
 

1 

 

Rare Variant Association Testing for Sequencing Data Using the Sequence Kernel 

Association Test (SKAT) 

 

Michael C. Wu,*
1
 Seunggeun Lee,*

2
 Tianxi Cai,

2
 Yun Li,

1,3
 Michael Boehnke

4 
and Xihong Lin

2 

 

*These authors contributed equally to this work. 

1
 Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 

27599, USA 

2 
Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115, USA 

3 
Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 

27599, USA 

4 
Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann 

Arbor, MI 48109, USA 

 

Corresponding Author: 

Xihong Lin 

Department of Biostatistics 

Harvard School of Public Health 

655 Huntington Ave, Building 2, 4
th

 Floor 

Boston, MA 02115 

Tel: (617) 432-2914 

Fax: (617) 432-5619 

Email: xlin@hsph.harvard.edu 

 



 

2 

 

ABSTRACT 

Sequencing studies are increasingly being conducted to identify rare variants associated with 

complex traits.  The limited power of classical single marker association analysis for rare 

variants poses a central challenge in such studies.  We propose the sequence kernel association 

test (SKAT), a supervised, flexible, computationally efficient regression method to test for 

association between genetic variants (common and rare) in a region and a continuous or 

dichotomous trait, while easily adjusting for covariates.  As a score-based variance component 

test, SKAT can quickly calculate p-values analytically by fitting the null model containing only 

the covariates, and so can easily be applied to genome-wide data.  Using SKAT to analyze a 

genome-wide sequencing study of 1000 individuals, by segmenting the whole genome into 30kb 

regions, requires only 7 hours on a laptop. Through analysis of simulated data across a wide 

range of practical scenarios and triglyceride data from the Dallas Heart Study, we show that 

SKAT can substantially outperform several alternative rare-variant association tests.  We also 

provide analytic power and sample size calculations to help design candidate gene, whole 

exome, and whole genome sequence association studies.  
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INTRODUCTION 

Genome-wide association studies (GWAS) have identified >1000 genetic loci associated 

with many human diseases and traits
1
, yet common variants identified through GWAS often 

explain only a small proportion of trait heritability.  The advent of massively parallel 

sequencing
2
 has transformed human genetics

3-4
 and has the potential to explain some of this 

missing heritability through identification of trait-associated rare variants
5
.  Although 

considerable resources have been devoted to sequence mapping and genotype calling
6-9

, 

successful application of sequencing to the study of complex traits requires novel statistical 

methods to test efficiently for association  given data on rare variants
10

 and  to perform sample 

size and power calculations to help design sequencing-based association studies. 

Rare genetic variants, here defined as alleles with frequency <1-5%, can play key roles in 

influencing complex disease and traits
11

.  However, standard methods used to test for association 

with single common genetic variants are underpowered for rare variants unless sample sizes or 

effect sizes are very large
12-13

.  A logical alternative approach is to employ burden tests that 

assess the cumulative effects of multiple variants in a genomic region
12-18

.  Burden tests 

proposed to date are based on collapsing or summarizing the rare variants within a region by a 

single value which is then tested for association with the trait of interest.  For example, the 

cohort allelic sum test (CAST)
14

 collapses information on all rare variants within a region (e.g. 

exons of a gene) into a single dichotomous variable for each subject indicating whether or not the 

subject has any rare variants within the region, and then applies a univariate test.  Instead of 

dichotomizing, collapsing by counting the number of rare variants within a region is also 

possible
18

.  The Combined Multivariate and Collapsing method
12

 extends CAST by collapsing 

rare variants within a region into subgroups based on allele frequency, collapsing subgroups as in 

CAST, and applying a multivariate test to the subgroups.  The weighted sum test (WST)
13

 

specifically considers the case-control setting and collapses a set of SNPs into a single weighted 

average of the number of rare alleles for each individual.  Numerous alternative methods are 

largely variations on these approaches
16-17; 19

.   

A limitation for all these burden tests is that they implicitly assume that all rare variants 

influence the phenotype in the same direction and with the same magnitude of effect (after 

incorporating known weights).  However, one would expect most variants (common or rare) 

within a sequenced region to have little or no effect on phenotype, while some variants are 
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protective and others deleterious, and the magnitude of each variant’s effect is likely to vary (e.g. 

rarer variants might have larger effects).  Hence, collapsing across all variants is likely to 

introduce substantial noise in the aggregated index, attenuate evidence for association, and result 

in power loss.  Further, burden tests require either specification of thresholds for collapsing or 

the use of permutation to estimate the threshold
16-20

.  Permutation tests are computationally 

expensive, especially on the whole-genome scale, and are difficult for covariate adjustment since 

permutation requires independence between the genotype and the covariates.  

