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x(2x — 1), we can split the interval [0, 1] into two subintervals, in each of which the inte-
grand is a polynomial. As x varies from 0 to 1, the product x(2x — 1) changes sign at the
point x = }; it is negative if 0 < x < } and positive if } < x < 1. Therefore, we use the
additive property to write

1/2

[Fixx = Diax = = [ x@x - 1 dx + [} xx — 1 dx

1/

w

1
(x —2x%) dx + L/Z(sz — x)dx

=1
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~
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1.26 Exercises

Compute each of the following integrals.

1. f: x2dx. 11. f; (8% + 612 — 2t + 5)dt.

2. fjs x2dx. 12.- Ez @ — (e — 2) du.

3. [0 4x3 dx. 13. [jl (x + 1)2dx.

4. f_ 4x3 dx. 14. f 0‘1 (x + 1)2dx.

5. f: 564 d. 15. [0 (x — D3x — 1) dx.

6. ﬁlsﬂ dt. 16. f:l(x — 1)3x — )] dx.

7. [0‘ (5x* — 4x%) dx. 17. f: (2x — 50 dx.

8. fil (5% — 4x9) dx. 18. [: (x2 — 3) d.

9, f_l (2 + 1) dt. 19. [0 x%(x — 5)*dx.

10. f" (3x2 — 4x + 2) dx. 20. [_“‘ (x + 4 dx. [Hint: Theorem 1.18.]

21. Find all values of ¢ for which
(a) f°x(1 —X)dx =0, (b) [ 1x(1 — x)| dx = 0.
0 Jo

22. Compute each of the following integrals. Draw the graph of fin each case.

2 x2 if 0<x<l1,
@ [[f)dx  where f(x)_{z—x if 1<x<2
x if 0<x<e¢,
1
(b) (x) dx where f(x) = 1 —
fof / cl_: if ec<x<1;

¢ is a fixed real number, 0 < ¢ < 1.
23. Find a quadratic polynomial P for which P(0) = P(1) = 0 and j'; P(x)dx =1,
24. Find a cubic polynomial P for which P(0) = P(~2) =0, P(1) =15, and 3 .[22 P(x)dx = 4.
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Optional exercises

25. Let f be a function whose domain contains —x whenever it contains x. We say that fis an
even function if f(—x) = f(x) and an odd function if f(—=x) = —f(x) forall x in the domain
of f. If fis integrable on [0, b], prove that

@) [ﬁbf(.\’) dx =2 I.:f(x) dx  if fiscven;
(b) f:l f(x)dx =0 if fis odd.

26. Use Theorems 1.18 and 1.19 to derive the formula
[* fydx = b = @) l:f[a + (b — a)x]dx.
Ja R

27. Theorems 1.18 and 1.19 suggest a common generalization for the integral b f(Ax + B)dx.

Guess the formula suggested and prove it with the help of Theorems 1.18 and 1.19. Discuss
also the case 4 = 0.
28. Use Theorems 1.18 and 1.19 to derive the formula

|’ fle — x)dx =.[ T dx.

1.27 Proofs of the basic properties of the integral

This section contains proofs of the basic propertics of the integral listed in Theorems
1.16 through 1.20 in Section 1.24. We make repeated use of the fact that every function f
which is bounded on an interval [a, b] has a lower integral /(f) and an upper integral /()
given by

" b _ K b
_I(f)=sup{_|as|s_§f}, 1(g)=mf{_|al|fgt},
where s and 7 denote arbitrary step functions below and above f, respectively. We know,
by Theorem 1.9, that fis integrable if and only if /(f) = I(f), in which case the value of the

integral of fis the common value of the upper and lower integrals.

Proof of the Linearity Property (Theorem 1.16). We decompose the linearity property into
two parts:

(A) [u+o=[r+]"¢
b b
(B) [Peo=c[r.
To prove (A), let I(f) = {*fandletI(g) = [.g. Weshall provethat I(f + ¢) = If+g=
1(f) + 1(g)-

Let s, and s, denote arbitrary step functions below f and g, respectively. Since fand g
are integrable, we have

i =su ([ sls<s], Ko =sw{] nlnsd.
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Observe also that the graph of f is made up of disconnected line segments. There are
points on the graph of f where a small change in x produces a sudden jump in the value of
the function. Note, however, that the corresponding indefinite integral does not exhibit
this behavior. A small change in x produces only a small change in A(x). That is why the
graph of 4 is not disconnected. This illustrates a general property of indefinite integrals
known as continuity. In the next chapter we shall discuss the concept of continuity in
detail and prove that the indefinite integral is always a continuous function.

2.19 Exercises

Evaluate the integrals in Exercises 1 through 16.

g

1. [:(1 1+ R dr, 9. 7 costdr.
2y ‘w;
2. [o (U + 1+ ) dr. 10. |7 (4 + cosrydr.
2 ca
LA s+ mya i[5 ¢ = sinna.
tl—r k4 N .
4. |1 (1 —2¢ + 32 dr. 12. | "2 + sin 3u) du,
. 2 .
5. [ 2r2(12 + 1) dt. 13. L (v? + sin 3v) dv.
6 [T+ nran 14. [/ (sin®x + x) d.
U 4 o
3
7. [x 2+ Dd, x>0, 15. f (sin 2w + cos E)clw.
J1 0 2
8. [7(nl 4+ nlydr, x>0 16. [* (4 + cos 2 dr.
4T =

17. Find all real values of x such that
T _ [ 3
fo (¢ Ndt = 3.“ - (t —)dr.

Draw a suitable figure and interpret the equation geometrically.

18. Let f(x) = x — [x] — { if x is not an integer, and let f(x) = 0if x is an integer. (As usual,
[x] denotes the greatest integer < x.) Define a new function P as follows:

P(x) = l: [ dr for every real x.

(a) Draw the graph of f over the interval [—3, 3] and prove that fis periodic with period 1:
Sf(x + 1) = f(x) for all x.
(b) Prove that P(x) = 4(x® — x), if 0 < x < 1 and that P is periodic with period 1.
(c) Express P(x) in terms of [x].
(d) Determine a constant ¢ such that L‘, (P(t) + c)dt =0.
(e) For the constant ¢ of part (d), let Q(x) = j’g (P(1) + c)dr. Prove that Q is periodic with
period 1 and that
3 x2

9 =1 Y i ogx<l
Q(-\)—G-—4+12 1 <x<Il.
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19. Given an odd function f, defined everywhere, periodic with period 2, and integrable on every
interval. Let g(x) = (% f(1) dr.
(a) Prove that g(2n) = 0 for every integer .
(b) Prove that g is even and periodic with period 2.

20. Given an even function f, defined everywhere, periodic with period 2, and integrable on every
interval. Letg(x) = f& f(r) dt, and let 4 = g(1).
(a) Prove that g is odd and that g(x + 2) — g(x) = g(2).
(b) Compute g(2) and g(5) in terms of 4.
(c) For what value of A will g be periodic with period 2?

21. Given two functions fand g, integrable on every interval and having the following properties:
fis odd, g is even, f(5) =7, f(0) =0, g(x) =f(x +5), f(x) =jg g(1) dt for all x, Prove
that (a) f(x —5) = —g(x) for all x; (b) [3/()dt =7; (¢) % f(r)dt = g(0) — g(x).
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3.20 Exercises

1. Use Theorem 3.16 to establish the following inequalities:

1 < “1 x? de < 1
— < | —dx < —.
10vV2 = o VT +x 10
2. Note that V' 1 — x? = (1 — ¥*)/A/1 — x? and use Theorem 3.16 to obtain the inequalities

1 rue llA/Z
— < /T —xdx < — [-.
uws) VI Cdx <243

3. Use the identity 1 + x% = (1 4+ x?)(1 — x% + x*) and Theorem 3.16 to prove that for a > 0,

we have
1 a® +(15 < a  dy < a b
T+a\“ 73 5)—01+x2—“ 3t

Take @ = 1/10 and calculate the value of the integral rounded off to six decimal places.
4. One of the following two statements is incorrect. Explain why it is wrong.
(a) The integral |37 (sin 1)/t dt > 0 because |37 (sin 1)/t dr > {37 |sin 1|/t dt.

