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A GEOMETRIC INTERPRETATION OF THE PERMUTATION
p-VALUE AND ITS APPLICATION IN EQTL STUDIES

BY WEI SUN1 AND FRED A. WRIGHT2

University of North Carolina and University of North Carolina

Permutation p-values have been widely used to assess the significance of
linkage or association in genetic studies. However, the application in large-
scale studies is hindered by a heavy computational burden. We propose a
geometric interpretation of permutation p-values, and based on this geomet-
ric interpretation, we develop an efficient permutation p-value estimation
method in the context of regression with binary predictors. An application
to a study of gene expression quantitative trait loci (eQTL) shows that our
method provides reliable estimates of permutation p-values while requiring
less than 5% of the computational time compared with direct permutations.
In fact, our method takes a constant time to estimate permutation p-values,
no matter how small the p-value. Our method enables a study of the relation-
ship between nominal p-values and permutation p-values in a wide range,
and provides a geometric perspective on the effective number of independent
tests.

1. Introduction. With the advance of genotyping techniques, high density
SNP (single nucleotide polymorphism) arrays are often used in current genetic
studies. In such situations, test statistics (e.g., LOD scores or p-values) can be
evaluated directly at each of the SNPs in order to map the quantitative/qualitative
trait loci. We focus on such marker-based study in this paper. Given one trait and
p markers (e.g., SNPs), in order to assess the statistical significance of the most
extreme test statistic, multiple tests across the p markers need to be taken into
account. In other words, we seek to evaluate the first step family-wise error rate
(FWER), or the “experiment-wise threshold” [Churchill and Doerge (1994)]. Be-
cause nearby markers often share similar genotype profiles, the simple Bonferroni
correction is highly conservative. In contrast, the correlation structure among geno-
type profiles is preserved across permutations and thus is incorporated into permu-
tation p-value estimation. Therefore, the permutation p-value is less conservative
and has been widely used in genetic studies. Ideally, the true permutation p-value
can be calculated by enumerating all the possible permutations, calculating the
proportion of the permutations where more extreme test statistics are observed. In
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each permutation, the trait is permuted, or equivalently, the genotype profiles of all
the markers are permuted simultaneously. However, enumeration of the possible
permutations is often computationally infeasible. Permutation p-values are often
estimated by randomly permuting the trait a large number of times, which can still
be computationally intensive. For example, to accurately estimate a permutation
p-value of 0.01, as many as 1000 permutations may be needed [Barnard (1963),
Marriott (1979)].

In studies of gene expression quantitative trait loci (eQTL), efficient permuta-
tion p-value estimation methods become even more important, because in addition
to the multiple tests across genetic markers, multiple tests across tens of thou-
sands of gene expression traits need to be considered [Kendzioriski et al. (2006),
Kendziorski and Wang (2006)]. One solution is a two-step procedure, which con-
cerns the most significant eQTL for each expression trait. First, the permutation
p-value for the most significant linkage/association of each expression trait is ob-
tained, which takes account of the multiple tests across the genotype profiles. Sec-
ond, a permutation p-value threshold is chosen based on a false discovery rate
(FDR) [Benjamini and Hochberg (1995), Efron et al. (2001), Storey (2003)]. This
latter step takes account of the multiple tests across the expression traits. Following
this approach, the computational demand increases dramatically, not only because
there are a large number of expression traits and genetic markers, but also because
stringent permutation p-value threshold, and therefore more permutations must be
applied to achieve the desired FDR. In order to alleviate the computational burden
of permutation tests, many eQTL studies have merged the test statistics from all
the permuted gene expression traits to form a common null distribution, which, as
suggested by empirical studies, may not be appropriate [Carlborg et al. (2005)].
In this paper we estimate the permutation p-value for each gene expression trait
separately.

In order to avoid the large number of permutations, some computationally ef-
ficient alternatives have been proposed. Nyholt (2004) proposed to estimate the
effective number of independent genotype profiles (hence the effective number of
independent tests) by eigen-value decomposition of the correlation matrix of all
the observed genotype profiles. Empirical results have shown that, while Nyholt’s
procedure can provide an approximation of the permutation p-value, it is not a
replacement for permutation testing [Salyakina et al. (2005)]. In this study we also
demonstrate that the effective number of independent tests is related to the signifi-
cance level.

Some test statistics (e.g., score test statistics) from multiple tests asymptotically
follow a multivariate normal distribution, and adjusted p-values can be directly
calculated [Conneely and Boehnke (2007)]. However, currently at most 1000 tests
can be handled simultaneously, due to the limitation of multivariate normal inte-
gration [GenZ (2000)]. Lin (2005) has proposed to estimate the significance of
test statistics by simulating them from the asymptotic distribution under the null
hypothesis, while preserving the covariance structure. This approach can handle
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a larger number of simultaneous tests efficiently, but it has not been scaled up to
hundreds of thousands of tests, and its stability and appropriateness of asymptotics
have not been validated in this context.

In this paper we present a geometric interpretation of permutation p-values and
a permutation p-value estimation method based on this geometric interpretation.
Our estimation method does not rely on any asymptotic property and, thus, it can
be applied when the sample size is small, or when the distribution of the test statis-
tic is unknown. The computational cost of our method is constant, regardless of the
significance level. Therefore, we can estimate very small permutation p-values, for
example, 10−8 or less, while estimation by direct permutations or even by simu-
lation of test statistics may not be computationally feasible. In principle, our ap-
proach can be applied to the data of association studies as well as linkage studies.
However, the high correlation of test statistics in nearby genomic regions plays a
key role in our approach. Thus, the application to linkage data is more straight-
forward. We restrict our discussion to binary genotype data, which only take two
values. Such data include many important classes of experiments: study of haploid
organisms, backcross populations and recombinant inbred strains. This restriction
simplifies the computation so that an efficient permutation p-value estimation al-
gorithm can be developed. However, the general concept of our method is applica-
ble to any categorical or numerical genotype data.