The recently proposed C-alpha test
21

 is a non-burden based test and is hence robust to the 

direction and magnitude of effect.  For case-control data, it compares the expected variance to 

the actual variance of the distribution of allele frequencies.  These important advantages allow 

the C-alpha test to have improved power over burden based tests especially when the effects are 

in different directions.  Despite these attractive features, the C-alpha test does not allow for easy 

covariate adjustment, such as for controlling population stratification, which is important in 

genetic association studies. The C-alpha test also uses permutation to obtain a p-value when 

linkage disequilibrium is present among the variants, which is, as noted earlier, computationally 

expensive for whole genome experiments.  The approach has not been generalized to analysis of 

continuous phenotypes. 

 We propose in this paper the sequence kernel association test (SKAT), a flexible, 

computationally efficient, regression approach to test for association between variants in a region 

(both common and rare) and a dichotomous (e.g., case-control) or continuous phenotype, while 

adjusting for covariates, such as principal components to account for population stratification
22

.  

The kernel machine regression framework was previously considered for common variants
23-24

. 

In this paper, we provide several essential methodological improvements necessary for testing 

rare variants. SKAT uses a multiple regression model to directly regress the phenotype on 

genetic variants in a region and on covariates, and so allows different variants to have different 

directions and magnitude of effects, including no effects; SKAT also avoids selection of 

thresholds.  We develop a kernel association test to test the regression coefficients of the variants 

using a variance component score test by accounting for rare variants.    

SKAT is computationally efficient, especially important in genome-wide studies.  This is 

because SKAT only requires fitting the null model in which phenotypes are regressed on the 

covariates alone; p-values are easily computed using simple analytic formulae.  Additional 
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features of SKAT include exploitation of local correlation structure, incorporation of flexible 

weights to boost power (e.g. by up-weighting rarer variants or incorporating functionality), and 

allowance for epistatic variant effects.  As discussed in more detail below, under special cases, 

the SKAT, C-alpha, and individual variant tests statistics are closely related. 

We demonstrate through simulation and analysis of re-sequencing data from the Dallas 

Heart Study that SKAT is often more powerful than existing tests across a broad range of models 

for both continuous and dichotomous data.  We also investigate the factors that influence power 

for sequence association studies.  Finally, we describe analytic tools to estimate statistical power 

and sample sizes to guide the design of new sequence association studies of rare variants using 

SKAT.   

 

MATERIALS AND METHODS 

Sequencing Kernel Association Test 

SKAT is a supervised test for the joint effects of multiple variants in a region on a 

phenotype.  Regions can be defined using genes (in candidate gene or whole exome studies) or 

moving windows across the genome (in whole genome studies).  For each region, SKAT 

analytically calculates a p-value for association while adjusting for covariates.  Adjustments for 

multiple comparisons are necessary for analyzing multiple regions, e.g. using the Bonferroni 

correction or FDR control. 

 

Notation  

Assume n subjects are sequenced in a region with p variant sites observed. Covariates 

might include age, gender, and top principal components of genetic variation for controlling 

population stratification
22

.  For the i-th subject, yi denotes the phenotype variable, Xi=(Xi1, Xi2, .., 

Xim) the covariates, and Gi=(Gi1, Gi2, …, Gip) the genotypes for the p variants within the region.  

Typically, we assume an additive genetic model and let Gij,=0, 1, or 2 represent the number of 

copies of the minor allele.  Dominant and recession models can also be considered. 

 

Linear SKAT Model and Test 

For a simple illustration of SKAT, we focus here on the testing for a relationship between 

the variants and the phenotype using classical multiple linear and logistic regression.  We 
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describe how the SKAT can incorporate epistatic effects later.  To relate the sequence variants in 

a region to the phenotype, consider the linear model 

0 ' 'i i i iy     α X β G      (1) 

when the phenotypes are continuous traits, and the logistic model 

0logit ( 1) ' 'i i iP y    α X β G
    

(2) 

when the phenotypes are dichotomous (e.g. y=0/1 for case/control).  Here α0 is an intercept term, 