(b) The integral jé; (sin 1)/t dt = O because, by Theorem 3.16, for some ¢ between 2 and 4«
we have

J‘” sin ¢ 1 J‘“ cos (27) — cos (4+) 0
2 C 2 -

sintdt =
c

5. If n is a positive integer, use Theorem 3.16 to show that

Vint-Dz (—1)"

sin (12 dr = — where Vi <ec <V + Dr.

Nong

6. Assume [ is continuous on [a, b]. If j(’j f(x)dx =0, prove that f(c) = 0 for at least one c in
[a, b].

7. Assume that fis integrable and nonnegative on [a, b]. If_f,’f f(x)dx =0, prove that f(x) =0
at each point of continuity of f. [Hint: If f(c) > 0 at a point of continuity ¢, there is an
interval about ¢ in which f(x) > }f(c).]

8. Assume f is continuous on [a, b]. Assume also that j'(’;f(x)g(,\') dx = 0 for every function g
that is continucus on [a, b]. Prove that f(x) = 0 for all x in [qa, b].
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the minimum is b until the point reaches a certain special position, above which the
minimum is <b. The exact location of this special position will now be determined.

First of all, we observe that the point (x, y) that minimizes d also minimizes ¢2. (This
observation enables us to avoid differentiation of square roots.) At this stage, we may
express d* in terms of x alone or else in terms of y alone. We shall express ¢® in terms of
J-and leave it as an exercise for the reader to carry out the calculations when d* is expressed
in terms of .

Therefore the function f to be minimized is given by the formula

f() =d> =4y + (y — b).

Although f(y) is defined for all real y, the naturc of the problem requires that we seek the
minimum only among those » > 0. The derivative, given by /(1) = 4 + 2(y — b), is zero
only when y =5 — 2. When b < 2, this leads to a negative critical point y which is
excluded by the restriction y > 0. In other words, if b < 2, the minimum does not occur
at a critical point. In fact, when b < 2, we see that f'(3) > 0 when y > 0, and hence
S is strictly increasing for y > 0. Therefore the absolute minimum occurs at the endpoint
y = 0. The corresponding minimum d is V'b% = |b|.

If b > 2, there is a legitimate critical point at y = b — 2. Since f"(y) = 2 for all y,
the derivative f” is increasing, and hence the absolute minimum of f occurs at this critical
point. The minimum d is V4(b — 2) + 4 = 2v/b — 1. Thus we have shown that the

minimum distance is |b| if b < 2 and is 2Vh — 1 if b > 2. (The value b = 2 is the special
value referred to above.)

4.21 Exercises

1. Prove that among all rectangles of a given area, the square has the smallest perimeter.

2. A farmer has L feet of fencing to enclose a rectangular pasture adjacent to a long stone wall.
What dimensions give the maximum area of the pasture?

3. A farmer wishes to enclosc a rectangular pasture of area A adjacent to a long stone wall. What
dimensions requirc the least amount of fencing?

4. Given S > 0. Prove that among all positive numbers x and y with x + y = S, the sum
x% + % is smallest when x = y.

5. Given R > 0. Prove that among all positive numbers x and y with x* + y* = R, the sum
X + yis largest when x = y.

6. Each cdge of a square has length L. Prove that among all squares inscribed in the given
square, the one of minimum area has edges of length 1LV2,

7. Each edge of a square has length L, Find the size of the square of largest area that can be
circumscribed about the given square.

8. Prove that among all rectangles that can be inscribed in a given circle, the square has the
largest area.

9. Prove that among all rectangles of a given arca, the square has the smallest circumscribed
circle.

10. Given a sphere of radius R. Find the radius r and altitude / of the right circular cylinder with
largest lateral surface area 2=r/ that can be inscribed in the sphere.

1. Among all right circular cylinders of given lateral surface area, prove that the smallest circum-
scribed sphere has radius /2 times that of the cylinder.




17.

18.
19.

22,

Exercises 195

. Given a right circular cone with radius R and altitude H. Find the radius and altitude of the

right circular cylinder of largest lateral surface area that can be inscribed in the cone.

. Find the dimensions of the right circular cylinder of maximum volume that can be inscribed in

a right circular cone of radius R and altitude H.

. Given a sphere of radius R. Compute, in terms of R, the radius r and the altitude / of the

right circular cone of maximum volume that can be inscribed in this sphere.

. Find the rectangle of largest area that can be inscribed in a semicircle, the lower base being on

the diameter.

. Find the trapezoid of largest area that can be inscribed in a semicircle, the lower base being on

the diameter.

An open box is made from a rectangular piece of material by removing equal squares at each
corner and turning up the sides. Find the dimensions of the box of largest volume that can
be made in this manner if the material has sides (a) 10 and 10; (b) 12 and 18.

If a and b are the legs of a right triangle whose hypotenuse is 1, find the largest value of 2a + b.
A truck is to be driven 300 miles on a freeway at a constant speed of x miles per hour. Speed
laws require 30 < x < 60. Assume that fuel costs 30 cents per gallon and is consumned at the
rate of 2 4 x%/600 gallons per hour. If the driver’s wages are D dollars per hour and if he
obeys all speed laws, find the most economical speed and the cost of the trip if (a) D =0,
®b)D=1,(c)D=2,(d)D=3,()D =4

. A cylinder is obtained by revolving a rectangle about the x-axis, the base of the rectangle

lying on the x-axis and the entire rectangle lying in the region between the curve y = x/(x® + 1)
and the x-axis. Find the maximum possible volume of the cylinder.

. The lower right-hand corner of a page is folded over so as to reach the leftmost edge. (See

Figure 4.17.) If the width of the page is six inches, find the minimum length of the crease.
What angle will this minimal crease make with the rightmost edge of the page? Assume the
page is long enough to prevent the crease reaching the top of the page.

FiGure 4.17 Exercise 21. FIGURE 4.18 Exercise 22.

(a) An isosceles triangle is inscribed in a circle of radius r as shown in Figure 4.18. If the
angle 2« at the apex is restricted to lie between 0 and 4, find the largest value and the smallest
value of the perimeter of the triangle. Give full details of your reasoning.
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(b) What is the radius of the smallest circular disk large enough to cover every isosceles
triangle of a given perimeter L? Give full details of your reasoning.

23. A window is to be made in the form of a rectangle surmounted by a semicircle with diameter
equal to the base of the rectangle. The rectangular portion is to be of clear glass, and the
semicircular portion is to be of a colored glass admitting only half as much light per square
foot as the clear glass. The total perimeter of the window frame is to be a fixed length P. Find,
in terms of P, the dimensions of the window which will admit the most light.

24. A log 12 feet long has the shape of a frustum of a right circular cone with diameters 4 feet and
(4 + 1) feet at its ends, where /1 > 0. Determine, as a function of /, the volume of the largest
right circular cylinder that can be cut from the log, if its axis coincides with that of the log.

25. Given u real numbers ay, ..., da, Prove that the sum Z,{.‘_ 1 (& —a)? is smallest when x is
the arithmetic mean of a,, . . . , a,.

26. If x > 0, let f(x) = 5x* + Ax—3, where A isa positive constant. Find the smallest A such that
f(x)} > 24 for all x > 0.

27. For each real 1, let S = —4x® 4 2%, and let m(¢) denote the minimum of f(x) over the
interval 0 < x < 1. Determine the value of m(r) for each ¢ in the interval -1 <t <.

Remember that for some values of ¢ the minimum of f(x) may occur at the endpoints of the
interval 0 < x < 1.

