20)

B.7 Baum-Welch Algorithm

Here we only describe one-step update of the Baum-Welch Algorithm. The whole algorithm
is simply repeats of this one-step update, plus the initial values of the parameters and a
convergence criterion.
Input

X and Θ0. Here Θ0 is either the initial values of the parameters or the parameter
estimates from previous iteration.
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Output

Estimated parameters Θ1; logP: the log likelihood from each iteration.
Algorithm

(1) Estimate the posterior probabilities that one SNP belongs to one HMM state.

f = forward(X,Θ0), (B-21)

b = backward(X,Θ0), (B-22)

logP = logsumexpz log(f(L, z)). (B-23)

The initial probability κz is simply the posterior probability of being state z at position 1,
therefore the new estimate of κz, denoted as κz, is

κz =
f(1, z)b(1, z)

p(X|Θ)
, (B-24)

log(κz) = log(f(1, z)) + log(b(1, z))− logP. (B-25)

(2) Estimate the transition probability ajk. Denote the estimated ajk as ajk, for j �= k

ajk =

�L
i=2

f(i− 1, j)ajk(1− exp(−λjdi))e(i, k)b(i, k)�L
i=2

�
l �=j f(i− 1, j)ajl(1− exp(−λjdi))e(i, l)b(i, l)

(B-26)

=
ajk

�L
i=2

f(i− 1, j)(1− exp(−λjdi))e(i, k)b(i, k)�
l �=j ajl

�L
i=2

f(i− 1, j)(1− exp(−λjdi))e(i, l)b(i, l)
. (B-27)

Let cjk = logsumexpi[log(f(i − 1, j)) + log(1 − exp(−λjdi)) + log(e(i, k)) + log(b(i, k))],
then

log(ajk) = log(ajk) + cjk − logsumexpl �=j [log(ajl) + cjl]. (B-28)

(3) Estimate {πr,z, µr,z,σr,z}, the parameters for the emission probability of LRR. Be-
cause the likelihoods for LRR and BAF are independent with each other given the states,
we estimate {πr,z, µr,z,σr,z} by maximizing the mixture density p(r|z) = πr,z/Rm + (1 −
πr,z)φ(r;µr,z,σr,z). For each observation ri, we calculate the probability it belongs to the
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uniform component (Ur,z) and the normal component (Nr,z) respectively:

γ(i, z, Ur,z) = p(qi = z, ξi = Ur,z|X,Θ0)

= p(ξi = Ur,z|qi = z,X,Θ0)p(qi = z|X,Θ0)

=
(πr,z/Rm)γ(i, z)

πr,z/Rm + (1− πr,z)φ(ri;µr,z,σr,z)
, (B-29)

γ(i, z,Nr,z) = p(qi = z, ξi = Nr,z|X,Θ0)

= p(ξi = Nr,z|qi = z,X,Θ0)p(qi = z|X,Θ0)

=
(1− πr,z)φ(ri;µr,z,σr,z)γ(i, z)

πr,z/Rm + (1− πr,z)φ(ri;µr,z,σr,z)
, (B-30)

where ξi indicates the mixture component (of LRR) of probe i. Therefore the new estimates
for πr,z, µr,z, and σr,z are respectively

πr,z =

�L
i=1

γ(i, z, Ur,z)�L
i=1

γ(i, z)
, (B-31)

µr,z =

�L
i=1

γ(i, z,Nr,z)ri�L
i=1

γ(i, z,Nr,z)
, (B-32)

σr,z =

�L
i=1

γ(i, z,Nr,z)(ri − µr,z)2�L
i=1

γ(i, z,Nr,z)
. (B-33)

For those states that share the same number of copies, the parameters µr,z and σr,z can be
estimated by combining those states. For example, state 1 and 2 both have copy number
2, thus

µr,1 = µr,2 =

�L
i=1

�
2

z=1
γ(i, z,Nr,z)ri�L

i=1

�
2

z=1
γ(i, z,Nr,z)

, (B-34)

σ
2
r,1 = σ

2
r,2 =

�L
i=1

�
2

z=1
γ(i, z,Nr,z)(ri − µr,1)

2

�L
i=1

�
2

z=1
γ(i, z,Nr,z)

. (B-35)

(4) Estimate {πb,z, µb,z,h,σb,z,h}, the parameters for the emission probability of BAF.