α=[α1,..., αm]' is the vector of regression coefficients for the m covariates, β=[β1,…,βp]' is the 

vector of regression coefficients for the p observed gene variants in the region, and for 

continuous phenotypes εi is an error term with mean zero and variance σ
2
.  Under both linear and 

logistic models, evaluating whether the gene variants influence the phenotype, adjusting for 

covariates, corresponds to testing the null hypothesis H0: β=0, i.e. β1=β2=…=βp=0.  The 

standard p-DF likelihood ratio test has little power, especially for rare variants.  To increase the 

power, SKAT tests H0 by assuming each βj follows an arbitrary distribution with mean zero and 

variance wjτ, where τ is a variance component and wj is a pre-specified weight for variant j.  One 

can easily see that H0: β=0 is equivalent to testing H0: τ=0, which can be conveniently tested 

using a variance component score test in the corresponding mixed model; this is known to be a 

locally most powerful test
25

.  A key advantage of the score test is that it only requires fitting the 

null model yi=α0+α1'Xi+εi for continuous traits and logit P(yi=1)= α0+α1'Xi for dichotomous 

traits.   

 Specifically, the variance component score statistic is 

ˆ ˆ( ) ' ( )  Q y μ K y μ ,   (3) 

where K=GWG', μ̂ is the predicted mean of y under H0, i.e., 0
ˆ ˆˆ  μ Xα for continuous traits 

and 1

0
ˆ ˆˆ logit ( ) μ Xα for dichotomous traits; and 0̂ and α̂ are estimated under the null by 

regressing y on only the covariates X.  Here G is an n×p matrix with the (i,j)-th element being 

the genotype of variant j of subject i, and W=diag(w1,…, wp) contains the weights of the p 

variants.   

In fact, K is an n×n matrix with (i,i')-th element equal to '1
( , )

p

i i' j ij i jj
K w G G


G G .  

( , )K    is called the kernel function and ( , )i i'K G G measures the similarity between subjects i and 
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i' in the region using the p markers.  This particular form of ( , )K    is called the weighted linear 

kernel function.  We later discuss other choices of the kernel to model epistatic effects. 

Good choices of weights can improve power.  Each weight wj is pre-specified, using only 

the genotypes, covariates and external biological information, i.e. estimated without using the 

outcome, and reflects the relative contribution of the j-th variant to the score statistic: if wj is 

close to zero, the j-th variant makes only a small contribution to Q.  Thus, down-weighting non-

causal variants and up-weighting causal variants can yield improved power.  Since in practice we 

do not know which variants are causal, we propose to set
jw =Beta(MAFj; a1,a2), the beta 

distribution density function with pre-specified parameters a1 and a2 evaluated at the sample 

MAF (across cases and controls combined) for the j-th variant in the data.  The Beta density is 

flexible and can accommodate a broad range of scenarios.  For example, if rarer variants are 

expected to be more likely to have larger effects, then setting 0<a1≤1 and a2≥1 allows for up-

weighting rarer variants and down-weighting common weights.  We suggest setting a1= 1 and 

a2= 25 as it up-weights rare variants while still putting decent non-zero weights for variants with 

MAF 1-5%.  All simulations were conducted using this default choice unless stated otherwise.  

Note that smaller a1 results in stronger up-weighting of rarer variants.  Examples of weights 

across a range of a1 and a2 values are presented in Fig. S1.  Note that a1=a2=1 corresponds to 

wj=1, i.e., all variants are weighted equally, and a1=a2=0.5 corresponds 

to 1/ (1 )j j jw MAF MAF  , i.e., wj being the inverse of the variance of the genotype of 

marker j, which puts almost zero weight for MAFs >1% and can be used if one believes only 

variants with MAF<1% are likely to be causal.  Note that SKAT calculated using this weight is 

identical to the unweighted SKAT test using the standardized genotypes G’s in equations (1) and 

(2). Other forms of the weight as a function of MAF can also be used.  Since SKAT is a score 

test, the type I error is protected for any choice of pre-chosen weights.  Note that the weights 

used in the weighted sum test
13

 involve phenotype information and will therefore alter the null 

distribution of SKAT. 