28. A number x is known to lie in an interval @« < x < b, where @ > 0. We wish to approximate
x by another number ¢ in [a, 5] so that the relative error, |t — x|/x, will be as small as possible.
Let M(r) denote the maximum value of |t — x|/x as x varies from a to b. (a) Prove that this
maximum occurs at one of the endpoints x = aor x = b. (b) Prove that M (#) is smallest when
t is the harmonic mean of g and b, that is, when 1/t = 1(l/a + 1/b).

*4.22 Partial derivatives

This section explains the concept of partial derivative and introduces the reader to some
notation and terminology. We shall not make use of the results of this section anywhere
else in Volume I, so this material may be omitted or postponed without loss in continuity.

In Chapter 1, a function was defined to be a correspondence which associates with each
object in a set X one and only one object in another set Y; the set X is referred to as the
domain of the function. Up to now, we have dealt with functions having a domain consisting
of points on the x-axis. Such functions are usually called functions of one real variable. 1t
is not difficult to extend many of the ideas of calculus to functions of two or more real
variables.

By a real-valued function of two real variables we mean one whose domain X is a set of
points in the xy-plane. If f denotes such a function, its value at a point (x, J) is a real
number, written f(x, y). It is easy to imagine how such a function might arise in a physical
problem. For example, suppose a flat metal plate in the shape of a circular disk of radius
4 centimeters is placed on the xy-plane, with the center of the disk at the origin and with
the disk heated in such a way that its temperature at each point (x, y) is 16 — x2 —)®
degrees centigrade. If we denote the temperature at (x, y) by f(x, y), then fis a function
of two variables defined by the equation

(4.27) S0 0) =16 — x2 — yz,

The domain of this function is the set of all points (x, »)) whose distance from the origin
does not exceed 4. The theorem of Pythagoras tells us that all points (x, ) at a distance
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For the example in (4.30), we obtain

Sialy, ) = —yicosxy,

JSia(x, ) = cos y — xy®cos xy — 3y*sinxy,

So1(x, §) = cos y — xy3cos xy — psin xy — 2p%sin xy = fi o(x, y),
Jao(x, ¥) = —xsiny — x%? cos xy — 2xpsin xy — 2xy sin xp + 2 cos xp

= —xsiny — x¥p?cos xy — 4xysin xy + 2 cos xy .

A more detailed study of partial derivatives will be undertaken in Volume II.

*4,23 Exercises

In Exercises 1 through 8, compute all first- and second-order partial derivatives. In each case
verify that the mixed partial derivatives f] »(x, ) and f; ;(x, y) are equal.

L flx, y) = xt 4yt — 4xH)2 5. f(x, y) = sin (x*%),
2. f(x,y) = xsin(x + y). 6. f(x, y) = sin [cos 2x = 3y)].
x x +
3. , V) = + - » # 0). 7. flx, y) = # y).
[, ) =xy ; (y #0) S o (x #y)

—_— x

4. flx,y) = Vix® + )2 8. flx,y) = \—,,—/f—v; (x, ) #(0,0).
2 s

9. Show that x(9z/dx) + p(9z/dy) = 2zif (@) z = (x — 2y)% (b) z = (x* + yH!/2,

10, If f(x, p) = xp/(x® + y®)* for (x, y) # (0, 0), show that

a’lf_

a2
SEA Y

ox2 ] _y2
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16. (@) If 1,(x) = fE17(:2 + a®~1/2 dt, use integration by parts to show that

nhy(x) = x"Wx2 4+ a® — (4 ~ Da?l,_o(x) if n>2,

R

(b) Use part (a) to show that JExs(x® + 512 gy = 168/5 — 40\/5/3.

17. Evaluate the integral [%, /(4 + £3)-1/2 dt, given that {3, (4 + V2 4r = 11.35. Leave the
answer in terms of /3 and V31,
18. Use integration by parts to derive the formula

sin"F1 x 1 sin" x n [ sin®1x

———dy=—— |2 " 1
1@ n w1y G

cos™tl x mcos”x m Jcos™ 1y

Apply the formula to integrate | tan® x dx and | tan* x d. i
[9. Use integration by parts to derive the formula :

cos™+l y lcos™x m( cos™!x ; {
——dv = — - = — = ——dx. .
sin?H1 x i osin x nJ) sin®™1x

Apply the formula to integrate [ cot® x dx and J cott x dx.

20. (a) Find an integer # such that n 1 xf"(2x) dx = J2ef7(0) dr.
(b) Compute 1o xf"2x) d, given that £(0) = L, fQ2) =3, and f'(2) = 5.

21. (a) If ¢” is continuous and nonzero on [a, b], and if there is a constant m > 0 such that
#'(t1) = m for all t in [a, b], use Theorem 5.5 to prove that

b 4
’ { sin ¢(r)zlt( <—.
J m

«®

[Hint: Multiply and divide the integrand by ¢'(1).]
(b) If @ > 0, show that ||;’ sin (1Y) dt] < 2/aforall x > a.

*5.11 Miscellaneous review exercises

- Let /' be a polynomial with £(0) = I and let g(x) = x"f(x). Compute g(0), g(0), . . . ,&"(0).
. Finda polynomial P of degree < 5 with P(0) = LP() =2,P(0)= P(0) = Py =pP1)=0.
. If f(x) = cos x and g(x) =sinx, prove that

S S

SM(x) =cos (x 4+ Inm)  and £ = sin (x + lum).
4, If h(x) = f(x)g(x), prove that the nth derivative of /i is given by the formula

n

M (x) = Z(Z)fu. (W)eh)

= ]

. . . . . . 9 |
where (i) denotes the binomial coefficient. This is called Leibniz's formula. |
5. Given two functions f and & whose derivatives f” and ¢’ satisfy the equations

(5.30) J® =5, g™ =-, [0)=o0, g0 =1,

for every x in some open interval J containing 0. For example, these equations are satisfied
when f(x) = sin x and £(x) = cos x.
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(a) Prove thatf%(x) + g%x) = 1 for every x in J.
(b) Let F and G be another pair of functions satisfying (5.30). Prove that F(x) = f(x) and
G(x) = g(x) for every x inJ. [Hint: Consider h(x) = [F(x) — fOP + [G(x) — g0)IR]
(c) What more can you say about functions f and g satisfying (5.30)?

6. A function f, defined for all positive real numbers, satisfies the equation [ = x? for every
x > 0. Determine f'(4).

7. A function g, defined for all positive real numbers, satisfies the following two conditions:
g(1) =1 and g'(x* = x®for all x > 0. Compute g4).

8. Show that

zsin ¢
d >0 forall x >0.
ot +1

9. Let C, and C, be two curves passing through the origin as indicated in Figure 5.2. A curve
C is said to “bisect in area” the region between C; and C, if, for each point P of C, the two
shaded regions A and B shown in the figure have equal areas. Determine the upper curve Cy,

given that the bisecting curve C has the equation y = x% and that the lower curve C; has the
equation y = $x%

G,

G

FIGURE 5.2 Exercise 9.

10. A function fis defined for all x as follows:

x2

S =[

if  is rational,

0 if xis irrational.

Let QU = f(W)/hif h # 0. (a) Prove that Q(#) — 0 as i — 0. (b) Prove that f has a derivative
at 0, and compute f7(0).

In Exercises 11 through 20, evaluate the given integrals. Try to simplify the calculations by
using the method of substitution and/or integration by parts whenever possible.

(1. [ + 3x) sin Sx dx. 16. [:xa(l — )P dx.
. ) |
12. Jx\’ 1 + x2dx. 17. f +=2sin - d.
1 A
13. [;x(x2 — 1% dx. 18. J‘sin Vx —1dx.
12x +3 ' .
i -sin x2 2
14. L(6x T ) dx. 19. JAsmx cos x? dx.