The distribution of BAF is a mixture of a uniform distribution and Hz normal distribu-
tions, where Hz varies from 1 to 5, depending on the state z. The estimation of µb,z,h

and σb,z,h is the most complicate part of our algorithm, mainly because of the trunca-
tion of BAF values at 0 and 1. Parameter estimation for truncated normal distribution is
more computationally demanding and less stable than non-truncated normal distribution.
Therefore we try to avoid the truncated normal distribution as long as it is possible.
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First, state 3 is a special case because it is the null state with both alleles deleted. The
likelihood of state 3 is composed of a uniform component and a normal component. As
mentioned in the main text, we assume the mean value of its normal component is 0.5.
We further assume the standard deviation is smaller than 0.15 so that the probability of
truncation is smaller than 0.001, therefore as an approximation, we can estimate the stan-
dard deviation as if it is non-truncated normal distribution. The possible bias brought by
the relatively small standard deviation can be compensated by employing a bigger weight
for the uniform component. Furthermore, this null state have significantly lower LRR, so
that limited degree of bias in its BAF emission probability will not bring big changes of
the final posterior probability estimates.

Next, we consider all the other states except state 3. For the normal distributions
corresponding to homozygous genotypes, since µb,z,1 = 0.0 and µb,z,Hz = 1.0 are fixed, we
only need to estimate the standard derivations, which is straightforward because the trun-
cation point is exactly the the mean values. Specifically, we can simply use the observed
bis such that 0 < bi < 1 to estimate the standard deviations. For all the other normal
components (which correspond to heterozygous genotypes), except for the tissue contam-
ination mixtures such as (A, AB), it is safe to assume the mean values are far away from
the boundary (0 or 1) so that the truncation effect can be neglected. For example, based
on the parameters used in PennCNV [1], the minimum distance between a mean value of
any heterozygous genotype class and the boundary is bigger than five standard deviations.
In our method, we allow the data to estimate the parameters. But we add the restriction
that for all the normal components corresponding to heterozygous genotypes, except for
the tissue contamination mixtures, the minimum distance between the mean value and
the boundaries (0 or 1) is 3.3 standard deviations, so that the probability of truncation
is smaller than 0.001. Therefore, as an approximation, we can also estimate these normal
components using only those bis such that 0 < bi < 1.

Finally, for the two tissue contamination mixtures, the truncated normal distributions
are inevitable. We will use all the observed bis, including those that are exactly 0 or 1 to
estimate the corresponding parameters.

Now we discuss more specifically the estimation algorithm. For each observation of
BAF, denoted as bi, we first calculate the probability it belongs to the uniform distribution
of state z, (denoted as Ub,z) and one of the normal distribution of state z (denoted as Nb,z,h,
where h = 1, ..., Hz). For all the genotype classes except tissue contamination mixtures, if
bi = 0,

γ(i, z, Ub,z) = 0, γ(i, z,Nb,z,1) = γ(i, z), and γ(i, z,Nb,z,h) = 0, ∀ h > 1.

If bi = 1,

γ(i, z, Ub,z) = 0, γ(i, z,Nb,z,Hz) = γ(i, z), and γ(i, z,Nb,z,h) = 0, ∀ h < Hz.
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For genotype classes except tissue contamination, the truncated values (0 or 1) may arise
from either homozygous genotype classes or the tissue contamination mixtures. Specifically,
if bi = 0, for z = 2, 4, 6, 8,

γ(i, z,Nb,z,1) =
0.5

0.5 + Φ(0, µb,z,2,σb,z,2)
, (B-36)

γ(i, z,Nb,z,2) =
Φ(0, µb,z,2,σb,z,2)