The remainder of this paper is organized as follows. In Section 2 we first present
the problem setup, followed by an intuitive interpretation of our method, and fi-
nally we describe the more complicated algebraic details. In Section 3 we validate
our method by comparing the estimated permutation p-values with the direct val-
ues obtained by a large number of permutations. We also compare the permutation
p-values with the nominal p-values to assess the effective number of indepen-
dent tests. Finally, we discuss the limitations of our method, and suggest possible
improvements.

2. Methods.

2.1. Notation and problem setup. Suppose there are p markers genotyped in
n individuals. The trait of interest is a vector across the n individuals, denoted by
y = (y1, . . . , yn), where yi is the trait value of the ith individual. The genotype
profile of each marker is also a vector across the n individuals. Throughout this
paper, we use the term “genotype profile” to denote the genotype profile of one
marker, instead of the genotype profile of one individual. Thus, a genotype profile
is a point in the n-dimensional space. We denote the entire genotype space as !,
which includes 2n distinct genotype profiles.

As mentioned in the Introduction, we restrict our discussion to binary genotype
data, which only take two values. Without loss of generality, we assume the two
values are 0 and 1. Let m1 = (m11, . . . ,m1n) and m2 = (m21, . . . ,m2n) be two



A GEOMETRIC INTERPRETATION OF THE PERMUTATION p-VALUE 1017

genotype profiles. We measure the distance between m1 and m2 by Manhattan
distance, that is,

dM(m1,m2) ≡
n∑

i=1

|m1i − m2i |.

We employ Manhattan distance because it is easy to compute and it has an intu-
itive explanation: the number of individuals with different genotypes. In our al-
gorithm the distance measure is only used to group genotype profiles according
to their distances to a point in the genotype space. Therefore, any distance mea-
sure that is a monotone transformation of Manhattan distance leads to the same
grouping of the genotype profiles, hence the same estimate of the permutation
p-value. For binary genotype data, any distance measure (

∑n
i=1 |m1i − m2i |τ1)τ2

(∀τ1, τ2 > 0) is a monotone transformation of Manhattan distance. We note, how-
ever, this is not true for categorical genotype data with more than two levels.
For example, suppose the genotype of a biallelic marker is coded by the num-
ber of minor allele. Consider three biallelic markers with genotypes measured in
three individuals: m1 = (0,0,0), m2 = (0,2,0) and m3 = (1,1,1). By Manhattan
distance, dM(m1,m2) = 2 < dM(m1,m3) = 3. However, by Euclidean distance,
d(m1,m2) = 2 > d(m1,m3) =

√
3. Therefore, different distance measures may

not be equivalent and the optimal distance measure should be the one that is best
correlated with the test-statistic.

In the following discussions we assume one test statistic has been computed for
each marker (locus). Our method can estimate permutation p-value for any test
statistic. For the simplicity of presentation, throughout this paper we assume the
test statistic is the nominal p-value.

2.2. A geometric interpretation of permutation p-values. One fundamental
concept of our method is a so-called “significance set.” Let α be a genome-wide
threshold used for the collection of nominal p-values from all the markers. A sig-
nificance set $(α) denotes, for a fixed trait of interest, the set of possible genotype
profiles (whether or not actually observed) with nominal p-values no larger than α.
Similarly, we denote such genotype profiles in the ith permutation as $i (α). Since
permuting the trait is equivalent to permuting all the genotype profiles simultane-
ously, $i (α) is simply a permutation of $(α).

Whether any nominal p-value no larger than α is observed in the ith permuta-
tion is equivalent to whether $i (α) captures at least one observed genotype profile.
With this concept of a significance set, we can introduce the geometric interpreta-
tion of the permutation p-value:

The permutation p-value for nominal p-value α is, by definition, the proportion
of permutations where at least one nominal p-value is no larger than α. This is
equivalent to the proportion of {$i (α)} that capture at least one observed geno-
type profile. Therefore, the permutation p-value depends on the distribution of the
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genotype profiles within $i (α) and the distribution of the observed genotype pro-
files in the entire genotype space.

Intuitively, the permutation p-value depends on the trait, the observed geno-
type profiles and the nominal p-value cutoff α. In our geometric interpretation we
summarize these inputs by two distributions: the distribution of all the observed
genotype profiles in the entire genotype space, and the distribution of the genotype
profiles in $i (α), which include the information from the trait and the nominal
p-value cutoff α.