15. [x*(l + X35 dx. 20, “\/ 1 + 3 cos? x sin 2x dx.



224 The relation between integration and differentiation

21. Show that the value of the integral h—; 375x3(x% + 1) 4 dx is 2" for some integer .

22. Determine a pair of numbers @ and b for which [} (ax + b)(x¥* + 3x + 2) 2 dx = 3)2,

23. Let I, = ji(1 — x*" dx. Show that (2n + 1)I,, = 2n[,_,, then usc this relation to compute
Iy, Iy, I, and [;.

24, Let F(m, n) = §&e™(l + )" dr, m > 0, n > 0. Show that

(m + DFgm ) + nFn + 1,n — 1) = x" (1 4+ x)".
Use this to evaluate F(10, 2).

25. Let f(n) = |7 * tan” x dv where n > 1. Show that

@ f(n+ 1D <f(a).

1
(b) f() + fn —2) = 3 it n>2.
1 . 1 . ,
()m<](”)<m it n>2

26. Compute f(0), given that f(7) = 2 and that _fg[f(.\') + /)] sin v dx =5,
27. Let 4 denote the value of the integral

s

Cos ¥
——dx.
o (v +2)°

Compute the following integral in terms of A:

[{A NN

"7/2 sin X cos v
Jo x4+ 1

The formulas in Exercises 28 through 33 appear in integral tables. Verify each of these formulas
by any method.

j‘ + bx

dx
b T e [
X \a+b\+a.,\'\a4-[).\'+

29. f.x”\ ax + bdx = < Max + by 3 —nb‘ S ax + h([\) +C (n# =4,

a(2n + 3)

XM 2 A 1
30. f dx ( S\ a + bx — ma (—_d.\') + C (= =)
‘a + bx (7’” + 1)b JN a4+ bx
Zax 2n — 3 Ix
31 f _ Vax+b - f ‘ +C o # D
x™\Vax + b (n — Dbx"! S @n = 2)b) Wax + b
cos™ .\' cos” 1y m — 1 [cos™ 2y
32. v = + - dy + C (m #n).
sin" x (m — n) sin"x m—n sin” v
13 cos™ x " cos™tl x m—n+2{ cos"x v+ N
sy T (n — Dsin* ! x n—1 s 2T G # D).

34. (a) Find a polynomial P(x) such that P'(x) — 3P(x) =4 — 5x 4+ 3x% Prove that therc is
only one solution.

o




35.

36.
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(b) If Q(x) is a given polynomial, prove that there is one and only one polynomial P(x) such
that P'(x) — 3P(x) = Q(x).
A sequence of polynomials (called the Bernoulli polynomials) is defined inductively as follows:

Px) =1; P.(x) =nP,y(x) and [iP,()dx=0 if n>1

(a) Determine explicit formulas for Py(x), Pa(x), . . ., P5(x).

(b) Prove, by induction, that P,(x) is a polynomial in x of degree n, the term of highest degree
being x".

(c) Prove that P,(0) = P (1) if n > 2.

(d) Prove that P,(x + 1) — Py(x) = nx"ifn > 1.

(e) Prove that for n > 2 we have

< K Poy(k) = Ppyy(0
D= fpu(x) iy = Fri® = Prn @
r=1 0 n+1

(f) Prove that P,(1 — x) = (=1)"Py(x) il n > L.

(g) Prove that Py, 4(0) =0 and P,, (3) =0ifn > 1.

Assume that |f"(x)] < m for each x in the interval [0, a), and assume that f takes on its largest
value at an interior point of this interval. Show that |f(0)| + |f(a)l < am. You may assume
that f” is continuous in [0, al.
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” dx 40 fv‘z—x—xzd
. m . xz X.

[Hint: In Exercise 40, multiply numerator and denominator by V2 — x — x%]

6.26 Miscellaneous review exercises

1. Let f(x) = j“f (log O/t + 1) dt if x > 0. Compute f&x) + f(1/x). As a check, you should
obtain f(2) + f(}) = % log®2.
2. Find a function f, continuous for all x (and not everywhere zero), such that

sin ¢

F200) = f S
0

2 4+ cost

3. Try to evaluate [e®/x dx by using integration by parts.
. Integrate f2/2 log (e°%%) dx.
5. A function f'is defined by the equation

4x + 2 .
f(x)=,/m if x>0.

(a) Find the slope of the graph of fat the point for which x = 1.
(b) The region under the graph and above the interval [1, 4] is rotated about the x-axis, thus
generating a solid of revolution. Write an integral for the volume of this solid. Compute this
integral and show that its value is = log (25/8).

6. A function F is defined by the following indefinite integral:

oS

@ et

F(x)=f—t-dt if x>0,
1

(a) For what values of x is it true that log x < F(x)?

(b) Prove that [ et/(t + a) dt = e °[F(x + a) — F(1 + a)].

(c) In a similar way, express the following integrals in terms of F:

Tz gat z ot E
— dt, f - dt, f eVt dr .
1 ! 1 ¢ 1

7. In each case, give an example of a continuous function f satisfying the conditions stated for all
real x, or else explain why there is no such function:
@) [Zf(ndr = e
() [Zf(ndt =1 — 22, [2*° means 2]
© [zf(nyde =f3x) — 1.

8. If f(x + y) = f(x)f()) for all x and y and if f(x) =1 + xg(x), where g(x) > 1 as x —0,
prove that (a) f'(x) exists for every x, and (b) f(x) = €.

9. Given a function g which has a derivative g'(x) for every real x and which satisfies the following
equations:

g0 =2 and glx +y) =e'g(x) + eg(y) for all x and y.

(a) Show that g(2x) = 2¢%¢(x) and find a similar formula for g(3x).
(b) Generalize (a) by finding a formula relating g(11x) to g(x), valid for every positive integer
n. Prove your result by induction.
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10.

11,

13.

14,
15.

(c) Show that g(0) = 0 and find the limit of g(h)/h as h — 0.

(d) There is a constant C such that g’(x) = g(x) + Ce* for all x. Prove this statement and
find the value of C. [Hint: Use the definition of the derivative £'(x).]

A periodic function with period a satisfies f(x + a) = f(x) for all x in its domain. What can
you conclude about a function which has a derivative everywhere and satisfies an equation of
the form

[ +a) = bf(x)

for all x, where a and b are positive constants?
Use logarithmic differentiation to derive the formulas for differentiation of products and
quotients from the corresponding formulas for sums and differences.

. Let 4 = Jletf(r + 1) ar. Express the values of the following integrals in terms of A:

1 e—-t 1 e!
(a) n_ll—_—a—_-—ldt. (©) J; mdt

1 tet"! J’l
b — dt. d etlog (1 + t) dt.
()fO,_Jr1 @ | elog (1 + 0

Let p(x) = ¢y + 13 + cp3® and let f(x) = *p(x).

(2) Show that f{"(0), the nth derivative of fat 0, is ¢y + nc; + n(n — e,
(b) Solve the problem when p is a polynomial of degree 3.

(c) Generalize to a polynomial of degree /.

Let f(x) = xsinax. Show that f@"(x) = (—1)"(a*'x sin ax — 2na®" ! cos ax).
Prove that
Z( (., Z( :
/»+m+l k+n+1
[Hint: 1tk +m + 1) = [} dr]
. Let F(x) = ‘ff;'f(t) dr. Determine a formula (or formulas) for computing £(x) for all real x

if fis defined as follows:
@ f(O =+ )2 © f() =et.

. 1 - if |71 <t
®) f() =

= it > 1 @ f(0) = Fhe maximum of | and #°.

- A solid of revolution is generated by rotating the graph of a continuous function f around

the interval [0, a] on the x-axis. If, for every @ > 0, the volume is a® + a, find the function f.

