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Abstract

Joint testing for the cumulative effect of multiple single nucleotide polymorphisms

grouped on the basis of prior biological knowledge has become a popular and powerful

strategy for the analysis of large scale genetic association studies. The kernel machine

(KM) testing framework is a useful approach that has been proposed for testing asso-

ciations between multiple genetic variants and many different types of complex traits

by comparing pairwise similarity in phenotype between subjects to pairwise similarity

in genotype, with similarity in genotype defined via a kernel function. An advantage of

the KM framework is its flexibility: choosing different kernel functions allows for differ-

ent assumptions concerning the underlying model and can allow for improved power.

In practice, it is difficult to know which kernel to use a priori since this depends on the

unknown underlying trait architecture and selecting the kernel which gives the lowest

p-value can lead to inflated type I error. Therefore, we propose practical strategies for

KM testing when multiple candidate kernels are present based on constructing compos-

ite kernels and based on efficient perturbation procedures. We demonstrate through

simulations and real data applications that the procedures protect the type I error rate

and can lead to substantially improved power over poor choices of kernels and only

modest differences in power versus using the best candidate kernel.

Key Words: Genetic association studies; kernel machines; multi-SNP analysis; sim-

ilarity based testing; SNP sets.
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1 Introduction

Advances in high-throughput biotechnology over the last decade have culminated in large

scale genetic association studies which have facilitated discovery of over 1000 single nucleotide

polymorphisms (SNPs) [Hindorff et al., 2009] associated with a range of complex traits. Typ-

ical analysis of genetic association studies involves single SNP analysis wherein individual

SNPs are tested, one-by-one, for association with the trait while adjusting for confounders,

such as the top principal components of genetic variability for population stratification [Price

et al., 2006]. Standard procedures are applied to control for multiple comparisons. However,

single SNP analysis is often underpowered due to the large number of individual variants,

inability to capture the effect of ungenotyped SNPs that are tagged by genotyped variants,

and difficulties in identifying multi-SNP and SNP-SNP interaction effects. This is often

exacerbated by the limited availability of samples, modest effect sizes for most individual

SNPs, and poor understanding of the genetic architecture underlying disease and complex

trait etiology. To overcome many of these limitations, multi-SNP based analyses of genetic

association studies, wherein multiple related (through proximity to a gene, pathway, func-

tional group, etc.) SNPs are grouped into an SNP set and jointly tested using a global

test, have emerged as powerful approaches for identification of gene variants that are asso-

ciated with complex traits. SNP set analysis can offer many advantages over single SNP

analysis due to its ability to capture the effect of ungenotyped SNPs that are tagged by

the genotyped variants, to identify multi-marker effects, to reduce the number of multiple

comparisons (ameliorating the stringent genome wide significance threshold), to allow for

epistatic effects, and to make inference on biologically meaningful units.

Kernel machine testing [Liu et al., 2007, 2008] is a useful and operationally simple means

for SNP set testing that has been successfully applied to identify SNP sets associated a

range of disorders and traits [Liu et al., 2010, Lindstrom et al., 2010, Locke et al., 2010,
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Monsees et al., 2011, Wu et al., 2011a, Shui et al., 2012, Meyer et al., 2012]. The principle

behind the kernel machine test is that it defines genetic similarity through the use of a kernel

function, a tool often seen within the framework of support vector machines [Cristianini and

Shawe-Taylor, 2000]. The kernel function is a pairwise similarity metric that operates on the

genotype values for every pair of individuals in the study. Then, like other similarity based

approaches [Reiss et al., 2010, Schaid, 2010a,b, Wessel and Schork, 2006, Mukhopadhyay

et al., 2010, Tzeng et al., 2009], the kernel machine test essentially compares pairwise sim-

ilarity in genotype (of the SNPs in the SNP set) between individuals to pairwise similarity

in trait value between individuals. High correspondence suggests association. We note that

although our focus is on kernel machine based testing, many other other multi-marker tests

for rare and common variants can be shown to be closely related to the kernel machine test

[Pan, 2011] such that our approach generalizes to other similarity based tests as well.

The choice of kernel (similarity metric) can significantly impact the power to identify a

significant SNP set. For example, when epistasis is present, kernel functions that accom-

modate nonlinearity such as the IBS kernel [Wessel and Schork, 2006] can sometimes offer

improved power, but if no epistasis is present, using the linear kernel is often more powerful

[Wu et al., 2010, Lin et al., 2011]. In practice however, information on the underlying genetic

architecture is unknown — knowledge on the trait architecture would already preclude the

need for conducting an analysis — and one needs to specify the kernel a priori. Tempt-

ing solutions such as picking the most significant p-value across the candidate kernels can

lead to inflated type I error. Using permutation to correct for taking the minimum p-value

is computationally expensive (see Supplemental Text) and will break possible correlations

between the genotype values and the covariates, which is present in some studies, violat-

ing the exhangeability condition and resulting in incorrect type I error [Brown and Maritz,

1982, Anderson and Robinson, 2002, Good, 2004, Huang et al., 2006]. While residual based

and parametric bootstrapping procedures can sometimes overcome the difficulties associated
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with covariate adjustment, the computational expense is still high. Hence, it is an open

problem of considerable practical interest to know, given a set of candidate kernels, how one

can perform kernel machine testing.

We propose two simple, but effective, omnibus strategies for SNP set testing when mul-

tiple candidate kernels are applicable. First, we propose the use of composite kernels con-

structed as the simple weighted average of multiple kernels, with weights specified a priori.

Second, we introduce a computationally efficient test based on perturbation of the score

statistic. Both strategies still allow for easy covariate adjustment and simulations show that

both correctly protect the type I error rate while maintaining high power in the omnibus.

The methods differ in that the first operates by averaging candidate kernels while the second

considers each kernel separately and takes the best. Emphasizing that our work does not

seek to identify or evaluate the conditions under which particular kernels are most powerful

(since this depends on quantities that are never known in reality), the main contribution of

this project is to address a key challenge in application of kernel machine testing, as well as

other related similarity based tests, by providing practical strategies when one has a set of

candidate kernel functions.