0.5 + Φ(0, µb,z,2,σb,z,2)
. (B-37)

where Φ(x, µ,σ) is cumulative normal distribution with parameter µ and σ. If bi = 1, for
z = 2, 4, 6, 8,

γ(i, z,Nb,z,3) =
1− Φ(1, µb,z,3,σb,z,3)

1.5− Φ(1, µb,z,3,σb,z,3)
, (B-38)

γ(i, z,Nb,z,z) =
0.5

1.5− Φ(1, µb,z,3,σb,z,3)
. (B-39)

If 0 < bi < 1, for all the genotype classes

γ(i, z, Ub,z) = p(qi = z, ηi = Ub,z|X,Θ0)

= p(ηi = Ub,z|qi = z,X,Θ0)p(qi = z|X,Θ0)

=
πb,zγ(i, z)

πb,z + (1− πb,z)
�Hz

h=1
wz,hφ(bi;µb,z.h,σb,z.h)

, (B-40)

γ(i, z,Nb,z,h) = p(qi = z, ηi = Nb,z,h|X,Θ0)

= p(ηi = Nb,z,h|qi = z,X,Θ0)p(qi = z|X,Θ0)

=
(1− πb,z)wz,hφ(bi;µb,z.h,σb,z.h)γ(i, z)

πb,z + (1− πb,z)
�Hz

h=1
wz,hφ(bi;µb,z.h,σb,z.h)

, (B-41)

where ηi indicates the mixture component (of BAF) of probe i, and the weights wz,h have
been described in main text.

With the above posterior probability estimates, let Ω = {i; 0 < bi < 1}, the new
estimate for πb,z is

πb,z =

�
i∈Ω γ(i, z, Ub,z)�

i∈Ω
�Hz

h=1
(γ(i, z,Nb,z,h) + γ(i, z, Ub,z))

=

�
i∈Ω γ(i, z, Ub,z)�

i∈Ω γ(i, z)
. (B-42)
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Next, we seek to update the estimation of µb and σb. For all the states where the mean
parameters are not fixed, except the tissue contamination mixtures, the mean parameter
can be estimated by

µb,z,h =

�
i∈Ω γ(i, z,Nb,z,h)bi�
i∈Ω γ(i, z,Nb,z,h)

. (B-43)

Then given the estimated mean value or the fixed mean value, which are both denoted as
µb,z,h to simplify the notation, the variance can be estimated by

σ
2

b,z,h =

�
i∈Ω γ(i, z,Nb,z,h)(bi − µb,z,h)

2

�
i∈Ω γ(i, z,Nb,z,h)

. (B-44)

If one genotype class is consistent with more than one HMM states, the corresponding
parameters should be estimated by combining the data. For example, both state 1 and 2
have genotype AA and BB. The corresponding parameters should be estimated by merging
the data (µb,z,h is already set as 0 or 1):

σ
2

b,1,1 = σ
2

b,2,1 =

�
i∈Ω

�
2

z=1
γ(i, z,Nb,z,h)b2i�

i∈Ω
�

2

z=1
γ(i, z,Nb,z,h)

, (B-45)

σ
2

b,1,3 = σ
2

b,2,2 =

�
i∈Ω

�
2

z=1
γ(i, z,Nb,z,h)(bi − 1)2

�
i∈Ω

�
2

z=1
γ(i, z,Nb,z,h)

. (B-46)

The parameters of the tissue contamination mixtures are estimated under the assump-
tion of truncation at 0 or 1, respectively. Note we assume the distribution is only truncated
at one side because the probability of truncation at the other side is extremely small. We
first briefly introduce the parameter estimations of truncated normal in regular situations
with i.i.d. observations and then describe a modified version for our HMM.

Following Halperin [2], suppose (x1, x2, ..., xn) are n independent samples from N(µ,σ2)
distribution and the value of the s samples (x1, x2, ..., xs) that are smaller than T are
observed while for the remaining n− s samples, we only know they are no less than T , but
do not know their values. Thus the sample likelihood is given by

p(x1, ..., xs) =
n!

(n− s)!