We first consider the genotype profiles in $i (α). For any reasonably small α
(e.g., α = 0.01), all the genotype profiles in $i (α) should be correlated, since they
are all correlated with the trait of interest. Therefore, we can imagine these geno-
type profiles in $i (α) are “close” to each other in the genotype space and form a
cluster (or two clusters if we separately consider the genotype profiles positively or
negatively correlated with the trait). In later discussions we show that under some
conditions, the shape of one cluster is approximately a hypersphere in the geno-
type space. Then, in order to characterize $i (α), we need only know the center
and radius of the corresponding hyperspheres. In more general situations where
$i (α) cannot be approximated by hyperspheres, we can still define its center and
further characterize the genotype profiles in $i (α) by a probability distribution:
P(r,α), which is the probability a genotype profile belongs to $i (α), given its
distance to the center of $i (α) is r (Figure 1A). We summarize the information
across all the $i (α)’s to estimate permutation p-values. Since {$i (α)} is a one-to-
one mapping of all the permutations, we actually estimate permutation p-values
by acquiring all the permutations. Therefore, the computational cost is constant
regardless of α. We show this seemingly impossible task is actually doable. First,
because permutation preserves distances among genotype profiles, the probability
distributions from all the significance sets {$(α),$i (α)} are the same. Therefore,
we only need to calculate it once. Second, the remaining task is to count the qual-
ifying significance sets, which can be calculated efficiently using combinations,
with some approximations.

The distribution of the observed genotype profiles in the genotype space de-
pends on the number of the observed genotype profiles and their correlation struc-
ture. Since $i (α) may be thought of as randomly located in the genotype space
in each permutation, on average, the chance that $i (α) captures at least one ob-
served genotype profile depends on how much “space” the observed genotype pro-
files occupy. We argue that such space include the observed genotype profiles as
well as their neighborhood regions. How to define the neighborhood regions? We
first consider the conceptually simple situation that $i (α) forms a hypersphere of
radius rα , where the subscript α indicates that rα is a function of α. Then $i (α)

captures an observed genotype profile m1 if its center is within the hypersphere
centered at m1 with radius rα . Therefore, the neighborhood region of m1 is a hy-
persphere of radius rα . We take the union of the neighborhood regions of all the
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FIG. 1. A two-dimensional schematic representation of the geometric interpretation of permutation
p-value, reflecting genotype profiles that actually reside in 2n-space. (A) In the general situation, the
function P(r,α), shown in grayscale, decreases with distance from the center of a significance set.
Under hypersphere assumption, P(r,α) is either 0 or 1, thus, it can be illustrated by a hypersh-
pere surrounding the center of the significance set. (B) The space occupied by the series of markers
is calculated serially. Denote the neighborhood region of the hth marker as Bh. Then the contri-
bution of the hth marker to %(rα) is approximated by Bh\(Bh ∩ Bh−1), where “\” indicate set
difference. As indicated by the darker shade, this serial counting approximation is not exact when
(Bh ∩ Bk) /∈ (Bh ∩ Bh−1), for any k < h − 1. Note the dot in (A) is the center of a significance set,
while the dots in (B) are the observed marker genotype profiles.

observed genotype profiles and denote it by %(rα) (Figure 1B). Then we can eval-
uate permutation p-values by calculating the proportion of significance sets with
their centers within %(rα). In the general situation where the hypersphere assump-
tion does not hold, a significance set $i (α) is characterized by a probability dis-
tribution P(r,α). Instead of counting a significance set by 0 or 1, we count the
probability it captures at least one observed genotype profile. We will discuss this
estimation method more rigorously in the following sections.

Before presenting the algebraic details, we emphasize that our method uses the
entire set of the observed genotypes profiles simultaneously. Specifically, the cor-
relation structure of all the genotype profiles is incorporated into the construc-
tion of %(rα). The higher the correlations between the observed genotype profiles,
the more the corresponding neighborhood regions overlap (Figure 1). This in turn
produces a smaller space %(rα), and thus a smaller permutation p-value. In the
extreme case when all the observed genotype profiles are the same, there is effec-
tively only one test and the permutation p-value should be close to the nominal
p-value.

2.3. From significance set to best partition. Explicitly recording all the ele-
ments in all the significance sets is not computationally feasible. We instead char-
acterize each significance set by a best partition, which can be understood as the
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center of the significance set, and a probability distribution: the probability that
one genotype profile belongs to the significance set, given its distance to the best
partition.

We first define best partition. The best partition for $(α) [or $i (α)] is a par-
tition of the samples that is most significantly associated with the trait (or the ith
permutation of the trait). For a binary trait, the trait itself provides the best parti-
tion. For a quantitative trait, we generate the best partition by assigning the smallest
t-values to one phenotype class and the other (n − t)-values to another phenotype
class. We typically use t = n/2 as a robust choice. The robustness of this choice
is illustrated by the empirical evidence in the Supplementary Materials [Sun and
Wright (2009)]. Given t , we refer to all the possible best partitions (partitions that
divide the n individuals into two groups of size t and n − t) as desired partitions.
The total number of distinct desired partitions, denoted by Np , is

Np =






(
n
t

)
, if t '= n/2,

1
2

(
n
t

)
, if t = n/2.

(2.1)

When t = n/2, there are
(n
t

)
ways to choose t individuals, but two such choices

correspond to one partition, that is why we need the factor 1/2. For a binary trait,
the desired partitions and the significance sets have one-to-one correspondence
and, thus, Np is the total number of significance sets (or the total number of per-
mutations). For a quantitative trait, Np is much smaller than the total number of
significance sets. In fact, each desired partition corresponds to t !(n − t)! distinct
significance sets (or permutations). Since we restrict our study for binary geno-
type, this definition of best partition can be understood as the projection of the trait
into the genotype space. This projection is necessary to utilize the geometric inter-
pretation of permutation p-value. Note the best partition does not replace the trait
since the trait data is still used in calculating P(r,α). The projection of trait into
genotype space is less straightforward when the genotype has three or more levels,
though it is still feasible. Further theoretical and empirical studies are needed for
such genotype data.