2 Methods

2.1 Kernel Machine Test Under a Single Kernel

Kernel machine testing was first proposed within the gene expression framework [Liu et al.,

2007, 2008] and was extended and adapted for testing assoications between multiple SNPs

and individual complex traits [Kwee et al., 2008, Wu et al., 2010]. The approach has been

extended to analysis of censored survival data [Cai et al., 2011, Lin et al., 2011] and multivari-

ate data [Maity et al., 2012]. Recently, kernel machine based methods have been proposed

for analysis of rare variants [Shriner and Vaughan, 2011, Basu and Pan, 2011, Wu et al.,
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2011b, Lee et al., 2012b,a]. For simplicity, in this article we focus attention on testing the

association of SNP sets comprised of common genetic variants with quantitative and dichoto-

mous traits, but we note that our results are directly applicable to the rare variant analysis

methods and the extended kernel machine methods as well.

Under the kernel machine regression framework, continuous (quantitative) traits can be

related to the genotypes and any additional covariates through the semiparametric model:

yi = β0 + β′Xi + h(Zi) + εi (1)

where yi denotes the trait value for the ith person in the sample, Xi is a set of covariates for

which we would like to control, and Zi = [Zi1, Zi2, . . . , Zip]
′ is the vector of genotype values

for the p SNPs in the SNP set. Under the commonly used additive genetic model, each

Zij is trinary variable equal to 0, 1, or 2 for non-carriers, heterozygotes, and homozygous

carriers of the minor allele. Each εi is an error term with mean zero and variance σ2, β0 is

an intercept, and β is the vector of regression coefficients for the covariates. Similarly, for

case-control data, the model for risk of the dichotomous trait is given by:

logitP (yi = 1|Xi,Zi) = β0 + β′Xi + h(Zi) (2)

where Xi, Zi, β0, and β are as before, but yi is now a case-control indicator (0=con-

trol/1=case).

For both models h(·) is a function that has form defined only by a positive definite kernel

function K(·, ·). The K(Zi,Zi′) is a measure of the similarity between subjects i and i′

based on the genotypes of the SNPs in the SNP set, and importantly, the kernel function

fully specifies the relationship between the trait and the SNPs in the SNP set, and vice versa.

For example, it can be shown that if K(Zi,Zi′) = Z′iZi′ , called the linear kernel, then this

implies that h(Zi) = α′Zi for some vector of constants α, i.e. h(Zi) is a linear function of
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the SNPs in the SNP set. The converse is also true: setting h(Zi) = α′Zi also implies that

the kernel function is equal to the linear kernel. Hence, by selecting and changing the kernel

function, one is implicitly selecting and changing the model being used.

Some examples of commonly used kernel functions for genotype data include:

• Linear Kernel: K(Zi,Zi′) = Z′iZi′

• Quadratic Kernel: K(Zi,Zi′) = (Z′iZi′ + 1)2

• IBS Kernel: K(Zi,Zi′) = (2p)−1
∑p

j=1 IBS(Zij, Zi′j) = (2p)−1
∑p

j=1(2− |Zij − Zi′j|)

Other kernels are possible with the sole condition that they need to satisfy Mercer’s theorem

[Cristianini and Shawe-Taylor, 2000].

The goal is to test whether the SNPs in the SNP set, Z, are associated with the trait

values, y. Since the trait depends on the Z only through the function h(Z), to test the

null hypothesis that no variants in the SNP set are associated with the trait corresponds

to testing whether h(Z) = 0. For quantitative traits, we can test this by constructing the

score-type statistic

Q =
(y − ŷ0)

′K(y − ŷ0)

σ̂2
0

where ŷ0 = β̂0+Xβ̂ with β̂0 and β̂ estimated under the null hypothesis, i.e. under the model

where h = 0. Similarly, for dichotomous traits, the kernel machine test operates using the

score-type statistic

Q = (y − ŷ0)
′K(y − ŷ0)

where ŷ = logit−1(β̂0 + Xβ̂) with β̂0 and β̂ again estimated under the null hypothesis. Since

all estimation is under the null, standard software for least squares and logistic regression

may be used to estimate all parameters. K is the kernel matrix and has (i, i′)th component

K(Zi,Zi′). In fact, instead of specifying a particular kernel function, it is sufficient for K to

be a positive semidefinite matrix.

7



In order to obtain a p-value for significance, it is straightforward to see that Q asymp-

totically follows an unknown mixture of χ2
1 distributions. Specifically, we define X̃ = [1,X],

P0 = I− X̃(X̃′X̃)−1X̃′ for quantitative traits, and P0 = D0 −D0X̃(X̃′D0X̃)−1X̃′D0, where

D0 = diag(p̂0i(1 − p̂0i)), for dichotomous traits. Then Q ∼
∑
κjχ

2
1 where the κj are the

eigenvalues of P
1/2
0 KP

1/2
0 . We can approximate this distribution using a range of differ-

ent methods such as moment matching [Liu et al., 2007, 2009] or exact methods based on

inversion of the characteristic function [Davies, 1980, Duchesne and Lafaye De Micheaux,

2010].

2.2 Testing Under Multiple Candidate Kernels

The kernel machine based test requires specification of a kernel function or kernel matrix

a priori. A number of kernels, have been successfully used in real data applications. How-

ever, in practice, it is often unclear which kernel to use. Here, we assume that a set of L

candidate kernel functions K1(·, ·), K2(·, ·), . . . , KL(·, ·) with corresponding kernel matrices

K1,K2, . . . ,KL are under consideration. For instance, K1(·, ·) could be the linear kernel,

K2(·, ·) the IBS, and K3(·, ·) the quadratic. Then we develop two strategies for testing under

this setting. The first method uses the simple weighted average of multiple kernels, with

weights specified a priori. Using this composite kernel approach, a p-value can be calculated

analytically. The second method uses the minimum p-value from the different candidate ker-

nels and we provide a computationally efficient perturbation approach to control for having

taken the minimum. Both methods allow for easy covariate adjustment.

2.2.1 Composite Kernels: Simple Kernel Averaging

Within the prediction based statistical learning literature, when ambiguity in the choice

of kernel is present, composite kernels have been proposed as a reasonable compromise

[Joachims et al., 2001, Szafranski et al., 2010]. In particular, given L kernel functions,
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K1(·, ·), K2(·, ·), . . ., KL(·, ·), the composite kernel function evaluated at the genotypes for

the ith and i′th subjects is given by:

KC(Zi,Zi′) = w1K1(Zi,Zi′) + w2K2(Zi,Zi′) + · · ·+ wLKL(Zi,Zi′)

and the corresponding kernel matrix is found as

KC =
L∑
d=1

wdKd

for some set of nonnegative weights w1, . . . , wL. KC is a valid kernel as long as K1, . . . ,KL

are valid. Note that the sum of the weights is not constrained.