. Let f(x) = e2% for all x. Denote by S(¢) the ordinate set of f over the interval [0, f], where

t > 0. Let A(t) be the area of S(¢), V(1) the volume of the solid obtained by rotating S(¢)
about the x-axis, and /(r) the volume of the solid obtained by rotating S(r) about the y-axis.
Compute the following: (a) A(r); (b) V(1); (¢) W(r); (d) lim,_, V()] A(L).

. Let ¢ be the number such that sinh ¢ = . (Do not attempt to compute ¢.) In each case

find all those x (if any exist) satisfying the given equation. Express your answers in terms of
log 2 and log 3.

@) log(e® +\/e* + 1) =c. (b) log (¢® —v/e* — 1) =c.
20. Determine whether each of the following statements is true or false. Prove each true statement.
(a) 2loe5 — slou? © Z k12 < 2v/u for every n > 1.
k=1
log, 5 .
(b) log, 5 = (d) I + sinhx < coshx forevery x.

log, 3
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In Exercises 21 through 24, establish each inequality by examining the sign of the derivative of
an appropriate function.
2

Z w
2l = x <sinx <x if O<x<;.
= 2

1 1 |
2 — - - if x X
2"x+§<log(l+x)<x if x>0
.\'3

23.x—€<sinx<.\' if x>0.

240 (3" + 0 < (x4 if x> 0,3 >0,and 0 <a < b.
25. Show that

(a) _fﬁ etrdt =e ¥ (e" — 1 — x).

&£ x2
(b) f et dt = 2!e‘1(ez -1 —x - ;)_
0

&z x‘.! xs
—t3 - —Xf Lr __ —_ N —— - —
©) L et dr = 3le (e 1 —x 30 3!).

(d) Guess the generalization suggested and prove it by induction.
26. If a, b, ay, b, are given, with ab = 0, show that there exist constants A, B, C such that

fal sin x + b, cos x

- X = A inx X .
aSnx T boost dx x + Bloglasinx + bcosx| + C

{Hint: Show that 4 and B exist such that
aysinx + b, cos x = A(asinx + b cos X) + B(acos x — bsinx).]

27. In each case, find a function f satisfying the given conditions.
(@) () = 1/x forx >0, f(1)=1.
(b) fsin®x) =cos®x  forallx, f(I) = I.
(© f(sinx) =cos?x  forallx, f(I) =1.
t for 0 <x <1,

(@ [ tog x) = x for x> ],_ SO =0.

28. A function, called the integral logarithm and denoted by Li, is defined as follows:
. =t .
Li(x) = | — if x>2.

2 log ¢

This function occurs in analytic number theory where it is proved that Li(x) is a very good
approximation to the number of primes < x. Derive the following properties of Li(x):

Life) — X (I dt 2
@) Li) = log x +‘.3 log?r l_cgi'

b) Litx) x k! x '["‘ dt L c
(b) Li(x = fogx +k_110g"“x +n.‘2 Tog T -

where C,, is a constant (depending on n). Find this constant.
(c) Show that there is a constant b such that _ﬂfg’ et/t dt = Li(x) and find the value of &.
(d) Express [Ze®/(t — 1) dr in terms of the integral logarithm, where ¢ = 1 + } log 2.
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(e) Let f(x) = ¢! Li(e>* %) — ¢® Li(e>~%) if x > 3. Show that

e‘l.r

A e T

29. Let f(x) = log{x] if x < 0. Show that fhas an inverse, and denote this inverse by g. What
is the domain of g? Find a formula for computing g(y) for each y in the domain of g. Sketch
the graph of g.

30. Let f(x) = j'f,(l + 5712 drif x > 0. (Do not attempt to evaluate this integral.)
() Show that fis strictly increasing on the nonnegative real axis.
(b) Let g denote the inverse of f. Show that the second derivative of g is proportional to g*
[that is, £"(») = cg*) for each y in the domain of g] and find the constant of proportionality.
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7.17 Exercises

Evaluate the limits in Exercises 1 through 25. The letters a and b denote positive constants.

e—l/a:"
im ——a : 2 _ A/ _ 2
1. ll_rg 000 - 13.21Tw(x X x% 4 1).
sin (1/x) log x x
2. lim ———, 14. li — 1 .
erer arctan (1/%) 4 x'j&l:(l +r B\T s
3 tan 3 15. lim (log x) log (I — %)
im . . lim (log x) lo - x).
2~z tan x or1— & &
lo + be”
4 lim 2Bt 6D 16. lim xt#=1),
gt Va + bx? Z—r0+
M 1 ] . £
5. lim xf{cos- —1 4+ —]}. 17. lim [x%9 — 1]
Tt X 2x T—0+
log sin x| . )
6. —_—, 18. lim (1 — 2®)sinz,
z—q 108 |sin 2x] o
log (1 — 2:
7. lim L—Y). 19. lim xl/lozz,
z—r}— tan 7x Z—r0+
cosh (x + 1 .
8. lim —# 20. lim (cot x)sinz,
T+ ® € -0+
aI
9. lim —, a>1 21. lim (tan x)tan 2z,
gt X x—iz
tanx — 5 . 1\®
10. lim ———, 22, lim [log-] .
2z SECX + 4 o0t x
R YA B .
1L lim —(— — =] . 23, lim x¢/(+log ),
r—0+ \/x sinx X z—-+0-+
12, lim x¥4sin (1/4/%). 24. lim (2 — x)tantz=/2),
z—r+ ™ x—r1
25. li ( ! ! )
. lim - .
e—ollog (x + V1 4+ x%)  log I( + x)
26. Find ¢ so that
€T
lim (x + c) -4
z—t+m \¥ —C
27. Prove that (I + x)° =1 + cx 4+ o(x) as x — 0. Use this to compute the limit of
{4+ a2 — 5% as x — +w,
28. For a certain value of ¢, the limit

lim {(x5 4 7x* +2)¢ — x}

T+

is finite and nonzero. Determine this ¢ and compute the value of the limit.
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29.

30.

31.

32.

Let g(x) = xe** and let f(x) = jf g + 1/t dr. Compute the limit of f"(x)[g"(x) as
x >+ o,

Let g(x) = x%®* and let f(x) = 2 G + V2 ds. For a certain value of ¢, the limit of
[Xgx)as x>+ is finite and nonzero. Determine ¢ and compute the value of the limit.
Let f(x) = e /=" if x # 0, and let f(0) = 0.

() Prove that for every m > 0, f)/x™ — 0asx— 0.

(b) Prove that for x # 0 the nth derivative of f has the form f‘"’(x) = f(x)P(1/x), where P(1)
is a polynomial in ¢.

(c) Prove thatf‘"’(O) =0 for all #» > 1. This shows that every Taylor polynomial generated
by fat 0 is the zero polynomial.

An amount of P dollars is deposited in a bank which pays interest at a rate r per year, com-
pounded m times a year. (For example, r = 0.06 when the annual rate is 6%.) (a) Prove that
the total amount of principal plus interest at the end of n years is P(1 + rfm)™n, If ¥ and n
are kept fixed, this amount approaches the limit Pe™ as 71 — -+ . This motivates the follow-
ing definition: We say that money grows at an annual rate r when compounded continuously
if the amount f(¢) after ¢ years is [f(0)e™, where ¢ is any nonnegative real number. Approxi-
mately how long does it take for a bank account to double in value if it receives interest at an
annual rate of 6°, compounded (b) continuously ? (c) four times a year?
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To lay a better foundation for the general theory of power series, we turn next to certain
general questions related to the convergence and divergence of arbitrary series. We shall
return to the subject of power series in Chapter 11.

10.9 Exercises

Each of the series in Exercises | through 10 is a telescoping series, or a geometric series, or some
related series whose partial sums may be simplified. In each case, prove that the series converges
and has the sum indicated.