Next, we study the probability that one genotype profile belongs to a signifi-
cance set given its distance to the best partition of the significance set. Each desired
partition, denoted as DPj , has perfect correspondence with two genotype profiles,
depending on whether the first t-values are 0 or 1. We denote these two genotype
profiles as m0

j and m1
j , respectively. The distance between one genotype profile m1

and one desired partition DPj is defined as

dM(m1,DPj ) ≡ min
a=0,1

{dM(m1,m
a
j )}.

Suppose DPj is the best partition of the significance set $i (α). In general, the
smaller the distance from a genotype profile to DPj , the greater the chance it falls
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into $i (α). Thus, the genotype profiles in $i (α) form two clusters, centered on
m0

j and m1
j , respectively. The probability distribution we are interested in is

Pr
(
m1 ∈$i (α)|∀m1 ∈!, dM(m1,DPj ) = r

)
.

This probability certainly depends on the trait y. However, because all of our infer-
ence is conducted on y, we have suppressed y in the notation. A similar probability
distribution can be defined for the significance set $(α). Because the permutation-
based mapping $(α) →$i (α) preserves distances, the distributions for $(α) and
$i (α) are the same and, thus, we need only quantify the distribution for $(α).
We denote the best partition of the unpermuted trait y as DPy , and denote the
two genotype profiles corresponding to DPy as m0

y and m1
y , then we define the

distribution as follows:

P(r,α) ≡ Pr
(
m1 ∈$(α)|∀m1 ∈!, dM(m1,DPy) = r

)
.(2.2)

Let

P(ma
y, r,α) ≡ Pr

(
m1 ∈$(α)|∀m1 ∈!, dM(m1,m

a
y) = r

)
,(2.3)

where a = 0,1. We have the following conclusion.

PROPOSITION 1. P(r,α) = P(m0
y, r,α) = P(m1

y, r,α) for any r < n/2.

The proof is in the Supplementary Materials [Sun and Wright (2009)].
By Proposition 1, in order to estimate P(r,α), we can simply estimate P(m0

y,
r,α). Specifically, we first randomly generate H genotype profiles {mh :h =
1, . . . ,H } so that dM(mh,m

0
y) = r . To generate mh, we flip the genotype of m0

y
for r randomly chosen individuals. Then P(r,α) is estimated by the proportion of
{mh} that yield nominal p-values no larger than α.

In summary, we characterize a significance set $i (α) by the corresponding best
partition and the probability distribution P(r,α). All the distinct best partitions
are collectively referred to as desired partitions. This characterization of signif-
icance sets has two advantages. First, the probability distribution P(r,α) is the
same across all the significance sets, so we need only calculate it once. This is
because the probability distribution relies on distance measure, which is preserved
across significance sets (permutations). Second, for a quantitative trait, one de-
sired partition corresponds to a large number of significance sets; therefore, we
significantly reduce the dimension of the problem by considering desired parti-
tions instead of significance sets.

2.4. Estimating permutation p-values under a hypersphere assumption. By
the definition of a significance set, we can calculate the permutation p-value by
counting the number of significance sets that capture at least one observed geno-
type profile. However, it is still computationally infeasible to examine all signifi-
cance sets. Therefore, in the previous section we discuss how to summarize the sig-
nificance sets by desired partitions and a common probability distribution. In this
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and the next sections, we study how to estimate permutation p-values by “count-
ing” desired partitions.

To better explain the technical details, we begin with a simplified situation, by
assuming there is an rα such that P(r,α) = 1 if r ≤ rα and P(r,α) = 0 otherwise.
This is equivalent to assuming $(α) or $i (α) occupies two hyperspheres with
radius rα . This hypersphere assumption turns out to be a reasonable approximation
for a balanced binary trait (see Supplementary Materials [Sun and Wright (2009)]).

Let {mo,k,1 ≤ k ≤ p} be the observed p genotype profiles. We formally de-
fine the space occupied by the observed genotype profiles and their neighborhood
regions as

%(rα) ≡
{
m1 :m1 ∈!, min

1≤k≤p
{dM(m1,mo,k)} ≤ rα

}
,

that is, all the possible genotype profiles within a fixed distance rα from at least
one of the observed genotype profiles. We have the following conclusion under the
hypersphere assumption.

PROPOSITION 2. Consider a significance set $i (α) occupying two hyper-
spheres centered at m0

j and m1
j , respectively, with radius rα . $i (α) corresponds to

one permutation of the trait. The minimum nominal p-value of this permutation is
no larger than α iff at least one of m0

j and m1
j is within %(rα).

The proof is in the Supplementary Materials [Sun and Wright (2009)].
Based on Proposition 2, we can calculate the permutation p-value by counting

the number of significance sets with at least one of its centers belonging to %(rα).
Note under this hypersphere assumption, for any fixed α (hence fixed rα), the sig-
nificance sets are completely determined by the centers of the corresponding hy-
perspheres. Thus, there is a one-to-one mapping between significance sets and their
centers, the desired partitions. Counting significance sets is equivalent to counting
desired partitions. Therefore, we can estimate the permutation p-value by count-
ing the number of desired partitions. Specifically, let the distances from all the
observed genotype profiles to DPj , sorted in ascending order, be (rj1, . . . , rjp).
Then under the hypersphere assumption, the permutation p-value for significance
level α is

|{DPj : rj1 ≤ rα}|/Np ≡ C(rα)/Np,(2.4)

where Np is the total number of desired partitions, and C(rα) ≡ |{DPj : rj1 ≤ rα}|
is the number of desired partitions within a fixed distance rα from at least one of
the observed genotype profiles. The calculation of C(rα) will be discussed in the
next section.