�
1

σ
√
2π

�s
�
exp

�
− 1

2σ2

s�

i=1

(xi − µ)2
��

�
1√
2π

� ∞

(T−µ)/σ
exp(−z

2
/2)dz

�n−s

. (B-47)
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Let h = (T − µ)/σ and let x be the sample mean of (x1, x2, ..., xs),

log p(x1, ..., xs) = const− s log σ − 1

2σ2

s�

i=1

(xi − T )2 − sh
2

2
− sh

σ
(x− T )

+(n− s) log

�
1√
2π

� ∞

h
exp(−z

2
/2)dz

�
. (B-48)

Then the MLE can be obtained by solving the following two equations:

∂ log p(x1, ..., xs)

∂σ
= − s

σ
+

1

σ3

s�

i=1

(xi − T )2 +
sh

σ2
(x− T ) = 0, (B-49)

∂ log p(x1, ..., xs)

∂h
= −sh− s(x− T )

σ
− (n− s)g(h) = 0, (B-50)

where

g(h) =

1√
2π

exp(−h
2
/2)

1√
2π

�∞
h exp(−z2/2)dz

. (B-51)

Equation (B-49) and (B-50) can be further written as

sσ
2 + sh(T − x)σ −

s�

i=1

(xi − T )2 = 0, (B-52)

s(T − x)

sh+ (n− s)g(h)
= σ. (B-53)

Therefore

σ =
s(T − x)

sh+ (n− s)g(h)
=

T − x

2

�
−h+

�
h2 + V 2

pn

�
, (B-54)

where

V
2
pn =

4
�s

i=1
(xi − T )2

s(T − x)2
=

4x2 − 8xT + 4T 2

(T − x)2
, (B-55)

and

x2 =

�s
i=1

x
2
i

s
. (B-56)

After some further simplification,

g(h) =
p

(1− p)V 2
pn

�
(2− V

2
pn)h+ 2

�
h2 + V 2

pn,

�
, (B-57)
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where p = s/n is the proportion of un-truncated data. Solution of Equation (B-57), ĥ
can be found by numerical method. Then µ can be estimated by T − ĥσ, and σ can be
estimated by Equation (B-54) by plugging in ĥ.

If the samples are left-truncated. The above procedure can still be used. After we
obtain ĥ, just flip its sign to get MLE of h. The standard deviation can be estimated by

σ =
s(T − x)

sĥ− (n− s)g(−ĥ)
=

T − x

2

�
−ĥ−

�
ĥ2 + V 2

pn

�
. (B-58)

All the above discussion are based on observations (x1, x2, ..., xn) that are definitely
generated from a truncated normal distribution. However, in the EM algorithm of HMM,
we do not have a group of bis that are exactly from the truncated normal distribution.
Instead, we have the posterior probability that each bi is from the truncated normal distri-
bution. This problem can be circumvented as follows. In order to estimate the mean and
the standard deviation, the sufficient statistics needed are simply the first/second moments
of the un-truncated data (x2 and x in equation (B-55)) and the proportion of un-truncated
data (p), which can all be estimated easily by bis and the related posterior probabilities.
For example, in order to estimate the parameters for the mixture (A, AB), we first estimate
γ(i, 4, Nb,4,2), the posterior probability that bi arises from the mixture (A, AB). Then let
Ω = {i; 0 < bi < 1} and Ω0 = {i; bi = 0},

b =

�
i∈Ω γ(i, 4, Nb,4,2)bi�
i∈Ω γ(i, 4, Nb,4,2)

, (B-59)

b2 =

�
i∈Ω γ(i, 4, Nb,4,2)b2i�
i∈Ω γ(i, 4, Nb,4,2)

, (B-60)

p =

�
i∈Ω γ(i, 4, Nb,4,2)�

i∈Ω γ(i, 4, Nb,4,2) +
�

i∈Ω0
γ(i, 4, Nb,4,2)

. (B-61)

Now given the sample moments of the un-truncated data (b and b2), and estimation of the
proportion of un-truncated data (p), we can use the above approach to estimate the mean
and variance of the genotype class (A, AB).