Under the null hypothesis, Q follows a mixture of chi-square distributions, which can be 

closely approximated using the computationally efficient Davies method
26

.   See the Appendix 

for details. 
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A special case of SKAT arises when the outcome is dichotomous, no covariates are 

included, and all wj = 1.  Under these conditions, we show in the Appendix that the SKAT test 

statistic Q is equivalent to the C-alpha test statistic T.  Hence, the C-alpha test can be seen as a 

special case of SKAT, or alternatively, SKAT as a generalization of the C-alpha test that does 

not require permutation but calculates the p-value analytically, allows for covariate adjustment, 

and accommodates either dichotomous or continuous phenotypes.  Since SKAT using flat 

weights is also equivalent to the kernel machine regression test
23-24

 and since the kernel machine 

regression test is in turn related to the SSU test
27

, it follows transitively that SKAT under flat 

weights, the kernel machine regression test, the SSU test, and the C-alpha test all equivalent and 

special cases of SKAT. Note that the null distribution is  calculated differently using these 

methods, with SKAT giving more accurate analytic p-values especially in the extreme tail, when 

sample sizes are sufficient. 

  

Relationship Between Linear SKAT and Individual Variant Test Statistics 

The test statistics Q can be computed in an efficient manner by exploiting a close 

connection between the SKAT score test statistic Q and the individual variant test statistics.  In 

particular, Q is a weighted sum of the individual score statistics for testing for individual variant 

effects. Hence, letting gj=[G1j, G1j , …, Gnj]
 
denote the n×1 vector containing the genotypes of 

the n subjects for variant j, then it is straightforward to see that Q = 
2

1
p

j jj
w S where 

0
ˆ'( ) j jS g y μ  is the individual score statistic for testing the marginal effect of the j-th marker 

(H0 : βj=0) under the individual linear/logistic regression model of yi on Xi and only the j-th 

variant Gij: 

0 '     i i j ij iy GX α  

for continuous phenotypes and 

0logit ( 1) '    i i j ijP y GX α  

for dichotomous phenotypes. 
0μ̂ is estimated as 

0 0
ˆ ˆˆ '  iμ X α  for continuous traits and 

1

0 0
ˆ ˆˆ logit ( ' )  iμ X α for dichotomous traits.  As a score test, one needs fit the null model only 

a single time to be able to compute the Sj for all individual variants j as well as all regions to be 
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tested.  Similarly, if multiple regions are under consideration, then the same 
0μ̂  can be used to 

compute the SKAT Q statistics for each region. 

  

Accommodating Epistatic Effects and Prior Information under the SKAT 

An attractive feature of SKAT is the ability to model the epistatic effects of sequence 

variants on the phenotype within the flexible kernel machine regression framework
28-30

. To do 

so, we replace Gi'β by a more flexible function f(Gi) in the linear and logistic models (1) and (2) 

where f(Gi) allows for rare variant by rare variant and common variant by rare variant 

interactions.  Specifically, for continuous traits we use the semiparametric linear model
23; 29

 

0 ' ( )    i i i iy fα X G      (4) 

and for dichotomous traits, we use the semiparametric logistic model
24; 30

 

0logit ( 1) ' ( )   i i iP y fα X G
    (5)

 

Here the variants, Gi, are related to the phenotype through a parametric/non-parametric function 

f(·), which is assumed to lie in a functional space  generated by a positive semi-definite kernel 

function ( , ) K .  Models (1) and (2) assume linear genetic effects and are specified by 

'1
( , )

p

i i' j ij i jj
K w G G


G G .  By changing ( , ) K , one can allow for more complex models. 

Intuitively, ( , )i i'K G G is a function that measures genetic similarity between the i-th and i'-th 

subjects using the p variants in the region, and any positive semi-definite function ( , )i i'K G G
 

may be used as a kernel function.  We tailored several useful and commonly used kernels 

specifically for the purpose of rare variant analysis: the weighted linear kernel, the weighted 

quadratic kernel, and the weighted IBS kernel. 

 The weighted linear kernel function ( , )i i'K G G = '1
p

j ij i jj
w G G implies that the trait 

depends on the variants in a linear fashion and is equivalent to the classical linear and logistic 

model presented in (1) and (2). The weighted quadratic kernel ( , )i i'K G G  =  
2

'1
1




p

j ij i jj
w G G  

implicitly assumes that the model depends on the main effects and quadratic terms for the gene 

variants, and the first order variant by variant interactions.  The weighted IBS Kernel ( , )i i'K G G  

= '1
( , )


p

j ij i jj
w IBS G G  or equivalently for additively coded autosomal genotype data ( , )i i'K G G  
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=   1
2


 

p

j ij i'jj
w G G  defines similarity between individuals as the number of alleles shared 

identical by state.  The model implied by the weighted IBS kernel model the SNP effects 

nonparametrically
31

.  Consequently, this allows for epistatic effects because the function f(·) does 

not assume linearity or interactions of a particular order (e.g. second order),  Using the weighted 

IBS kernel removes the assumption of additivity since the number of alleles shared IBS is a 

physical quantity that does not change based on different genotype encodings.. 