Although considerable study has been devoted to estimation and prediction using com-

posite kernels, limited work exists on how to test using composite kernels. For a set of fixed

weights one may directly apply the kernel machine test treating the composite kernel as

just another single kernel, but the challenge lies in selecting the weights. In the prediction

setting, the weights are generally estimated, sometimes sparsely, from the data. Unfortu-

nately, supervised estimation of the weights from the data will lead to inflated type I error

rate. Hence, we propose to apply a simple scaling to ensure that the kernel functions are

on the same scale and then use a simple average of the candidate kernels. In particular,

we let γd = tr
{

P
1/2
0 KdP

1/2
0

}
where P0 is defined as before. Then we set wd = 1

γd
. The

scaling is necessary to ensure that no single kernel entirely dominates the composite metric.

Alternative normalizing constants and choices for γd are possible.

2.2.2 Perturbation Based Inference

An alternative to composite kernel testing and averaging across a range of kernels is to com-

pute a p-value under each candidate kernel, take the minimum, and then evaluate significance

via permutation. However, as noted earlier, permutation creates difficulties in covariate ad-
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justment since it requires the covariates to be uncorrelated with the SNPs in the SNP set

which is known to be untrue in many situations: principal components of genetic variability

are necessarily correlated and environmental risk factors may also be correlated with geno-

type. For example, association studies for lung cancer usually require adjustment for smok-

ing, but smoking is also known to be associated with variants in many genes [Furberg et al.,

2010]. Beyond the statistical challenges, permutation tends tends to be computationally

expensive since it requires recomputing many estimated quantities. Therefore, we propose

to take advantage of our knowledge of the asymptotic distribution of the quadratic forms

for Q1, . . . , Qk and develop a strategy based on perturbation of the score statistic. Pertur-

bation procedures, sometimes referred to as resampling or simply monte-carlo approaches,

have been previously proposed by others [Lin, 2005, Conneely and Boehnke, 2007, Chapman

and Whittaker, 2008, Pan et al., 2010]. Recently, Cai et al. [2012] apply the approach within

the context of multivariable kernel machine SNP set testing. Our work is closely related

to these procedures but differs in the need to accommodate the correlation that necessarily

arises from simultaneous consideration of multiple kernels built on the same data which is

not necessary for methods that are based on the marginal score statistics (such as minimum

p-value based approaches) since the construction of the statistic naturally captures this.

The intuition behind our approach lies in the following. For quantitative traits, with

large n, under H0 the (y − ŷ0)/σ̂ are approximately standard normal. Then each Qd =

(y − ŷ0)
′Kd(y − ŷ)/σ̂2 is essentially comprised of a vector of standard normal variables

sandwiching a square matrix. The vectors of normals are the same across all Q1, . . . , Qk.

Thus, we can perturb each Qd by replacing (y−ŷ0)/σ̂ with a new, common vector of normals

to generate new score statistics. Since the vector of normals are the same and we are still

using the same central kernel matrices as before, then we are essentially generating new

data sets that are capturing the correlation between different kernels built on the same data

without using permutation. We can generate a large number of new data sets by changing
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the vector of normal variables and use this perturbation distribution to obtain a p-value

across all the candidate kernels. The intuition is similar for the logistic scenario except we

are using the working linear model.

Formally, to obtain a p-value for a SNP set using perturbation, we propose the following

procedure:

1. For each candidate kernel, Kd, we obtain the corresponding score statistic Qd and

p-value pd.

2. Then find the minimum p-value po = min1≤d≤k pd.

3. For d ∈ 1, . . . , L, compute Λd = diag(λd,1, . . . , λd,md
), and Vd = [vd,1,vd,2, . . . ,vd,md

]

where λd,1 ≥ λd,2 ≥ . . . ≥ λd,md
are the md positive eigenvalues of P

1/2
0 KdP

1/2
0 with

corresponding eigenvectors vd,1,vd,2, . . . ,vd,md
. Note that these quantities may already

be calculated in step 1 to obtain a p-value based on each Qd.

4. Obtain

Σ =



I V′1V2 · · · V′1VL

V′2V1 I · · · V′2VL

...
... · · · ...

V′LV1 V′LV2 · · · I


and conduct a Cholesky decomposition on Σ = RR′ where L is an n×m matrix with

m being the rank of Σ.

5. Generate r = [r1, r2, . . . , rm]′ with each rj ∼ N(0, 1). We then obtain r∗ = Rr. Then

for the dth kernel, we assign

r∗d = [r∗a, r
∗
a+1, . . . , r

∗
a+md

]′

where a =
∑d−1

j=1 mj + 1.
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6. We can then compute Q∗d = r∗d
′Λdr

∗
d for each d and obtain a corresponding p-value, p∗d,

using parameters estimated for the original Qd. We set p∗ = min1≤d≤k p
∗
d.

7. We repeat steps (5)-(6) B times to obtain p∗(1), p
∗
(2), . . . , p

∗
(B) for some large number B.

8. The final p-value for significance is estimated as

p = B−1
B∑
b=1

I(p∗(b) ≤ po)

It is important to note that direct use of the p-value is necessary rather than using the

maximum score statistic: testing under different kernels can yield tests that are dramatically

different in terms of degrees of freedom, i.e. the raw statistics are often on completely different

scales. On the other hand, p-values are scale free.

Although this strategy also generates a monte carlo p-value, the advantage over permu-

tation is, first, our procedure retains any possible correlation between covariates and SNPs,

and second, the procedure is far more computationally efficient. The latter is true because

the computation now relies only on generating and then rotating m normal random vari-

ables. All other parameters remain the same. In contrast, permutation requires complete

re-estimation of the kernel (or projection) matrices, eigendecompositions, and/or moment

matching parameters. Detailed comparisons are described within the Supplemental Text.