We note that the hypersphere assumption is not perfect even for the balanced
binary trait. We employ the hypersphere assumption to give a more intuitive ex-
planation of our method. In the actual implementation of our method, even for a
balanced binary trait, we still use the general approach to estimate permutation
p-values, as described in the next section.
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2.5. Estimating permutation p-values in general situations. In general situa-
tions where the hypersphere assumption does not hold, we estimate the permuta-
tion p-value by

∑

j

Pr(DPj ,α)/Np,(2.5)

where Pr(DPj ,α) is the probability that the minimum nominal p-value ≤ α given
DPj is the best partition. Equation (2.5) is a natural extension of equation (2.4)
by replacing the counts with the summation of probabilities. It is worth noting
that in the previous section, one desired partition corresponds to one significance
set given the hypersphere assumption. However, in general situations, one desired
partition may correspond to many significance sets. Therefore, Pr(DPj ,α) is the
average probability that the minimum nominal p-value ≤ α for all the significance
sets centered at DPj . Taking averages does not introduce any bias to permutation
p-value estimation, because permutation p-value is itself an average. Here we just
take the average in two steps. First, we average across all the significance sets (or
permutations) corresponding to the same desired partition to estimate Pr(DPj ,α).
Second, we average across desired partitions.

Let all the desired partitions whose distances to an observed genotype profile
mo,k are no larger than r be Bk(r), that is,

Bk(r) ≡ {DPj :dM(mo,k,DPj ) ≤ r},
where 1 ≤ k ≤ p. Assume the observed genotype profiles {mo,k} are ordered by the
chromosomal locations of the corresponding markers. We employ the following
two approximations to estimate

∑
j Pr(DPj ,α):

1. shortest distance approximation:

Pr(DPj ,α) ≈ P(rj1,α),

2. serial counting approximation:

C(r) ≈ CU(r) ≡
p∑

h=1

|Bh(r)| −
p∑

h=2

|Bh(r) ∩ Bh−1(r)|,

where C(r) has been defined in equation (2.4).

PROPOSITION 3. As long as α is reasonably small, for example, α < 0.05,
there exist rL < rU , such that P(r,α) = 1, if r ≤ rL; P(r,α) = 0, if r ≥ rU . Given
the shortest distance and the serial counting approximations,

∑

j

Pr(DPj ,α) ≈
∑

j

P (rj1,α)

(2.6)

≈ CU(rL) +
rU−1∑

r=rL+1

[
P(r,α)

(
CU(r) − CU(r − 1)

)]
.
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When α is extremely small, for example, α = 10−20, it is possible rL = 0. We define
CU(0) = 0 to incorporate this situation into equation (2.6).

In the Supplementary Materials [Sun and Wright (2009)], we present the deriva-
tion of Proposition 3, as well as Propositions 4 and 5 that provide the algorithms
to calculate |Bh(r)| and |Bh(r) ∩ Bh−1(r)|, respectively. Therefore, by Proposi-
tions 3–5, we can estimate the permutation p-value by equation (2.5).

The rationale of shortest distance approximation is as follows. If the space occu-
pied by a significance set is approximately two hyperspheres, this approximation
is exact. Otherwise, if α is small, which is the situation where direct permuta-
tion is computationally unfavorable, this approximation still tends to be accurate.
This is because when α is smaller, the genotype profiles within the significance
set are more similar and, hence, the significance set is better approximated by two
hyperspheres. In Section 3 we report extensive simulations to evaluate this approx-
imation.

The serial counting approximation can be justified by the property of genotype
profiles from linkage data, and (with less accuracy) in some kinds of association
data. In linkage studies, the similarity between genotype profiles is closely related
to the physical distances, with conditional independence of genotypes between
loci given the genotype at an intermediate locus. Therefore, the majority of the
points in Bh(r)∩Bh−k(r) (2 ≤ k ≤ h−1) are already included in Bh(r)∩Bh−1(r)
(Figure 1B) and, thus,

Bh(r) ∩
( ⋃

1≤k≤h−1

Bk(r)

)
≈ Bh(r) ∩ Bh−1(r).

Then, we have

C(r) =
p∑

k=1

|Bk(r)| −
p∑

h=2

∣∣∣∣Bh(r) ∩
( ⋃

1≤k≤h−1

Bk(r)

)∣∣∣∣

≈
p∑

k=1

|Bh(r)| −
p∑

h=2

|Bh(r) ∩ Bh−1(r)|.

Our method has been implemented in an R package named permute.t, which
can be downloaded from http://www.bios.unc.edu/~wsun/software.htm.

3. Results.

3.1. Data. We analyzed an eQTL data set of 112 yeast segregants generated
from two parent strains [Brem and Kruglyak (2005), Brem et al. (2005)]. Expres-
sion levels of 6229 genes and genotypes of 2956 SNPs were measured in each of
the segregants. Yeast is a haploid organism and, thus, the genotype profile of each
marker is a binary vector of 0’s and 1’s, indicating the parental strain from which

http://www.bios.unc.edu/~wsun/software.htm
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the allele is inherited. We dropped 15 SNPs that had more than 10% missing val-
ues, and then imputed the missing values in the remaining SNPs using the function
fill.geno in R/qtl [Broman et al. (2003)]. Finally, we combined the SNPs that have
the same genotype profiles, resulting in 1017 distinct genotype profiles.3 As ex-
pected, genotype profiles between chromosomes have little correlation (Figure 2
in the Supplementary Materials [Sun and Wright (2009)]), while the correlations
of genotype profiles within one chromosome are closely related to their physical
proximity (Figure 3 in the Supplementary Materials [Sun and Wright (2009)]).