We note that a kernel function that better captures both the similarity between individuals 

and the causal variant effects will increase power. In particular, if relationships are linear and no 

interactions are present, then the weighted linear kernel will have highest power.  If interactions 

are present, the weighted quadratic and weighted IBS kernels can increase power.  Our 

experience suggests using the IBS kernel when the number of interacting variants within the 

region is modest.  As our understanding of genetic architecture improves so too will our 

knowledge of which kernel to use. 

In each of the above kernels, wj is an allele specific weight that controls the relative 

importance of the j
th

 variant and might be a function of factors such as allele frequency or 

anticipated functionality.  Without prior information, we suggest the use of the 
jw  = 

Beta(MAFj; 1, 25) suggested earlier.  However, if prior information is available, e.g. some 

variants are predicted as functional or damaging via Polyphen
32

 or Sift
33

, weights may be 

selected to up-weight for likely functionality.  

To test for the effects of gene variants in a region on a phenotype, one tests the null 

hypothesis H0: f(G) = 0. SKAT tests for this null hypothesis by assuming the n×1 vector f = 

[f(G1), …, f(Gn)]' for the genetic effects of  n subjects follows a distribution with mean zero and 

covariance τK, where  τ is a variance component that indexes the effects of the variants
29-30

.  

Hence, to test the null that corresponds to testing H0: τ=0 by a variance component score test.  In 

particular, we simply replace K in equation (3) using the K discussed in this section, e.g., the 

weighted IBS kernel, for epistatic effect.  All subsequent calculations for computing a p-value 

remain the same. 

Since the SKAT evaluates significance using a score test, which operates under the null 

hypothesis, the SKAT is valid (in terms of protecting type I error) irrespective of the kernel and 

the weights used. Good choices of the kernel and the weights simply increase power.   
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Planning New Sequencing-based Association Studies: Power and Sample Size Estimation 

 Power and sample size calculations are important in designing sequencing studies of 

complex traits.  Using a modification of the higher order moment approximation method
34

, we 

provide an analytic method to carry out efficiently such calculations for SKAT
35

.  Specifically, 

for a fixed sample size and α-level, given a prior hypothesis on the genetic architecture of a 

particular region, effect size, and proportion/number of causal variants within a region, our 

method provides the power to detect the region as significant using SKAT.  Similarly, if the 

desired power is fixed, the approach can be used to find the necessary sample size.   

There are key differences between the power and sample size estimation for single- 

variant and region (set)-based tests.  For a region (set)-based test, power depends strongly on the 

underlying genetic architecture and its estimation requires modeling this genetic architecture and 

the LD between variants. Therefore, to estimate power to detect a particular region as associated 

with a phenotype requires specification of the significance level, sample size, which variants in 

the region are causal with corresponding effect size, and the LD structure of the variants in the 

region. Ideally, one may use prior data to assess the LD and MAF.  Since prior data may be 

difficult to obtain, we currently recommend the use of either 1000 Genomes project data
36

 or 

data simulated under a population genetics model 
37

.  Relevant preliminary data will become 

increasingly available as sequencing studies become more common. 

 Our SKAT software uses simulated data based on the coalescent population genetic 

model (released with the software package) as a default in performing sample size and power 

calculations, and instead of directly specifying the effects of any given variant, the user can input 

an MAF threshold for determining which variants are regarded as rare and also a proportion 

determining how many of the rare variants are causal. The causal variants are then randomly 

selected from the alleles with true MAF (based on simulated or preliminary data) less than the 

threshold.   The magnitudes of the effects for causal variants are set to be equal to c×|log10 MAF| 

where the c is determined based on the maximum effect size the user would like to allow 

(described below in the power simulations section) at MAF=10
-4

.  Since these parameters can be 

difficult to choose as a priori, power and sample size can be reasonably estimated by averaging 

results over a range of parameter values.  Similarly, since the region architecture can vary across 
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different regions, for genome-wide studies, one can average over multiple randomly selected 

regions as currently implemented in the SKAT software. 

 

Numerical Experiments and Simulations 

To validate SKAT in terms of protecting type I error, to assess its power compared to 

burden tests, and to assess the accuracy of our power and sample size tools, we carried out 

simulation studies under a range of configurations.  For all simulations, sequence genotypes were 

determined by simulating 10,000 chromosomes for a 1Mb region based on a coalescent model 

that mimics the LD pattern local recombination rate, and population history for Europeans using 

COSI
37

.   