The perturbation strategy is general and can be combined with the composite kernels

to generate a p-value. For instance, one could construct candidate composite kernels using

different choices of weights and then use perturbation to test across all of the choices of

weights.
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2.3 Simulations

2.3.1 Type I Error Rate

To demonstrate that the proposed methods are valid tests, in terms of protecting type I error,

we conducted a series of simulations under null models for both continuous and dichotomous

traits. Specifically, for all simulation settings, we generated 1,000,000 data sets comprised of

n individuals under the null hypothesis that the SNP genotypes are not associated with the

trait values. Genetic data were simulated by pairing haplotypes based on Gene I of Sha et al.

[2005] which contains 10 individual common variants, all of which are treated as genotyped.

For simulations based on continuous traits, we generate (independent) covariates, X,

where Xi1 ∼ N(29.2, 21.1) and Xi2 ∼ bern(0.506). These covariate distributions are based

on the same model used by Kwee et al. [2008]. The continuous traits are generated under

the null model

yi = 0.03Xi1 + 0.5Xi2 + εi

where εi ∼ N(0, 1). For simulations based on dichotomous traits, we generate data sets

comprised of n/2 “cases” and n/2 “controls” using the model:

logitP (yi = 1|Xi) = −1.35 + 0.5Xi1 + 0.3Xi2

where Xi1 ∼ N(0, 1) and Xi2 ∼ unif(0, 1). For both continuous and dichotomous trait

simulations, we let the sample size vary as n = 500, 1000, 2000.

For each data set, we tested for an association between genotype and the trait while

adjusting for the covariates X. We apply kernel machine testing under the linear, IBS,

and quadratic kernel using the Davies exact method [Davies, 1980] to obtain p-values for

significance. We also apply the kernel machine test using composite kernels formed by

averaging the linear and IBS kernels, and also composite kernels formed by averaging the
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linear, IBS, and quadratic kernels. Finally, we also used perturbation (with B = 100, 000) to

determine the p-value across all three candidate kernels. The type I error rate was estimated

as the proportion of p-values less than α = 0.05 or 0.0005 across the 1,000,000 simulations.

2.3.2 Power

We conducted simulations under alternative models in order to assess the empirical power

of the proposed approaches. Specifically, we considered four different settings and for each

settings, we use 500 simulated data sets to estimate the empirical power. We focus, here, on

simulations with quantitative traits and relegate similar simulations with dichotomous traits

to the Supplemental Material.

For each setting considered, we simulated a set of genotypes, covariates, and quantitative

traits. For the ith individual in the data set, we denote the simulated genotype information

as Si. Then we simulated continuous traits for n = 500 or n = 1000 individuals by again

setting Xi1 ∼ N(29.2, 21.1) and Xi2 ∼ bern(0.506) as before, but then we generate the trait

value using the alternative model:

yi = 0.03Xi1 + 0.5Xi2 + βGSia + βGSib + βISiaSib + εi (3)

where Sia and Sib are the genotypes for the ath and bth SNPs in the SNP set , βG and βI are

the coefficient values for the main genetic effects and the interaction effect.

For Settings 1 and 2, Si was generated using the same method as was done for the type

I error simulations by sampling and pairing haplotypes based on the 10 SNPs in Gene I of

Sha et al. [2005]. Under Setting 1, we set a = 1, b = 3, βG = 0 and βI = 0.1, i.e. the

first and third SNPs in the SNP set are causal with an interactive epistatic effect, but no

separate main genetic effect. Setting 2 is similar to Setting 1, except we set a = 1, b = 10,

and βG = βI = 0.2 such that the underlying model depends on the first and tenth SNPs,
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but both interactive and main SNP effects are present. As with the type I error simulations,

we let Z = S which implies that all 10 SNPs in the SNP set are genotyped and grouped to

form the SNP set.

In many candidate gene and GWAS studies, only a few tag SNPs are genotyped. Con-

sequently, we followed the strategy of Wu et al. [2010], and in Settings 3 and 4 we conduct

simulations by generating data based on 86 HAPMAP SNPs from the ASAH1 gene using the

HAPGEN software [Marchini et al., 2007]. We then generate the quantitative traits under

the Model (3) with S denoting the genotypes for the 86 SNPs and X defined as before.

Under Setting 3, we let a = 1, b = 50, βG = 0.1 and βI = 0.2. For Setting 4, we let a = 1,

b = 11, βG = 0.1 and βI = 0.1. Different from earlier settings, we assume that only 14 of

the 86 SNPs in the ASAH1 gene are genotyped (those on the Illumina 550 SNP chip), so

in contrast to the earlier power simulations, for Settings 3 and 4, we restrict Z to be the

14 genotyped variants. This better reflects real data since in many genotyping studies only

some of the causal variants are likely to be observed. The first SNP among the 86 SNPs

(rs7508) is genotyped but neither the eleventh nor the fiftieth SNPs (rs425010 and rs2299606,

respectively) are genotyped.

For each of the four settings, we simulated 500 data sets. We then tested for an association

between the SNPs in Z (all of the variants for Settings 1 and 2 and only the 14 genotyped

variants for Settings 3 and 4) and the trait y while adjusting for the covariates X. Specifically,

for the continuous trait simulations, we applied the linear kernel machine test using the linear,

IBS, and quadratic kernels. We also applied the proposed composite kernel methods based

on direct kernel averaging of the linear, IBS, and quadratic kernels. Perturbation based on

B = 1000 was also applied to search over the three candidate kernels. For each method under

each setting, the power was estimated as the proportion of p-values less than α = 0.05.
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2.4 Candidate Gene Study of Pre-term Birth

We illustrate our methods via application to a sub-study of a broader genetic asociation

study examining the role of a mother’s (common) genetic polymorphisms on risk of pre-term

birth, here defined as a live birth before 37 complete weeks of gestation. Specifically, in

our sub-study, we examined the association between pre-term birth and genetic variabil-

ity at 47 candidate genes (comprised of 735 tagSNPs) in the inflammation and apoptosis

pathways within a sample of 863 singleton, live births from women of European ancestry

in the Pregnancy, Infection and Nutrition Cohort [Savitz et al., 2001]. 153 of the infants

were born pre-term and the remaining infants were born at term. To assess whether the the

47 candidate genes were associated with risk of pre-term birth, we conducted a gene level

analysis by grouping the SNPs in and near each individual gene into SNP sets. Then we

tested each SNP set for association with pre-term birth, adjusting for smoking and parity.