3.2. Evaluation of the shortest distance approximation. We evaluate the short-
est distance approximation Pr(DPj ,α) ≈ P(rj1,α) in this section. Because the
permutation p-value is actually estimated by the average of Pr(DPj ,α) [equa-
tion (2.5)], it is sufficient to study the average of Pr(DPj ,α) across all the DPj ’s
having the same rj1. Specifically, we simulated 50 desired partitions {DPj , j =
1, . . . ,50} such that, for each DPj , rj1 = r . Suppose DPj divides the n individ-
uals into two groups of size t and n − t ; then DPj is consistent with t !(n − t)!
permutations of the trait. We randomly sampled 1000 such permutations to esti-
mate Pr(DPj ,α). We then took the average of these 50 Pr(DPj ,α)’s, denoted it as
ρ̄(r), and compared it with P(r,α).

We randomly selected 88 gene expression traits. For each gene expression trait,
we chose α to be the smallest nominal p-value (from t-tests) across all the 1,107
genotype profiles. We first estimated P(r,α) and ρ̄(r), and then examined the ra-
tio P(r,α)/ρ̄(r) at three distances ri , i = 1,2,3, where ri = arg minr{|P(r,α) −
0.25i|}, that is, the approximate 1st quartile, median and 3rd quartile of P(r,α)

when P(r,α) is between 0 and 1 (Figure 2). For the genes with larger nominal
p-values, P(r,α)/ρ̄(r) can be as small as 0.4. Thus, the shortest distance ap-
proximation is inaccurate. We suggest estimating the permutation p-values for
the genes with larger nominal p-values by a small number of direct permuta-
tions, although, in practice, such nonsignificant genes may be of little interest.
After excluding genes with nominal p-values larger than 2 × 10−4, on average,
P(r,α)/ρ̄(r) is 0.80, 0.88, 0.95 for the 1st, 2nd and 3rd quartile respectively.
We chose the threshold 2 × 10−4 because it approximately corresponds to per-
mutation p-value 0.05 ∼ 0.10 (see Section 3.4. Comparing permutation p-value
and nominal p-value). It is worth emphasizing that when we estimate permuta-
tion p-values, we average across DPj ’s. In many cases, P(rj1,α) = 0 or 1 and,
thus, Pr(DPj ,α) = P(rj1,α). Therefore, after taking the average across DPj ’s,
the effects of those cases with small P(r,α)/ρ̄(r) will be minimized.

3Most SNPs sharing the same genotype profiles are adjacent to each other, although there are
10 exceptions in which the SNPs with identical profiles are separated by a few other SNPs. In all the
10 exceptions, the gaps between the identical SNPs are less than 10 kb. We recorded the position of
each combined genotype profile as the average of the corresponding SNPs’ positions.
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FIG. 2. Evaluation of the shortest distance approximation using 88 randomly selected gene expres-
sion traits. For each gene expression trait, the ratio P(r,α)/ρ̄(r) is plotted at three r’s, which are
approximately the 1st quartile, median and 3rd quartile of P(r,α) when P(r,α) is between 0 and 1.
The vertical broken line indicates the nominal p-value 2×10−4, which corresponds to genome-wide
permutation p-value 0.05 ∼ 0.10.

3.3. Permutation p-value estimation for a balanced binary trait—evaluation of
the serial counting approximation. Using the genotype data from the yeast eQTL
data set, we performed a genome-wide scan of a simulated balanced binary trait,
with 56 0’s and 56 1’s. The standard chi-square statistic was used to quantify the
linkages. As we discussed before, for a balanced binary trait, the space occupied
by a significance set is approximately two hyperspheres, and the shortest distance
approximation is justified. This conclusion can also be validated empirically by
examining P(r,α). As shown in Table 3 of the Supplementary Materials [Sun
and Wright (2009)], for each α, there is an rα , such that P(r,α) = 1 if r ≤ rα ,
and P(r,α) ≈ 0 if r > rα . From the sharpness of the boundary we can see that a
significance set indeed can be well approximated by two hyperspheres. Given that
the shortest distance approximation is justified, we can evaluate the accuracy of the
serial counting approximation by examining the accuracy of permutation p-value
estimates.

The accuracy of the serial counting approximation relies on the assumption that
the adjacent genotype profiles are more similar than the distant ones. We dramat-
ically violate this assumption by randomly ordering the SNPs in the yeast eQTL
data. As shown in Table 1, the permutation p-value estimates from the original
genotype data are close to the permutation p-values estimated by direct permu-
tations, whereas the estimates from the location-perturbed genotype data are sys-
tematically biased.
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TABLE 1
Comparison of permutation p-value estimates for a balanced binary trait. Values at the column of

“Permutation p-value” are estimated via 500,000 permutations. Values at the columns
“Permutation p-value estimate I/II” are estimated by our method before and after

perturbing the locations of the SNPs

Nominal Permutation Permutation Permutation
p-value p-value p-value p-value
cutoff estimate I estimate II