 

Type I Error Simulations 

 To investigate whether SKAT preserves the desired type I error rate at the near genome-

wide threshold level, e.g., α=10
-6

, it is necessary to conduct simulations with hundreds of 

millions of simulated datasets.  Although SKAT is computationally efficient, generating such a 

large number of datasets is challenging.  To reduce the computation burden, we took the 

following approach.  Using 10,000 randomly selected sets of 30kb subregions within a 1 Mb 

chromosome, we first generated 10,000 sets of genotypes G(n×p) from the coalescent model, with 

p variants on n subjects.  Then for each of the 10,000 simulated genotype data sets, we simulated 

10,000 sets of continuous phenotypes such that we were able to obtain 10
8
 individual genotype-

phenotype data sets using the model: 

1 20.5 0.5   y X X  

where X1 is a continuous covariate generated from a standard normal distribution, X2 is a 

dichotomous covariate taking values 0 and 1 with probability 0.5, and ε follows a standard 

normal distribution.  Note that the continuous trait values are not related to the genotype, so that 

the null model holds. The 30kb regions that the genotype values are based on contained 605 

variants on average, but the number of observed variants for any given data set was considerably 

less and depended on the sample size n, which we set to 500, 1000, 2500, and 5000. 

 We repeated the type I error simulations for dichotomous phenotypes as above, except 

the dichotomous outcomes were generated using the model: 

0logit ( 1)  P y  
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where α0 was determined to set the prevalence to 1%.  

 For both continuous and dichotomous simulations, we applied SKAT using the default 

weighted linear kernel to each of the 10
8
 data sets and estimated the empirical type I error rate as 

the proportion of p-values less than α=10
-4

, 10
-5

, or 10
-6

.   

We note that the estimated type I error from this approach is not completely the same as 

the empirical type I error when genotypes are generated randomly for each simulation, since for 

each of the 10000 genotype data sets, only the outcomes are resampled.  However, our type I 

error estimator is still unbiased and results in very accurate type I error estimates.  For larger α-

levels (0.05 and 0.01), we directly computed the empirical type I error rate using data sets in 

which genotypes were randomly generated for each simulation. 

 

Empirical Power Simulations 

We simulated data sets in which 30kb subregions were randomly selected from the 

generated 1 Mb chromosomes and used to create causal variants and a phenotype variable 

together with additional simulated covariates.  We generated continuous phenotypes by 

 1 2 1 1 2 20.5 0.5 ...         c c c

p py X X G G G , (1)  

where X1, X2, and ε are as defined for the type I error simulations , 1 2, ,...,c c c

sG G G  are the genotypes 

of the s causal rare variants (a randomly selected subset of the simulated rare variants, e.g., 5% 

of variants that have MAF<3% in Fig. 1), and the βs are effect sizes for the causal variants.  

Similarly, we generated dichotomous phenotypes for case-control data under the logistic model 

  0 1 2 1 1 2 2logit ( 1) 0.5 0.5 ...          c c c

p pP y X X G G G  , (2) 

where 1 2, ,...,c c c

pG G G are again the genotypes for the causal rare variants and βs are log ORs for 

the causal variants.  We controlled prevalence by α0 and set to it 1% unless otherwise stated.  

Under both models, we set the magnitude of each βj to 10log jc MAF  such that rarer variants had 

larger effects.  In the simulation studies, for continuous traits, c=0.4, which gives the 

“maximum” effect size |βj|=1.6 for variants with MAF=10
-4

 and small effects |βj|=0.28 for 

MAF=0.2.  For dichotomous traits, c=ln5/4=0.402, which gives the “maximum” OR=5.0 (|βj|= 

ln5) for variants with MAF=10
-4

 and smaller OR=1.32 for MAF=0.2.  The effect size curves are 

given in Fig. S2. 



 

14 

 

We compared SKAT, an unsupervised variation on the weighted sum test (WST)
13

 which 

uses weighted count based collapsing, counting based collapsing
18

, and CAST
14

.  For each of 

these tests, we considered variants with observed MAF <3% as rare: CAST collapsed based on 

whether or not an individual exhibits any variants with allele frequency <3%, the counting 

method counts the number variants with MAF<3%, and the weighted count inflates the 

contribution of each rare variant by multiplying the genotype with the same beta density based 

weights as used in SKAT.   