Since we have little understanding of the underlying true model, we considered the linear,

IBS, and quadratic kernels as candidate kernels. Specifically, we applied the logistic kernel

machine test using the linear kernel, IBS kernel, quadratic kernel, and composite kernels

with all three kernels averaged. We also used the perturbation method (based on B = 104).

Significance was determined at the recommended FDR = 0.20 level [Efron, 2007].

We note that the kernel machine testing framework is closely related to many other multi-

SNP tests such that using kernel machine testing under single kernels already allows for

comparisons with some “alternative methods”. For example, the kernel machine test under

the IBS kernel is essentially a generalization of the Wessel and Schork approach [Wessel

and Schork, 2006, Pan, 2011] that allows for covariate adjustment and analytic p-value

computation. Similarly, the kernel machine test under the linear kernel is related to the

Global Test [Goeman et al., 2004] and other variance component tests [Pan, 2009]. However,

we also include further comparisons with two alternative multi-SNP tests that are used in

practice. First, we also applied a variation of the PCA approach [Gauderman et al., 2007,
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Zhao et al., 2012] to test for the association between the dichotomous outcome and the SNP

set. Under the PCA approach, we collapse the SNPs in each SNP set into the first principal

component and use logistic regression to regress the dichotomous outcome on the collapsed

value to obtain a p-value. Second, we compared the kernel methods to the minimum p-value

approach (MinP) [Chapman and Whittaker, 2008, Pan et al., 2010] wherein we compute the

minimum single SNP analysis p-value for the SNPs in the SNP set and use permutation to

adjust for having taken the minimum p-value. We applied both the PCA method and the

MinP method (with 1000 permutations) to each of the SNP sets and again called significance

at the FDR = 0.20 level.

3 Results

3.1 Simulation Results

The type I error rate simulations results are presented in Table i. For both continuous and

dichotomous traits, the test size is correctly controlled for each of the methods at each of

the considered sample sizes and α-levels.

The power simulation results for continuous traits are presented in Table ii. For each

setting and sample size we present the power of each method relative to the optimal method.

For example, under Setting 1, for a sample size of 500, the kernel machine testing with the

IBS kernel leads to a power loss of 22% relative to kernel machine testing with the quadratic

kernel. The absolute powers can be found in the Supplemental Table 1.

Results were generally consistent across sample sizes, though the absolute power improved

as the sample size increased. The quadratic kernel had the highest power under Settings

1 and 2, followed by the linear kernel and using the IBS kernel yielded lowest power. For

these two settings, averaging the three candidate kernels yielded improved power that was

between the power from using the linear and quadratic kernels. Using of our perturbation
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based method yielded power between the linear and quadratic kernels.

Under Setting 3, the IBS kernel had nearly double the power of both the linear and

quadratic kernels. Using composite kernels by direct averaging of the IBS and linear kernel

yielded power that was between the IBS and linear, though compared to Settings 1 and 2

the loss in power was considerably greater. Averaging across all three kernels resulted in

lower power than averaging only the IBS and linear kernels. However, the power from using

perturbation remained high and close to the power from using the IBS kernel.

In Setting 4, all three kernels performed similarly and using composite kernels based on

averaging and perturbation did not change the power.

From these simulations, it is evident that depending on the underlying trait architecture,

use of different kernels can yield differential power. Using composite kernels and perturbation

allows for power that is intermediate among the candidate kernels. Restricting the composite

kernels to a more focused set of kernels can yield improved power. Overall, using perturbation

resulted in the higher power than using composite kernels. In fact, the power from using

perturbation was generally closer to the power from using the optimal kernel (out of the

candidates). We reiterate that these simulations are not meant to identify the situations

under which individual methods are most powerful (since such knowledge is unavailable a

priori) but rather to demonstrate the usefulness of the proposed methods within practical

situations.

In the Supplemental Text, we also include simulations using dichotomous traits and also

comparisons of the kernel methods with the PCA and MinP methods.

3.2 Data Analysis Results

Table iii presents the number of SNP sets significantly associated with pre-term birth using

each of the methods as well as the number of overlapping significant SNP sets across methods.

While the specific genes will be reported elsewhere, it is evident from Table iii that using the
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Table i: Type I error rate results. Linear, IBS, and Quadratic correspond to the linear,
IBS, and quadratic kernels. Average 2 corresponds to using the composite kernel generated
as a direct average of the linear and IBS kernels while Average 3 denotes the composite
kernel generated as the average of the linear, IBS, and quadratic kernel. Perturb denotes
the proposed perturbation procedure using all three candidate kernels.

Continuous Traits Dichotomous Traits
n 500 1000 2000 500 1000 2000

α = 0.05 Linear 0.049 0.050 0.050 0.051 0.050 0.049
IBS 0.049 0.050 0.050 0.051 0.050 0.050
Quadratic 0.049 0.050 0.050 0.050 0.050 0.050
Average 2 0.051 0.051 0.051 0.051 0.051 0.053
Average 3 0.049 0.050 0.050 0.050 0.049 0.051
Perturb. 0.047 0.048 0.048 0.048 0.048 0.047

α = 0.0005 Linear 0.00039 0.00050 0.00048 0.00046 0.00051 0.00053
IBS 0.00040 0.00048 0.00049 0.00051 0.00050 0.00049
Quadratic 0.00046 0.00054 0.00048 0.00046 0.00048 0.00053
Average 2 0.00046 0.00050 0.00054 0.00048 0.00045 0.00046
Average 3 0.00048 0.00044 0.00048 0.00051 0.00046 0.00052
Perturb. 0.00041 0.00051 0.00050 0.00052 0.00046 0.00051

IBS kernel led to marginally more SNP sets being called significant than either the linear

and quadratic quadratic kernels. However, only three of the four SNP sets significant using

the IBS kernel were significant using the linear kernel and only none were significant using

the quadratic kernel. Using the perturbation approach, we identified the same four SNP sets

to be significant as the IBS, which is the optimal candidate kernel in this case. Using kernel

averaging resulted in some power loss and only a single SNP set was called significant, though

this was still better than using the worst kernel, in this case the quadratic kernel. Noting

our data analysis is primarily illustrative, we also present results considered alternative

significance criteria based on alternative nominal and FDR adjusted levels. These results

are presented in Supplemental Tables 4-7. Overall, results are qualitatively similar, but we

note that if the higher FDR = 0.25 level was used, individual kernels started yielding very

different results (Supplemental Figure 5). However, under this scenario, any SNP set called
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Table ii: Power simulation results based on the four configurations for continuous trait
values. Linear, IBS, and Quadratic correspond to the linear, IBS, and quadratic kernels.
Average corresponds to using the composite kernel generated as the average of the linear,
IBS, and quadratic kernel. Perturb denotes the proposed perturbation procedure using all
three candidate kernels. Power is expressed as the power relative to the best (of the three
individual kernels).