" 1

1
=. 6. —.
2 = 4+ D +2)n+3 4
i 2n + 1
) w2+ 1)
h=]

g i 2" + 0% +n
. 2n+1"(” +1) -

—_—

1
’ "ZI(ZII —D@n+1)

!\)
MS Il
W
Tl
K

i

[¥'%)

~1

)
N

w
M
~
o

1=
—
I
Alw

n=2

4 izn + 3n _ 3 9 Z (_l)n—l(‘)n -+ 1) _
— 6" 2 n(n + 1)
<V +1 —\n < log [(1 + 1/ny"(1 + )]

5. _— =], 10.
Vit +n

(Iog n")[log (n + 1)"+1] = log, Ve,

n=1

Power series for log (1 + x) and arctan x were obtained in Section 10.8 by performing various
operations on the geometric series. In a similar manner, without attempting to justify the steps,
obtain the formulas in Exercises 11 through 19. They are all valid at least for |x] < 1. (The theo-
retical justification is provided in Section 11.8.)

" Z X 6 i x3n=l 3 I +x
) e T =X ) -1 Ogl—-x'
n=1 n=
12§2"—x2+x 172( Dn =
. nex _(l—x)"' . n+ 1)x _(l—x)e'
n=1 n=0
3 in"x" _ X2 +4x% + x 8 = (n + Dn +2) o 1
. = “_4_ . . ' = — 3"
“~ (1—x) = 2! (1 - x)
14 i gom X1 4 11x% 4+ x 9 i(n+l)(n+2)(n+3) . 1
. X" = . = .
~" 1 —xp : Z 3! =0

15. z——log1 %

20." The results of Exercises 11 through 14 suggest that there exists a general formula of the form
=]
> e P
(1 — x)ktt”’

n=1

where P,(x) is a polynomial of degree , the term of lowest degree being x and that of highest
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degree being x*. Prove this by induction, without attempting to justify the formal manipula-
tions with the series.

21. The results of Exercises 17 through 19 suggest the more general formula

—~(n +k . 1 n+k m+Dn+2)---(n+k)
Z( k )x =(— where A )= .

[ — )L k!
n=0

Prove this by induction, without attempting to justify the formal manipulations with the
series.

22. Given that fo___o x"[n! = e for all x, find the sums of the following series, assuming it is
permissible to operate on infinite series as though they were finite sums.

—n—1 S+ 1 (1= 1)(n + 1)

23. (a) Given that 3% | x"/n! = ¢* for all x, show that

i 2.0
nx R )
— = (x% + x)e,
n!

n=1

assuming it is permissible to operate on these series as though they were finite sums.
(b) The sum of the series z:;l 13[nt is ke, where & is a positive integer. Find the value of &.
Do not attempt to justify formal manipulations.

24. Two series z;’,’l a, and Z,“f:l b, are called identical if a, = b, foreachn > 1. Forexample,
the series
04+0+0+ - and (-H+A-=-D+A=1)+" -
are identical, but the series

141414 and T+0+1+0+1+0+--

are not identical. Determine whether or not the series are identical in each of the following

pairs:
@li-14+1-1+ and C-D-3-2)+@d-3)-5-4H+ -
1 —=-14+1-144"- and A-D+d-D+(-D+A=1)+" --.
@l—-14+1—-14-- and L+ (=1 +D)+(=14+D+(-1+1)+ -
@14+3+1+3+ and 140 -H+E-DbH+d-H+- -
25. (a) Use (10.26) to prove that
1+0+x2+0+x“+"'=1_lx2 if x| <1.

Note that, according to the definition given in Exercise 24, this series is not identical to the
one in (10.26) if x # 0.

(b) Apply Theorem 10.2 to the result in part (a) and to (10.25) to deduce (10.27).

(c) Show that Theorem 10.2 when applied directly to (10.25) and (10.26) does not yield (10.27).
Instead, it yields the formula Zf_l (x* — x®) = x/(1 — x?), valid for |x| < 1.
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EXAMPLE 1. The integral test enables us to prove that

Z Ls converges ifand only if s> 1.
n
n=1

Taking f(x) = x~* we have

nt— 1 .
n e if s##1,
t, = %d.\': 1—3s
1 X
log n if s=1.

When s > 1 the term #'=° — 0 as # — o0 and hence {r,} converges. By the integral test,
this implies convergence of the series for s > 1.

When s < 1, then ¢, — oo and the series diverges. The special case s = 1 (the harmonic
series) was discussed earlier in Section 10.5. Its divergence was known to Leibniz.

EXAMPLE 2. The same method may be used to prove that

o«

z L converges ifand only if s> 1.
n(log n)*

n=2

(We start the sum with #n = 2 to avoid n for which log /7 may be zero.)
The corresponding integral in this case is
(log m)'~° — (log 2)**

t,1=f -—1—(1.\' = 1—3s
2 x(log x)’ )
log (log n) — log (log 2) if s=1.

if s#1,

Thus {#,} converges if and only if s > 1, and hence, by the integral test, the same holds
true for the series in question.

10.14 Exercises

Test the following series for convergence or divergence. In each case, give a reason for your
decision.

-2 o .
) z n s Z |sin 2x|
’ (4n — 3)(4n — 1)’ ’ n
n=1 n=1
X i\/2n—llog(4n+l) . iz + (=1
) nin + 1) ) ’ 2n ’
n= n=t
3 i n+1 ; n!
2" (n +2)!

2
Il
-
3
U
-

S
M
SES

&
M

&

+| =

2
U
-
2
||
(&)
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o o

1 n cos? (nx/3)
9. Z E—— 14. Z _—2'1— .
= \/n(n + 1) =
1 +vVn = 1
ROy y 15. 2, g GogTog
i (n £ nlogn (loglogn
[>e] @
1 : 16 Z —n?
. . ne=",
pn] (log n)* ~
[=] > e]
Ianl 1/n '\/.;
2. > 2, lad <10 7. > [ o dx.
n=} n=1
o 1 o
n+l
—— _‘/—
13. T000n +1° 18. Z f" e~ Vadx.
n=1 n=1

19. Assume f'is a nonnegative increasing function defined for all x > 1. Use the method suggested
by the proof of the integral test to show that

"z_l f® < [T fe dx szn ).
k=1 k=2

Take f(x) = log x and deduce the inequalities
(1041) ente™ < n! < enttle |

These give a rough estimate of the order of magnitude of n!. From (10.41), we may write

el/n (ll !)1/n el/n yl/n

e n e
Letting n — oo, we find that

(n)V/n
n

U Bl

—_

n
or (nh¥n ~ as n— o,

10.15 The root test and the ratio test for series of nonnegative terms

Using the geometric series 3 x" as a comparison series, Cauchy developed two useful
tests known as the root test and the ratio test.

If 3 a, is a series whose terms (from some point on) satisfy an inequality of the form
(10.42) 0<a, <xm, where 0<x<l1,

a direct application of the comparison test (Theorem 10.8) tells us that > a, converges.
The inequalities in (10.42) are equivalent to

(10.43) 0<al"< x;

hence the name root test.
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10.16 Exercises

Test the following series for convergence or divergence and give a reason for your decision in
each case.

8.

n/n — n,

Ny Dk
=2
MSIIM
L
e[ Bl
e S|E
IR

o
Ms i[\s
%

3

e

E
I
—

a2
U
A
3
l
—~

2!

10.

3
Il
-
2
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—

w
M
<
a
[\Ms
= T2
|
M
%
S —

11.

g
M
2]
s
Ms
|3
e

El
i

-

=
8

-

(73
MS
w':
-1 »—

[§%)
~
=
4
—
~—~
=
Nt
=

3
U
-

o 3 — 1\nn
13.211[\/§+( H" '

371

N
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» o—
B

2
8 1

~~
=
=]
o
x|
N
=
=
2

n=1
o

14. z r* |sin nx}, r>0.
n=1

15. Let {a,} and {b,} be two sequences with a, > 0 and by >0foralln > N,andletc, = b, —
byy1an,4/a, . Prove that:
(a) If there is a positive constant  such that ¢y 2 r >0foralln > N, then z a, converges.