To accommodate missing genotypes commonly observed in sequence data, we consider 

the effect of imputing missing values by randomly setting 10% of the genotypes as missing, 

imputing genotypes based on observed allele frequencies and Hardy-Weinberg Equilibrium , and 

then applying SKAT to the imputed data.  We also performed restricted SKAT (rSKAT) by 

applying un-weighted SKAT to rare variants with MAF<3%.  Note that for dichotomous 

phenotypes, rSKAT is essentially equivalent to a covariate adjusted C-alpha test with the p-value 

calculated analytically instead of using permutation. For each of the methods, power was 

estimated as the proportion of p-values < α, where α = 10
-6

 to mimic genome-wide studies.   

 

Power and Sample Size Formulae 

To demonstrate the utility and accuracy of our power and sample size calculation method, 

we conducted several numerical experiments.  We first illustrated the use of the methods by 

computing the sample size necessary to detect a 30kb region with 5% of the variants with 

MAF<3% being causal.  We assume effect size (OR) increases with decreasing MAF, and seek 

80% power at significance levels α=10
-6

, 10
-3

, 10
-2

, corresponding to approximate genome-wide 

sequencing significance and candidate gene sequencing studies of 50 and 5 genes, respectively.  

We considered both continuous and dichotomous traits.   

To show that the power estimated from our sample size formula is accurate, we compared 

empirical power for SKAT under simulations to power estimated via our analytic method .  

Specifically, we simulated continuous and case-control data under the same setting as used in the 

power simulations and estimated power as a function of the sample size by computing the 

proportion of p-values < α=10
-6

 and compared the empirical power curve to the power estimated 

using our analytical method.  
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RESULTS 

Type I Error Simulation Results 

The empirical type I error rates estimated for SKAT are presented in Table 1 for α=10
-4

, 

10
-5

, 10
-6

, and suggest the type I error rate is protected for continuous phenotypes, though for 

smaller sample sizes the SKAT can be slightly conservative.  For dichotomous phenotypes, 

SKAT is conservative for smaller sample sizes and very small alpha-levels.  Additional type I 

error simulation results for SKAT and the competing methods are presented in Supplementary 

Fig. S3 for both continuous traits and dichotomous traits, and show that at larger α levels, all of 

the considered tests correctly control at the α=0.05 and 0.01 levels.  These results show that 

SKAT is a valid method and despite being conservative at low α-levels, SKAT maintains good 

power relative to existing methods (see below). However, if sample sizes are small or sharp 

control of type I error is necessary, then standard permutation-based procedures can be used to 

generate a Monte Carlo p-value for significance, though this can be computationally expensive 

and does not work in the presence of covariates, such as controlling for population stratification 

and require carful modifications.  

 

Statistical Power of the SKAT and Competing Methods  

 We compared the power of SKAT with three burden tests in a series of simulation studies 

for both continuous traits and dichotomous traits by generating sequence data in randomly 

selected 30kb regions using a coalescent model
37

.  For our primary power simulation, within 

each region, 5% of variants with population minor allele frequency (MAF)<3% were randomly 

chosen as causal, and the effect size of causal variants was a decreasing function of MAF with 

50-100% of the causal variants being positively associated with the trait (See Materials and 

Methods and Fig. S2).   The simulated regions for our power analysis contained on average 605 

variants (26 causal), of which, 530.9 (88%), 502.9 (83%), and 422.8 (70%) had population MAF 

<3%, <1%, and <0.1%, respectively.  The average allele frequency spectrum across the samples 

is similar to that of the Dallas Heart Study data (Fig. S4).  Since the majority of variants have 

low MAF, they may not be observed in any particular sample.  The average number of observed 

variants (assuming no genotyping error) and the average number of observed causal variants are 

presented in Table 2.   
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 For continuous traits, SKAT had much higher power than all the burden tests, with the 

weighted count method tending to outperform the count and CAST methods (Fig. 1).  SKAT’s 

power was robust to the proportion of causal variants that were positively associated with the 

trait, while the burden tests suffered substantial loss of power when causal variants had opposite 

effects.  The simulation results examining dichotomous traits were qualitatively similar in that 

SKAT dominated the competing methods.  However, here the power of the SKAT decreased 

when both protective and harmful variants were present, although less so than for the burden 

tests.  The difference in power for SKAT for different proportions of protective variants is due to 

the fact that given fixed population MAFs, protective variants imply negative log ORs and lower 

disease risk and hence lower MAFs in cases and more difficulties in observing rare variants in 

cases.  The larger decrease in power for the competing methods is additionally driven by 

sensitivity to direction of effect due to aggregation of genotypes.  Across all configurations, 

using imputed genotypes instead of the true genotype for 10% missing genotype data led to a 

very small reduction in power, despite use of a very simple Hardy-Weinberg-based imputation 

strategy.  This is true in part because most variants are rare.   