n Setting Linear IBS Quadratic Average Perturb
500 1 0.93 0.78 1.00 0.96 0.93

2 0.74 0.59 1.00 0.82 0.88
3 0.56 1.00 0.56 0.66 0.94
4 1.00 0.93 1.00 1.00 1.00

1000 1 0.96 0.90 1.00 0.97 0.98
2 0.80 0.70 1.00 0.88 0.94
3 0.66 1.00 0.69 0.80 0.96
4 1.00 0.96 1.00 1.00 1.00

significant under individual kernel testing was also called significant using the perturbation

approach.

Also included in Table iii are the comparisons with the PCA and MinP approaches. The

MinP approach fails to identify any SNP sets as significant and the PCA methods identifies

only a single SNP set.

Of the four SNP sets significant at the FDR = 0.20 level, only one has been previously

shown to be associated with pre-term birth. Within our data set, the gene containing 26

SNPs was significant using the linear kernel (p = 0.013, FDR = 0.20), the IBS kernel

(p = 0.004, FDR = 0.11), and perturbation analysis (p = 0.004, FDR = 0.09). The gene

was not significant using the quadratic kernel (p = 0.022, FDR = 0.25), PCA (p = 0.903,

FDR = 0.99), nor MinP (p = 0.036, FDR = 0.42). If we were to increase the FDR level to

0.25, then then an additional gene previously shown to be associated with pre-term birth

would also have been called significant by using the linear kernel, the quadratic kernel, kernel

averaging, perturbation analysis, and PCA analysis, but not using the IBS kernel nor the
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Table iii: Pre-term Birth Data Analysis Results. Each number represents the number of
SNP sets called significant at the FDR = 0.20 level by both the method along the top and
the side of the table. Diagonal elements represent the number of SNP sets called significant
by each individual method.

Linear IBS Quadratic Average Perturb. PCA MinP
Linear 3 3 0 1 3 1 0
IBS 4 0 1 4 1 0
Quadratic 0 0 0 0 0
Average 1 1 1 0
Perturb. 4 1 0
PCA 1 0
MinP 0

MinP methods.

The difference in the results between different individual kernels was in some cases quite

large. For example, the most significant gene in the apoptosis pathway contained 22 SNPs

and had a marginally significant p-value (at the nominal level) of 0.034 or 0.010 using the

linear or IBS kernels, respectively. On the other hand, using the quadratic kernel yielded

a clearly nonsignificant p-value of 0.206. Using a composite kernel would lead to a p-value

of 0.042 and using the perturbation procedure leads to a p-value of 0.016 which is close

to the p-value from the optimal candidate kernel in this scenario. Collectively, our data

analysis results indicate that although there is some sacrifice in power for looking across

multiple kernels, our proposed omnibus testing procedure can still maintain high power

across scenarios.

4 Discussion

Our work addresses a key gap in the statistical genetics literature concerning the choice

of similarity metric in similarity based testing. Focusing on the choice of kernel in kernel

machine testing, we proposed two simple strategies for inference when multiple candidate
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kernels are available. Our solution is based purely on practical considerations. In particular,

we make no claims as to understanding which kernel works best under which scenario since

this depends on the (unknown) true state of nature. Instead, we acknowledge the limited

availability of prior knowledge concerning genetic architecture and develop omnibus methods

to consider a range of kernels, each of which functions best under different scenarios.

In general, both strategies we propose offer improved power over weaker choices of kernel

but only slightly lower power than using the optimal kernel, chosen from the set of considered

candidates. However, using perturbation appears to offer somewhat improved power. On

the other hand, though perturbation is considerably faster than permutation since it does

not require re-estimation of numerous matrices and parameters, it is still computationally

more expensive than kernel averaging. Hence if significance needs to be rapidly estimated at

a low α-level, then using composite kernels may be the better choice. If the results are less

urgent, then perturbation may be the better choice. Generally, the computational burden

may be reduced by initially using a modest value for B, estimating a p-value, and refining

the p-value with a larger B if the initial estimate suggests need for more accurate estimation.

Both of our proposed strategies are valid and protect the type I error, even if many (or

even all) of the considered candidate kernels do not reflect the underlying model. However,

inclusion of many suboptimal kernels can lead to loss in power. The kernel averaging ap-

proach will lose power if many of the candidate kernels are far from the optimal kernel due to

contamination of the signal. It may be possible to identify weights that use information on

the similarity between kernels or that optimally weight different kernels using the outcome,

but such a solution remains elusive. The perturbation approach is more robust in that if a

few suboptimal kernels are included and all very similar, then the loss in power from using

a few suboptimal kernels will be small since the perturbation approach accommodates the

correlation between the kernels. However, perturbation will still lose power if too many

suboptimal kernels are included and particularly if they are all very different. Therefore,
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although one can search across a wide range of kernels, we recommend identifying a few

reasonable kernels prior to using either approach.

Recently, Kim et al. [2012] explored the semiparametric model underlying the kernel

machine approach within a bayesian framework and explored inferential procedures. While

the work centered around gene expression analysis, they showed that bayesian views of

the problem were very natural and could result in improved performance over frequentist

takes on the work. Furthermore, they developed a strategy for selecting individual kernels

using bayes factors, though further work is needed to explore how to conduct inference

with multiple kernels. Consequently, exploration of relationships between our approach and

possible bayesian approaches is an area of potential future research.

Although we restricted our work to studying kernel machine testing, our work has impli-

cations for other similarity based tests as well. In particular, the haplotype based similarity

test of Tzeng and Zhang [2007], the MDMR statistic of Wessel and Schork [2006] and dis-

tance test of Reiss et al. [2010], as well as others are equivalent to the kernel machine based

tests under certain conditions. Therefore, when there is uncertainty in the choice of simi-

larity metrics for these tests, our proposed methods can also be used suggesting that our

general approach is widely applicable to a range of tests.
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Power Simulations for Dichotomous Traits

Simulation Scenarios

We conducted simulations under alternative models in order to assess the empirical power
of the proposed approaches with dichotomous traits. As with quantitative trait simulations,
we considered four different settings and for each settings, we use 500 simulated data sets to
estimate the empirical power.