[Hint. Show that Y7_\ a, < ayby/r.]
(®) If ¢, <O0forn > Nandif Y 1/b, diverges, then > a, diverges.
[Hint: Show that > a, dominates > /b, ]

16. Let z a, be a series of positive terms. Prove Raabe’s test: If thereisanr > O0andan N > |
such that

a 1 ¥
LSS R foralln > N,
a, noon

then > a, converges. The series > a, diverges if

a 1
"—HZI—— forallm > N.
a, n

[Hint: Use Exercise 15 with by =nl

17. Let 3 a, be a series of positive terms. Prove Gauss’ test: 1f there isan N >

> 1,ans > 1,and
an M > 0 such that

n A
a_'*'1=1__+f(_")

. - pr for n >N,
n

where |f ()] < M for all n, then Z a, converges if 4 > 1 and divergesif 4 < 1.
[Hint: If A # 1, use Exercise 16. If 4 = 1, use Exercise 15 with by, =n log n.]
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EXAMPLES. Assume {b,} is any decreasing sequence of real numbers with limit 0. Taking
a, = x" in Dirichlet’s test, where x is complex, [x| =1, x % 1, we find that the series

(10.55) S b,x"

1

converges. Note that Leibniz’s rule for alternating series is merely the special case in which
x = —1. If we write x = e%, where 0 is real but not an integer multiple of 277, and consider
the real and imaginary parts of (10.55), we deduce that the two trigonometric series

2 b,cosnd  and > b, sin nb
n=1 n=1

converge. In particular, when b, = 12, where « > 0, we find the following series converge::

o 5 e} [=<] .
z e'nd Z cos nf z sin n0
2 3 .
n® n* n*
n=1 n=1 n=1

When o > 1, they converge absolutely since they are dominated by 3 n—=,

10.20 Exercises

In Exercises 1 through 32, determine convergence or divergence of the given series. In case of
convergence, determine whether the series converges absolutely or conditionally.

2 (=1 = n?
Ly . 9. D (=l
n=1 \/’_1 =1 1 +n
o /n < (=)

2 Z(—I)"x— 00 > ———2
’ prec 7+ 100" ’ e log(e" +e ™)’
2 (=1 < (=1
3, z — 11. ZZ\
& oon i log®(n + 1)

\ ) . 1,3.5...(2,,—1))“ > = (=D)"
’ "=1( 2:4-6---2m) ) = log(1 + 1/m)°
S i(_l)n(n—l)lz " * (=1
. e ———— . '—‘ .
e n ~ (n 4+ D!
= 2n + 100\" = wHl gz
— W — —1\n - .
6.2( ) (3”+1). 14.2( ) J; — dx.
n=1 n=1
_1 n =
D Y Gl 15. > sin (log ).
A+ (=D

o

n=1
(=n" S 1
8. : » in-) .
n 16 Z log (n sin n)

n=1
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o

1 < 1
17. Z(—-l)" (1 —'15"1—). 22, Zsin (nn+—).
n logn
=1 n=2
— 1 - 1
—_1\n — - 2
18. Z( D (1 COS”) ’ 23. Zn(l +12 4+ 10’
n=1 =1
=] l w ] n
—1\n ) — 1\ — -
19. Z( 1y arctan =—— . 24, 2( D l:e (1 +””.
n=1 n=1
20 i( 1)1(” tan (I )) 25 S o
20. =" |- —arctan (logm) } . 25. T
n=1 2 n=2 (" +( l) )
hiod 1 ’ hdd 11100
. . 2. > (—1ytnre .
21 Zlog (1 +|smnl) (=D (,,,)
n=1 n=1
d I/n if n is a square,
27. Z ap where a, = .
= 1/n® otherwise.
> 1/n? if n is odd,
28. Z a,, where a, = )
= ~1/n  if niseven.
=] 1 3/2 o 1
29, Z(sin—) . 31. Z(l — nsin —) .
=1 " n=1 n
30, i sin (1/n) . 32, i 1 — nsin(1/n) '
n=1 n n=1 n
In Exercises 33 through 46, describe the set of all complex z for which the series converges.
g % g
w
(z—-D"
33. ZH"Z". 40. Z
1"
— (n + 2)!
(=]
_1 nZSn —1) . A
iy a S Ewe-b
n! n
n=1 n=1
o =]
n n
35> = PR iy
”=03 “n log(n + 1)
=] - o n
" (=" (1 —z
36. —. . .
n" 3 2n =1 (l + z)
n=1 n=1
37 i(_l)" 44 i = Y
Lz’ : 2z +1)°
n=1 n=1
o0 [+ o] n
z" 20 41 n z
38. Z——-—lo . 4. > )
"=1\/; & n —n + 1 (22 +1

o0 2 @
1y 1
17n —_—
39, E (1 + ST 1) jz|t7, 46. "; T+
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In Exercises 47 and 48, determine the set of real x for which the given series converges.
o]

. 2 <« .
2" sin?" x 2% sin® x
7. > (- 8. > 2.
n n

n=1 n=1

In Exercises 49 through 52, the series are assumed to have real terms.

49. If a, > 0 and Y a, converges, prove that > 1/a, diverges.

50. If z la,| converges, prove that Z a? converges. Givea counterexample in which z a? converges
but > |a,| diverges.

51. Given a convergent series » a, , where eacha, > 0. Prove that >\ a, n~"convergesif p > 1.
Give a counterexample for p = §.

52. Prove or disprove the following statements:
() If 3 a, converges absolutely, then so does > a2/(1 + a2).

(b) Ifz a, converges absolutely, and if no a, = —1, then z a,/(l + a,) converges absolutely.

*10.21 Rearrangements of series

The order of the terms in a finite sum can be rearranged without affecting the value of
the sum. In 1833 Cauchy made the surprising discovery that this is not always true for
infinite series. For example, consider the alternating harmonic series

(10.56) l—3+3 -3+t -5+ —-=log2.

olos

The convergence of this series to the sum log 2 was shown in Section 10.17. If we rearrange
the terms of this series, taking alternately two positive terms followed by one negative
term, we get a new series which can be designated as follows:

(10.57) I = bbb — bt —b+ -

Each term which occurs in the alternating harmonic series occurs exactly once in this
rearrangement, and vice versa. But we can easily prove that this new series has a sum
greater than log 2. We proceed as follows:

Let 7, denote the nth partial sum of (10.57). 1f n is a multiple of 3, say n = 3m, the
partial sum fg,, contains 2m positive terms and m negative terms and is given by

2m ] m 1 dm 1 2m 1 1 m 1 am 1 1 2m 1 1 mn 1
1 m = —_— = Ei—1 — — —_—_ ) - - - = — — - _— = -,
’ sz—1 2k ( k sz) 2Lk Zk ZZk 2Lk

k=1 k=1 k=1 k=1 k=1 k=1 k=1 k=1

In each of the last three sums, we use the asymptotic relation

Zi=logn+c+o(1) as n— oo,

. k=1
to obtain

tam = (logd4m 4+ C + o(1)) — Y(log 2m + C + o(1)) — logm + C + o(1))
=2%log2 + o(l).
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Proof. Define a and a7 as indicated in (10.59). Both series > a} and Y a; diverge
since > a, is conditionally convergent. We rearrange » a, as follows:

Take, in order, just enough positive terms a; so that their sum exceeds S. If p, positive
terms are required, we have

1 1

Sa,>S but >Ya, LS if g<p;.

n=1 n=1
This is always possible since the partial sums of Y a tend to 4+ 0. To this sum we add
just enough negative terms a, , say n, negative terms, so that the resulting sum is less than S.
This is possible since the partial sums of a, tend to —oo. Thus, we have

m ny PL m

Sab+3ay<S but Sat+Ya; >SS if m<n.

n=1 n=1 n=1 n=1
Now we repeat the process, adding just enough new positive terms to make the sum exceed
S, and then just enough new negative terms to make the sum less than S. Continuing in
this way, we obtain a rearrangement » b, . Each partial sum of > b, differs from S by at
most one term at or a; . But a, — 0 as n — oo since > a, converges, so the partial sums
of ¥ b, tend to S. This proves that the rearranged series 3 b, converges and has sum S,
as asserted.