C Empirical measurements of tumor purity
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Let βO and βT be the observed mean value of BAF and expected BAF in pure tumor
tissue. Given the assumption that BAF can be approximated by the ratio of the number
of B alleles and the total number of alleles, we have

βT =
nB

nA + nB
, (C-1)

βO =
1− pT + pTnB

2− 2pT + pT(nA + nB)
, (C-2)

where nA and nB are the number of A or B alleles in pure tumor tissue, respectively.
Therefore pT can be estimated as

pT =
1− 2βO

βO(nA + nB − 2) + 1− nB
. (C-3)

Let βO,G be the observed mean BAF value for genotype or genotype mixture G. When
copy number is 1, we update βO,(A,AB) and βO,(B,AB) by taking into account of systematic
dye bias as follows:

β̂O,(A,AB) = 0.5βO,(A,AB)/βO,AB, (C-4)

β̂O,(B,AB) = 0.5 + 0.5(βO,(B,AB) − βO,AB)/(1− βO,AB). (C-5)

Then we estimate βO,(A,AB) by averaging β̂O,(A,AB) and 1− β̂O,(B,AB):

βO,1 = 0.5
�
β̂O,(A,AB) + 1− β̂O,(B,AB)

�

= 0.25
�
βO,(A,AB)/βO,AB + 1− (βO,(B,AB) − βO,AB)/(1− βO,AB)

�
. (C-6)

Similarly, βO,(AA,AB) is estimated by

βO,2 = 0.25
�
βO,(AA,AB)/βO,AB + 1− (βO,(BB,AB) − βO,AB)/(1− βO,AB)

�
. (C-7)

βO,(AAB,AB) is estimated by

βO,3 = 0.25
�
βO,(AAB,AB)/βO,AB + 1− (βO,(BBA,AB) − βO,AB)/(1− βO,AB)

�
. (C-8)

Then we can separately plug in βO,1, βO,2 and βO,3 into equation (C-3), together with the
corresponding nA and nB, to estimate pT . We denote the estimates of pT from βO,1, βO,2,
and βO,3 as pT1, pT2, and pT3, respectively. As shown in Figure 5 (a) in the main text,
pT1 and pT2 are highly consistent. Overall, pT1 and pT3 are also consistent (Figure C-1).
However pT1 and pT3 have larger discrepancy than pT1 and pT2. This may be due to the
dye bias, which has been completely corrected by equation C-4 and C-5.

The clinically estimated tumor purity tends to be very high despite the apparent pattern
in the data which indicates a relatively low tumor purity. Figure C-2 shows an example.
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Figure C-1: Comparison of the proportion of tumor sample (pT) estimated using mean
BAF values when copy number is one (genotype (A, AB)) and three (genotype (AAB,
AB)). Compared with (a), the pT3 in (b) are adjusted by subtracting a constant so that
the maximum of pT3 is 0.99
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Figure C-2: An example that the extra band in the BAF plot (when copy number is one)
indicates a relatively low tumor purity (71% from our data-driven estimates), while the
clinically estimated tumor purity is 100%.
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Table C-1: Comparison of data-driven tumor purity estimates (estimated using CNA with
copy number 1) and clinical tumor purity estimates.

Sample Tumor Purity Estimate
Data-driven Clinical

TCGA 02 0003 0.9 1
TCGA 02 0007 0.94 1
TCGA 02 0009 0.92 1
TCGA 02 0014 0.96 1
TCGA 02 0021 0.89 1
TCGA 02 0028 0.94 1
TCGA 02 0033 0.56 1
TCGA 02 0034 0.58 1
TCGA 02 0037 0.86 1
TCGA 02 0038 0.82 1
TCGA 02 0046 0.91 1
TCGA 02 0054 0.53 0.95
TCGA 02 0064 0.67 1
TCGA 02 0083 0.9 1
TCGA 02 0089 0.71 1
TCGA 02 0099 0.76 0.975
TCGA 02 0102 0.9 0.975
TCGA 02 0114 0.95 1
TCGA 02 0116 0.91 1
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