For each setting considered, we simulated a set of genotypes, covariates, and dichotomous
outcome traits. For the ith individual in the data set, we denote the simulated genotype
information as Si. Then we simulated continuous traits for n = 1000 or n = 2000 individuals
by again setting Xi1 ∼ N(29.2, 21.1) and Xi2 ∼ bern(0.506) as before, but then we sampled
half (n/2) of the individuals to have dichotomous trait y = 1 and n/2 individuals to have
y = 0 using the alternative model:

logitP (yi = 1|Xi,Si) = −1.35 + 0.5Xi1 + 0.3Xi2 + βGSia + βGSib + βISiaSib. (1)

where Sia and Sib are the genotypes for the ath and bth SNPs in the SNP set, βG and βI are
the coefficient values for the main genetic effects and the interaction effect.

For Settings 1 and 2, Si was generated using the same method as was done for the type
I error simulations by sampling and pairing haplotypes based on the 10 SNPs in Gene I of
Sha et al. (2005). Under Setting 1, we set a = 1, b = 10, βG = 0.2 and βI = 0, i.e. the
first and tenth SNPs in the SNP set are causal with only main effects. Setting 2 is similar
to Setting 1, except we set a = 3, b = 10, and βG = 0 and βI = 0.2 such that the underlying
model depends on the interaction between the third and tenth SNPs but not the main SNP
effects. As with the type I error simulations, we let Z = S which implies that all 10 SNPs
in the SNP set are genotyped and grouped to form the SNP set.

Settings 3 and 4 follow a similar rationale to that used for quantitative traits and we
conduct simulations by generating data based on 86 HAPMAP SNPs from the ASAH1 gene
using the HAPGEN software. We then generate the dichotomous traits under the Model (1)
with S denoting the genotypes for the 86 SNPs and X defined as before. Under Setting 3, we
let a = 1, b = 50, βG = 0.1 and βI = 0.3. For Setting 4, we let a = 1, b = 11, βG = 0.2 and
βI = 0.3. We again assume that only 14 of the 86 SNPs in the ASAH1 gene are genotyped
(those on the Illumina 550 SNP chip), so we restrict Z to be the 14 genotyped variants.

For each of the four settings, we simulated 500 data sets. We then tested for an association
between the SNPs in Z (all of the variants for Settings 1 and 2 and only the 14 genotyped
variants for Settings 3 and 4) and the trait y while adjusting for the covariates X. Specifically,
for the continuous trait simulations, we applied the linear kernel machine test using the linear,
IBS, and quadratic kernels. We also applied the proposed composite kernel methods based
on direct kernel averaging of the linear, IBS, and quadratic kernels. Perturbation based on
B = 1000 was also applied to search over the three candidate kernels. For each method under
each setting, the power was estimated as the proportion of p-values less than α = 0.05.
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Simulation Results

The power simulation results for dichotomous traits are presented in Supplemental Tables
2 and 3. Supplemental Table 2 shows the power of each method relative to the optimal
method across the different settings and sample sizes considered. The absolute powers are
found in the Supplemental Table 3. Generally, results are qualitatively similar to the results
using quantitative traits in that: (1) different kernels can yield very different power; (2) the
proposed methods, particularly using perturbation, allows for good power in the omnibus,
sacrificing a just little bit of power relative to the optimal method, but dominating poor
choices of kernels.

Comparisons with Competing Methods

Within the power simulations for dichotomous traits, we also compared the power of the
proposed kernel averaging and perturbation methods to the PCA and MinP methods (de-
scribed in the main text). In particular, for each of the simulated data sets in each of the
four simulation scenarios considered, we also applied the PCA and the MinP method (with
1000 permutations) to assess the association between the the dichotomous outcome and the
SNP set while adjusting for covariates. Note that permutation is valid in this case since the
covariates were simulated independently of the SNP information. We assessed the power
again at the α = 0.05 level.

The results of the PCA and MinP methods are also presented in Supplemental Tables 2
and 3. In general, under the considered simulation scenarios, the kernel based approaches
tended to offer improved power over the PCA and MinP methods. As a supervised approach,
the MinP method outperformed the PCA approach under Settings 1-3 but lost power in
Setting 4. The higher power of the kernel methods is expected since the simulation settings
involve multiple causal variants. We emphasize, however, that the purpose of this study is
not to systematically compare methods, but rather to focus on the kernel machine setting
and illustrate an omnibus testing approach that simultaneously considers multiple methods.

In addition to the PCA and MinP methods, we further note that due to the close re-
lationship between kernel machine methods and other multi-SNP tests, the kernel machine
tests under individual kernels correspond already to a wide range of alternative tests. In
particular, the kernel machine test under the linear kernel is closely related to the variance
component tests of Goeman et al. and Pan et al. Similarly, the distance based test of Wessel
and Schork under their allele sharing kernel is essentially equivalent to the kernel machine
test under the IBS kernel. Consequently, by considering the single kernel tests, our simula-
tions simultaneously encompass several other well known multi-SNP testing approaches due
to the equivalence between different approaches and the kernel machine tests.

Comparing Perturbation with Permutation

We briefly compared the use of permutation to the use of perturbation. Within the context
of quantitative traits, we simulated 100 data sets null data sets (as in the type I error

3



simulations) for n = 250 or 500 individuals. Then we analyzed each data set using both
perturbation with the linear, IBS, and quadratic kernels and also permutation with the
linear, IBS, and quadratic kernels. We compared the p-values obtained under perturbation
and permutation. We also estimated the average runtime for computing a p-value using 1000
perturbations vs. 1000 permutations. Covariates in the simulations were independent of the
genotype data such that permutation is valid in this case.

The p-values from using permutation are plotted against the p-values from using pertur-
bation in Supplemental Figure 1. As expected, the p-values are very close with differences
mainly being due to monte-carlo error. In terms of run time, on a single processor of a Linux
cluster with 4 Gb of reserved memory, the average time to analyze a single data set for our
proposed perturbation procedure is 0.59 seconds and 0.70 seconds for n = 250 and 500, re-
spectively. In contrast, use of permutations takes approximately 210.02 seconds and 1734.93
seconds for n = 250 and 500, respectively. The advantage of the perturbation procedure
results from our exploitation of the distribution of the kernel machine score statistic.