10.22 Miscellaneous review exercises

1. (@) Leta, =\'n+1 — V. Compute lim, _, a, .
(b) Let a, = (n + 1)* — i°, where c is real. Determine those ¢ for which the sequence {a,}
converges and those for which it diverges. In case of convergence, compute the limit of the
sequence. Remember that ¢ can be positive, negative, or zero.

2. (@) If 0 < x < I, prove that (I + xm/n approaches a limit as # — o« and compute this
limit.
(b) Given a > 0, b > 0, compute lim,_. (a" + 6")V/".

3. A sequence {a,} is defined recursively in terms of a; and a, by the formula

a, + a,_
a,,+1=—"2—"} for n2>2.

(a) Assuming that {a,} converges, compute the limit of the sequence in terms of a; and a, .
The result is a weighted arithmetic mean of a, and a, .
(b) Prove that for every choice of a; and a, the sequence {a,} converges. You may assume that
a, < a,. [Hint: Consider {a,,} and {a,,,} separately.]

4. A sequence {x,} is defined by the following recursion formula:

x =1, -\'n+1='\1+-\'n-

Prove that the sequence converges and find its limit.
5. A sequence {x,} is defined by the following recursion formula:
| . 1 1
Xo =1, xy=1, = e——
0 ! Xnte  Xpp1r Xn

1

Prove that the sequence converges and find its limit.
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Let {a,} and {b,} be two sequences such that for each n we have
a b
et =aqa, +e"

(a) Show that a, > 0 implies b, > 0.
(b) If @, > 0 for all n and if Y a,, converges, show that > (b,/a,) converges.

In Exercises 7 through 11, test the given series for convergence

. ,Zl V1 +n®—n. 2 (log ”)]0"" .
Z w(Vi +1 =2V + Vi = D). z syl

1. ¥  a,,wherea, = l/nif nis odd, a, = 1/n*if n is even.

14.
15.
16.

17.

18.

. Show that the infinite series

\/ n+1 - \/ nt)

||M8

converges for a > 2 and diverges for a = 2.

. Given a, > 0 for each n. For each of the following statements, give a proof or exhibit a

counterexample.
(@ If z 10 diverges, then >'% | a’ diverges.
by If ) a- converges, then Z _, ay[n converges.

Find all real ¢ for which the series Z‘” 1 (1Y)e/(3n)! converges.

Find all integers @ > 1 for which the series > 2, (n!)3/(an)! converges.

Let n, < ny <ny < --- denote those positive integers that do not involve the digit 0 in their
decimal representations. Thusn, = 1,ny =2,...,0y =9, 0 =11,...,m5g =19, 1,y =21,
etc. Show that the series of reciprocals D 7, 1/n; converges and has a sum less than 90.

[Hint: Dominate the series by 9 > o (5/10)".]

If a is an arbitrary real number, let s,(a) = 1¢ + 2% + -+~ + 0% Determine the following
limit:
i sola + 1)
o M@
(Consider both positive and negative a, as well as a = 0.)
(a) If p and q are fixed integers, p 2 ¢ > 1, show that

pn 1 p

lim =lo
& q

lim >

k=qn

(b) The following series is a rearrangement of the alternating harmonic series in which there
appear, alternately, three positive terms followed by two negative terms:

T+ +t—3—3+i+5+A —F-8+++—-—-

Show that the series converges and has sum log 2 + % log .

{Hint: Consider the partial sum s;, and use part ().]
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But | e=*y~2-1 dy converges for s > 0 by comparison with {® 4=~ du. Therefore the
integral {1, e~'r*~1 dt converges for s > 0. When s > 0, the sum in (10.65) is denoted by
I'(s). The function I" so defined is called the gamma function, first introduced by Euler in
1729. It has the interesting property that I'(n 4 1) = n! when # is any integer >0. (See
Exercise 19 of Section 10.24 for an outline of the proof.)

The convergence tests given in Theorems 10.23 through 10.25 have straightforward
analogs for improper integrals of the second kind. The reader should have no difficulty in
formulating these tests for himself.

10.24 Exercises

In each of Exercises 1 through 10, test the improper integral for convergence.

@ 1]
1. J ;dx. 6. i__xdx.
o Vx4 1 o+ \V'x
o 1— .
2. [w e dx. 7. f loﬁdx.
S or 1 —x
3 [ . | 4
) \/,\'"_-l-lu' ) osh s e
= 1 - dx
. o [t
0 \/g; or Vx log x
5 fwéﬂ;d 10 fm dx
. . . —,
o+ \/; 2 X (logx)*

11. For a certain real C the integral

=/ Cx 1 /
L\l T+ 1)

converges. Determine C and evaluate the integral.
12. For a certain real C, the integral

& X C .
. 2E+2C x+1)Y

converges. Determine C and evaluate the integral.
13. For a certain real C, the integral

f” 1 C 4
o \W1 +2x2 x+1 *

converges. Determine C and evaluate the integral.
14. Find the values of @ and & such that

®(2x2 + bx +a
—_— e —l]dx =1,
1 x2x + a)
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15. For what values of the constants @ and b will the following limit exist and be equalto 1?

. ? x% + ax? + bx
lim —————dx
poiom J_p X2+ x +1

16. (a) Prove that

~h dx 1y r
lim (f — + [ —) =0 and that lim f sinxdx =0,
- I

hor \J—1 X x b=t Jp

(b) Do the following improper integrals converge or diverge?

Ldx J“"’ .
— sin x dx .

—lx —m

17. (a) Prove that the integral f(1,+ (sin x)/x dx converges.
(b) Prove that lim,_,,. x{!(cos )/t dr = 1.
(c) Does the integral {3, (cos 1)/r® dr converge or diverge?

18. (a) If f'is monotonic decreasing for all x > | and if f(x) =0 as x — + w, prove that the
integral |/ f(x) dx and the series 3 f(») both converge or both diverge.

[Hint: Recall the proof of the integral test.]

(b) Give an example of a nonmonotonic f for which the series z S (n) converges and the in-
tegral {77 f(x) dx diverges.

19. Let I'(s) = j'(;ﬁ 53¢t dr if s > 0. (The gamma function.) Use integration by parts to show
I'(s + 1) = sI'(s). Then use induction to prove that I'(n + 1) = n! ifnisa positive integer.

Each of Exercises 20 through 25 contains a statement, not necessarily true, about a function f
defined for all x > 1. In each of these exercises, # denotes a positive integer, and I, denotes the
integral j'l" f(x) dx, which is always assumed to exist. For each statement either give a proof or
provide a counterexample.

20. If fis monotonic decreasing and if lim,_. ., I, exists, then the integral ﬁ” JS(x) dx converges.

21. If lim_, . f(x) = O and lim,_ I, = A, then _fl‘”f(x) dx converges and has the value A.

22. If the sequence {/,} converges, then the integral {* f(x) dx converges.

23. If fis positive and if lim,, .,.f, = A, then jf Sf(x) dx converges and has the value A.

24. Assume f(x) exists for each x > I and suppose there is a constant M > 0 such that el <m
forallx > 1. Iflim, ., I, = A, then the integral j‘f’f(x) dx converges and has the value A4.

25. If | f(x) dx converges, then lim,_ o, f(x) = 0.