10−3 0.19 0.21 0.41
10−4 0.02 0.021 0.039
10−5 2.0 × 10−3 1.9 × 10−3 2.9 × 10−3

10−6 2.4 × 10−4 2.2 × 10−4 3.1 × 10−4

3.4. Permutation p-value estimation for quantitative traits. We randomly se-
lected 500 gene expression traits to evaluate our permutation p-value estimation
method in a systematic manner. We used t-tests to evaluate the linkages between
gene expression traits and binary markers. For each gene expression trait, we first
identified the genome-wide smallest p-value, and then estimated the correspond-
ing permutation p-value by either our method or by direct permutations [Fig-
ure 3(a)]. For those relatively larger permutation p-values (>0.1), the estimates

FIG. 3. Comparison of permutation p-values estimated by our method (denoted as pe) or by di-
rect permutations (denoted as pp) for 500 randomly selected gene expression traits (each gene
corresponds to one point in the plot). (a) Using the original genotype data. (b) Using the loca-
tion-perturbed genotype data. Each gene expression trait is permuted up to 500,000 times to esti-
mate pp. Thus, the smallest permutation p-value is 2 × 10−6, and we have more confidence for those
permutation p-values bigger than 2 × 10−4 (indicated by the vertical line). The degree of closeness
of the points to the solid line (y = x) indicates the degree of consistency of the two methods. The two
broken lines along the solid line are y = x ± log10(2) respectively, which, in the original p-value
scale, are pe = 0.5pp and pe = 2pp, respectively.
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from our method tend to be inflated. Some of them are even greater than 1. This
is because the serial counting approximation is too loose for larger permutation
p-values, due to the fact that each significance set occupies a relatively large space.
Nevertheless, the two estimation methods give consistent results for those permu-
tation p-values smaller than 0.1. We also estimated the permutation p-values af-
ter perturbing the order of the SNPs [Figure 3(b)]. As expected, the permutation
p-value estimates are inflated.

The advantage of our method is the improved computational efficiency. The
computational burden of our method is constant no matter how small the permuta-
tion p-value is. To make a fair comparison, both our estimation method and direct
permutation were implemented in C. In addition, for direct permutations, we car-
ried out different number of permutations for different gene expression traits so
that a large number of permutations were performed only if they were needed.
Specifically, we permuted a gene expression trait 100, 1000, 5000, 10,000, 50,000
and 100,000 times if we had 99.99% confidence that the permutation p-value of
this gene was bigger than 0.1, 0.05, 0.02, 0.01, 0.002 and 0.001, respectively. Oth-
erwise we permuted 500,000 times. It took 79 hours to run all the permutations.
If we ran at most 100,000 permutations, it took about 20 hours. In contrast, our
method only took 46 minutes. All the computation was done in a computing server
of Dual Xenon 2.4 Ghz.

3.5. Comparing permutation p-values and nominal p-values. The results we
will report in this section are the property of permutation p-values, instead of an
artifact of our estimation method. However, using direct permutation, it is infea-
sible to estimate a very small permutation p-value, for example, 10−8 or less. In
contrast, our estimation method can accurately estimate such permutation p-values
efficiently.4 This enables a study of the relationship between permutation p-values
and nominal p-values. Such a relationship can provide important guidance for the
sample size or power of a new study.

Let x and y be log10(nominal p-value) and log10(permutation p-value estimate)
respectively. We compared x and y across the randomly selected 500 gene expres-
sion traits used in the previous section [Figure 4(a)] and found an approximate
linear relation.

We employed median regression (R function rq) to capture the linear pattern
[Figure 4(b)].5 If the nominal p-value was too large or too small, the permutation

4Our method cannot estimate those extremely small permutation p-values such as 10−20 reliably.
This is simply because only a few genotype profiles can yield such significant results even in the
whole genotype space. Nevertheless, those results correspond to unambiguously significant findings
even after Bonferroni correction. Therefore, permutation may not be needed. See the Supplementary
Materials [Sun and Wright (2009)] for more details.

5Most genes whose fitted values differ from the observed values more than 2-folds are below the
linear patterns. These genes often have more outliers than other genes, which may violate the t-test
assumptions and bring bias to nominal p-values.
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FIG. 4. Comparison of permutation p-value estimates and nominal p-values. (a) Scatter plot of
permutation p-value estimates vs. nominal p-value in log10 scale for the 500 gene expression traits.
Those unreliable permutation p-value estimates are indicated by “x.” See footnote 2 for explanation.
(b) Scatter plot for 483 gene expression traits with nominal p-value larger than 10−20. In both (a)
and (b) the solid line is y = x. In (b), the broken line fitting the data is obtained by median regression
for those 359 genes with nominal p-values between 10−10 and 10−3.

p-value estimate might be inaccurate. Thus, we used the 359 gene expression traits
with nominal p-value between 10−10 and 10−3 to fit the linear pattern (in fact,
using all the 483 gene expression traits with nominal p-values larger than 10−20

yielded similar results, data not shown). The fitted linear relation is y = 2.52 +
0.978x. Note x and y are in log scale. In terms of the p-values, the relation is
q = ηpκ = 327.5p0.978, where p and q indicate nominal p-value and permutation
p-value, respectively. If κ = 1, q = ηp, and η can be interpreted as the effective
number of independent tests (or the effective number of independent genotype
profiles). However, the observation that κ is close to but smaller than 1 (lower
bound 0.960, upper bound 0.985) implies that the effective number of independent
tests, which can be approximated by q/p = ηpκ−1 = ηp−0.022, varies according
to the nominal p-value p. For example, for p = 10−3 and 10−6, the expected
effective number of independent tests is approximately 381 and 444, respectively.