4



Supplemental Figures

Supplemental Figure 1. Comparisons of p-values from perturbation vs. permutation for
sample sizes of 250 and 500.

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value Comparison: n=250

Permutation p−value

P
er

tu
rb

at
io

n 
p−

va
lu

e

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Log10 p−value Comparison: n=250

Permutation −Log10 p−value

P
er

tu
rb

at
io

n 
−

Lo
g1

0 
p−

va
lu

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p−value Comparison: n=500

Permutation p−value

P
er

tu
rb

at
io

n 
p−

va
lu

e

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●
●

●

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Log10 p−value Comparison: n=500

Permutation −Log10 p−value

P
er

tu
rb

at
io

n 
−

Lo
g1

0 
p−

va
lu

e

5



Supplemental Tables

Supplemental Table 1: Absolute power simulation results based on the four configurations
for continuous trait values. Linear, IBS, and Quadratic correspond to the linear, IBS, and
quadratic kernels. Average corresponds to using the composite kernel generated as the
average of the linear, IBS, and quadratic kernel. Perturb denotes the proposed perturbation
procedure using all three candidate kernels.

n Setting Linear IBS Quadratic Average Perturb
500 1 0.51 0.43 0.55 0.53 0.51

2 0.25 0.20 0.34 0.28 0.30
3 0.18 0.32 0.18 0.21 0.30
4 0.28 0.26 0.28 0.28 0.28

1000 1 0.87 0.82 0.91 0.88 0.89
2 0.55 0.48 0.69 0.61 0.65
3 0.46 0.70 0.48 0.56 0.67
4 0.50 0.48 0.50 0.50 0.50
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Supplemental Table 2: Relative power simulation results based on the four configurations
for dichotomous trait values. Linear, IBS, and Quadratic correspond to the linear, IBS,
and quadratic kernels. Average corresponds to using the composite kernel generated as the
average of the linear, IBS, and quadratic kernel. Perturb denotes the proposed perturbation
procedure using all three candidate kernels. Power is expressed as the power relative to the
best (of the three individual kernels). Also included are the power comparisons with two
competing approaches for multi-SNP analysis using the PCA or minimum p-value methods.

n Setting Linear IBS Quadratic Average Perturb PCA MinP
1000 1 0.96 0.81 1.00 0.96 0.91 0.49 0.73

2 0.83 0.70 1.00 0.89 0.93 0.44 0.67
3 0.53 1.00 0.53 0.63 0.93 0.23 0.27
4 1.00 0.96 1.00 1.00 0.98 0.98 0.25

2000 1 1.00 0.98 0.99 1.00 0.98 0.59 0.93
2 0.97 0.94 1.00 0.97 0.98 0.54 0.87
3 0.54 1.00 0.58 0.72 0.96 0.09 0.33
4 1.00 1.00 1.00 1.00 1.00 0.96 0.32
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Supplemental Table 3: Absolute power simulation results based on the four configurations
for dichotomous trait values. Linear, IBS, and Quadratic correspond to the linear, IBS,
and quadratic kernels. Average corresponds to using the composite kernel generated as the
average of the linear, IBS, and quadratic kernel. Perturb denotes the proposed perturba-
tion procedure using all three candidate kernels. Also included are the power comparisons
with two competing approaches for multi-SNP analysis using the PCA or minimum p-value
methods.

n Setting Linear IBS Quadratic Average Perturb PCA MinP
1000 1 0.67 0.57 0.70 0.67 0.64 0.34 0.51

2 0.58 0.49 0.70 0.62 0.65 0.31 0.47
3 0.16 0.30 0.16 0.19 0.28 0.07 0.08
4 0.51 0.49 0.51 0.51 0.50 0.50 0.13

2000 1 0.90 0.88 0.89 0.90 0.88 0.53 0.84
2 0.94 0.91 0.97 0.94 0.95 0.52 0.84
3 0.36 0.67 0.39 0.48 0.64 0.06 0.22
4 0.72 0.72 0.72 0.72 0.72 0.69 0.23
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Supplemental Table 4: Pre-term Birth Data Analysis Results. Each number represents the
number of SNP sets called significant at the FDR = 0.10 level by both the method along the
top and the side of the table. Diagonal elements represent the number of SNP sets called
significant by each individual method.

Linear IBS Quadratic Average Perturb. PCA MinP
Linear 0 0 0 0 0 0 0
IBS 1 0 0 1 1 0
Quadratic 0 0 0 0 0
Average 0 0 0 0
Perturb. 2 1 0
PCA 1 0
MinP 0
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Supplemental Table 5: Pre-term Birth Data Analysis Results. Each number represents the
number of SNP sets called significant at the FDR = 0.25 level by both the method along the
top and the side of the table. Diagonal elements represent the number of SNP sets called
significant by each individual method.

Linear IBS Quadratic Average Perturb. PCA MinP
Linear 4 3 3 4 4 3 0
IBS 5 2 3 5 2 0
Quadratic 4 3 4 2 0
Average 4 4 3 0
Perturb. 7 3 0
PCA 4 0
MinP 0
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Supplemental Table 6: Pre-term Birth Data Analysis Results. Each number represents the
number of SNP sets called significant at the nominal α = 0.01 level by both the method
along the top and the side of the table. Diagonal elements represent the number of SNP sets
called significant by each individual method.

Linear IBS Quadratic Average Perturb. PCA MinP
Linear 1 1 1 1 1 1 0
IBS 2 1 1 2 1 0
Quadratic 1 1 1 1 0
Average 1 1 1 0
Perturb. 2 1 0
PCA 1 0
MinP 0
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Supplemental Table 7: Pre-term Birth Data Analysis Results. Each number represents the
number of SNP sets called significant at the nominal α = 0.05 level by both the method
along the top and the side of the table. Diagonal elements represent the number of SNP sets
called significant by each individual method.

Linear IBS Quadratic Average Perturb. PCA MinP
Linear 8 7 5 8 7 6 5
IBS 8 4 7 6 5 4
Quadratic 6 5 5 5 4
Average 8 7 6 5
Perturb. 7 5 5
PCA 8 3
MinP 5
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