BIOS 660, the basics

* Sets and events

- * Set: $\{y : y < 5\}$ or $(-\infty, 5)$
- * Event: $\{X < 5\}$ or $\{X \text{ is less than } 5\}$ or $\{X \in (-\infty, 5)\}$
- * P(event)
- P(X < 5) is shorthand for $P(\{X < 5\})$

* The sample space

* If B is true whenever A is true, we say that A implies B; in symbols: $A \implies B$. In the Venn diagram, A would be completely inside B

* If A implies B then A is a subset of or equal to B, written $A \subseteq B$

* If A implies B and B implies A, then A = B

* If A = B then P(A) = P(B). The opposite and the converse are not true. $A \neq B$ does not imply that $P(A) \neq P(B)$. P(A) = P(B) does not imply that A = B

* #A or #(A) is the number of elements in A, the cardinality of A

* Inclusion-exclusion (IE) principle for two events: $\#(A \cup B) = \#A + \#B - \#(A \cap B)$

* IE for 3 events:

 $\#(A\cup B\cup C)=\#A+\#B+\#C-\#(A\cap B)-\#(A\cap C)-\#(B\cap C)+\#(A\cap B\cap C)$ Notice how the signs (of the intersections) alternate

* IE in general, in English:

 $#(A_1 \cup A_2 \cup ... \cup A_n) =$ sum of all events - sum of all intersections of 2 events + sum of all intersections of 3 events - ... + ... - ... + ... the intersection of the n events

* IE for probabilities: replace #() by P()

* I(A) is the indicator variable of event A

* I(A) = 1 if A is true

* I(A) = 0 if A is false

* $P(A \cap B) = P(B)P(A|B)$ implies $P(A|B) = P(A \cap B)/P(B) = P(B|A)P(A)/P(B)$ which implies P(A|B)/P(B|A) = P(A)/P(B)(assuming none of the denominators is zero) * $P(A \cap B) = P(B)P(A|B)$ implies $P(B) = P(A \cap B)/P(A|B)$. Similar formulae apply to pdf's and pmf's of random variables (X, Y)

* Random variables

* Simplest distributions: Discrete: Bernoulli (e.g. indicator variables) Continuous: Uniform

* The support of X, $\operatorname{support}(X)$, is the set of x at which the pdf or pmf of X is positive.

- * (Univariate) Continuous, discrete, mixed
- * Independence
- * Functions of independent random variables are independent
- * Expectations
- * E[I(A)] = P(A)
- * Expectations everywhere! (variance, covariance, MGF)
- * MGF: $M_X(t) := \mathbb{E}[e^{tX}]$
- * MGF: Can be used to compute moments
- * MGF: Can be used to compute $E[\exp(tY)]$ for a specific t
- \ast The MGF of a linear combination of independent random variables
- * Expectations and variances and covariances of linear functions of random variables
- * Double expectation for means, probabilities, pdfs and pmfs:
 - The marginal expectation is the expected value of the conditional expectation
 - The marginal probability is the expected value of the conditional probability
 - The marginal pdf/pmf is the expected value of the conditional pdf/pmf
 - The marginal variance is the sum of the expected value of the conditional variance plus the variance of the conditional expectation (this breaks the previous pattern)

• The marginal covariance is the sum of the expected value of the conditional covariance plus the covariance of the conditional expectations

* $E[g(X)] \neq g(E[X])$ for all random X unless g() is linear (or constant) on support(X).

* Inequalities: Jensen, Markov, Chebychev, CS

* Transformation of random variables: Computing the pdf/pmf of g(X): For discrete. For continuous: 1) using the cdf, 2) using Jacobians

* Bivariate: Continuous, discrete, mixed

* Bivariate distributions: Joint, marginal, conditional pdf, pmf

* Computing the conditional from the joint and vice versa, for (X, Y) both continuous, both discrete, one continuous and one discrete

* Bivariate (X, Y): both continuous, both discrete, one continuous and one discrete. Examples: Bivariate normal, bivariate Bernoulli, Poisson-gamma mixture (negative binomial), binomial-beta mixture (beta-binomial), hypergeometric, ...

* Covariance and correlation

* In general, zero covariance (or zero correlation) does not imply independence

* Covariances of linear functions of random variables

* How to check independence: joint = marginal * marginal, conditional = marginal Must hold at *every point* in the sample space

The expected value of the product of *independent* random variables is the product of the expected values. That is, if X and Y are independent then E[XY] = E[X]E[Y].

If E[XY] = E[X]E[Y], then all we can say is that Cov(X, Y) = 0, but there is no guarantee that X and Y are independent. Example: P(X = -1, Y = -1) = P(X = 1, Y = 1) = P(X = -1, Y = 1) = P(X = 1, Y = -1) = P(X = 0, Y = 0) = 1/5Verify that E[XY] = E[X]E[Y]. Verify that X and Y are not independent.