The relation between the effective number of independent tests and the sig-
nificance level can be explained by the geometric interpretation of permutation
p-values. Given a nominal p-value cutoff, whether two genotype profiles corre-
spond to two independent tests amounts to whether they can be covered by the
same significance set. As the p-value cutoff becomes smaller, the significance set
becomes smaller and, thus, the chance that two genotype profiles belong to one
significance set is smaller. Therefore, smaller p-value cutoff corresponds to more
independent tests.

4. Discussion. In this paper we have proposed a geometric interpretation of
permutation p-values and a method to estimate permutation p-values based on
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this interpretation. Both theoretical and empirical results show that our method
can estimate permutation p-values reliably, except for those extremely small or
relatively large ones. The extremely small permutation p-values correspond to
even smaller nominal p-values, for example, 10−20. They indicate significant link-
ages/associations even after Bonferroni correction; therefore, permutation p-value
evaluation is not needed. The relatively large permutation p-values, for example,
those larger than 0.1, can be estimated by a small number of permutations, al-
though in practice such nonsignificant cases may be of little interest. The major
computational advantage of our method is that the computational time is con-
stant regardless of the significance level. This computational advantage enables
a study of the relation between nominal p-values and permutation p-values in a
wide range. We find that the effective number of independent tests is not a constant;
it increases as the nominal p-value cutoff becomes smaller. This interesting obser-
vation can be explained by the geometric interpretation of permutation p-values
and can provide important guidance in designing new studies.

Parallel computation is often used to improve the computational efficiency by
distributing computation to multiple processors/computers. Both direct permuta-
tion and our estimation method can be implemented for parallel computation. In
the studies involving a large number of traits (e.g., eQTL studies), one can simply
distribute an equal number of traits to each processor. If there are only one or a
few traits of interest, for direct permutation, one can distribute an equal number
of permutations to each processor. For our estimation method, the most computa-
tionally demanding part (which takes more than 80% of the computational time)
is to estimate P(r,α), which can be paralleled by estimating P(r,α) for different
r’s separately. Furthermore, for a particular r , P(r,α) is estimated by evaluating
the nominal p-values for a large number of genotype profiles whose distances to
the best partition are r . The computation can be further paralleled by evaluating
nominal p-values for a subset of such genotype profiles in each processor.

As we mentioned at the beginning of this paper, we focus on the genetic studies
with high density markers, where the test statistics are evaluated on each of the
genetic markers directly. Our permutation p-value estimation method cannot be
directly applied to interval mapping [Lander and Botstein (1989), Zeng (1993)].
However, we believe that as the expense of SNP genotype array decreases, most
genetic studies will utilize high density SNP arrays. In such situations, the interval
mapping may be no longer necessary.

We have discussed how to estimate the permutation p-value of the most signif-
icant linkage/association. Permutation p-values can also be used to assess the sig-
nificance of each locus in multiple loci mapping. Doerge and Churchill (1996) have
proposed two permutation-based thresholds for multiple loci mapping, namely,
the conditional empirical threshold (CET) and residual empirical threshold (RET).
Suppose k markers have been included in the genetic model, and we want to test
the significance of the (k + 1)th marker by permutation. The samples can be strat-
ified into 2k genotype classes based on the genotype of the k markers that are
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already in the model (here we still assume genotype is a binary variable). CET
is evaluated based on permutations within each genotype class. Alternatively, the
residuals of the k-marker model can be used to test the significance of the (k +1)th
marker. RET is calculated by permuting the residuals across the individuals. RET
is more powerful than CET when the genetic model is correct since the permuta-
tions in RET are not restricted by the 2k stratifications. Our permutation p-value
estimation method can be applied to RET estimation without any modification, and
it can also be used to estimate CET with some minor modifications. Specifically,
let conditional desired partitions be the desired partitions that can be generated by
the conditional permutations. Then in equation (2.5), Np should be calculated as
the number of conditional desired partitions instead of the total number of desired
partitions. In equation (2.6), P(r,α) remains the same and CU(r) needs to be cal-
culated by counting the number of conditional desired partitions within distance r
from at least one of the observed genotype profiles.

There are some limitations in the current implementation of our method, which
are also the directions of our future developments. First, we only discuss binary
markers in this paper. The counting procedures in Propositions 4 and 5 (see Sec-
tion IV in the Supplementary Materials [Sun and Wright (2009)]) can be extended
in a straightforward way to apply to the genotypes with three levels. However,
some practical considerations need to be addressed carefully, for example, the de-
finition of the distance between genotype profiles and the choice of the best parti-
tion. Second, the serial counting approximation relies on the assumption that the
correlated genotype profiles are close to each other. This is true for genotype data
in linkage studies, but in general is not true for association studies, where the prox-
imity of correlated markers in haplotype blocks may be too coarse for immediate
use. We are investigating a clustering algorithm to reorder the genotype profiles ac-
cording to correlation rather than physical proximity. Finally, our work here points
toward extensions to the use of continuous covariates, which can be applied, for
example, to map gene expression traits to the raw measurements of copy number
variations [Stranger et al. (2007)].
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SUPPLEMENTARY MATERIAL

Supplementary Methods and Results for “A geometric interpretation of the
permutation p-value and its application in eQTL studies” (DOI: 10.1214/09-
AOAS298SUPP; .pdf). The Supplementary Methods and Results include four sec-
tions: (1) Single marker analysis and the choice of “best partition,” (2) Description

http://dx.doi.org/10.1214/09-AOAS298SUPP
http://dx.doi.org/10.1214/09-AOAS298SUPP
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of genotype data, (3) Justification of the hypersphere assumption for the balanced
binary trait, and (4) Propositions and the proofs.
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