 Note that SKAT up-weights rare variants but does not require thresholding.  To show that 

the superior performance of SKAT is intrinsic and is not driven by the particular choice of the 

weight used, we calculated rSKAT, which does not weight the rare variants but instead uses the 

same threshold as the burden tests.  Our results presented in Fig. 1 show that rSKAT is still 

substantially more powerful than all three burden tests.   

 Power simulation results for other type I error rates (α=0.01, 0.001), lower causal variant 

frequencies (population MAF<1%), and other region sizes (10kb and 60kb) yielded the same 

conclusions (Supplementary Figs. S5-8).   

 In the 30kb genomic regions considered, reflecting analysis of genome wide sequencing 

data, it is unlikely that a large proportion of the rare variants are all causal.  However, for exome 

scale sequencing, the number of observed rare variants can be considerably smaller and the 

proportion of causal rare variants may be greater.  Hence, we also conducted power simulations 

for smaller region sizes (3kb and 5kb) and larger proportions of causal variants (10, 20, and 

50%).   Results for both continuous and dichotomous phenotypes are presented in Supplementary 

Figs. S9-12 and show that if 50% of the rare variants are causal and that all of the causal variants 

have effects in the same direction, then SKAT and rSKAT are less powerful compared to 
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collapsing methods, with count based collapsing having the greatest power.  This result held for 

both 3kb and 5kb regions and is expected since the collapsing methods implicitly assume that all 

of the variants are causal and have unidirectional effects.  In all other settings we considered, 

SKAT was the most powerful method. 

 

Power and Sample Size Estimation Results 

To illustrate our power and sample size calculation method, in Fig. 2 we present the 

estimated sample size curves as a function a of maximum effect sizes (ORs for dichotomous 

traits) necessary to detect a 30kb region with 5% of the variants with MAF<3% being causal. 

Table 3 presents estimated sample sizes for several configurations of practical interest.  

Additional sample size curves when causal variants are rarer (MAF<1%) or occur more 

frequently (10% of variants are causal) or when prevalence is varied (5%, 0.1%) can be found in 

Figs. S13-15.  These results show that, for a given region, one will have higher power (and lower 

required sample size) to detect rare causal variants if the percentage of variants that are causal is 

higher, the causal rare variants have higher MAFs and/or larger effect sizes (e.g. odds ratios 

(ORs)), and the effects are more consistently in the same direction.  For case-control designs, 

lower prevalence yields higher power since given the same OR and population MAF, the lower 

prevalence results in enrichment of more harmful (ORs > 1) variants, i.e., higher MAFs, across 

both cases and controls, i.e. for rarer diseases, harmful rare variants are more likely to be 

observed.  Conversely, if the prevalence is low, fewer protective variants (ORs < 1), i.e., lower 

MAFs, are likely to be observed in the sample.   

We also compared the power/sample size formulae estimates to the empirical, simulation 

based power estimates for both continuous and dichotomous traits.  The curves plotted in Fig. 3 

show that the empirical power is accurately approximated by our analytical formula.   

 

Application to Dallas Heart Study Data 

 We analyzed sequence data on 93 variants in ANGPTL3 (MIM 604774),  ANGPTL4 

(MIM 605910), and ANGPTL5 (MIM 607666) in 3,476 individuals from the Dallas Heart 

Study
38

 to test for association between log-transformed serum triglyceride (logTG) levels and 

rare variants in these genes.  We adjusted for sex and ethnicity (Black, Hispanic, or White), but 

did not adjust for age as a large number of subjects have missing ages.  In addition to testing for 
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association using SKAT and the three burden tests considered earlier, we also applied the 

permutation-based varying threshold method (VT) and the Polyphen-score adjusted VT (VTP)
16, 

which are based on the residuals obtained from regressing the phenotype on the covariates, and  

assume gene-covariate independence.  Since VT and VTP require permutation, they are 

computationally expensive when applied genome wide.  For VTP, we used the Polyphen 

score for rare variants (MAF<0.01) and assigned a constant score=0.5 to all other variants.  We 

also analyzed a dichotomized phenotype on the highest and lowest quartiles of each of the six 

sex-ethnicity groups (Table 4).   

 SKAT was by far the most powerful test for the dichotomous trait.  For continuous traits, 

SKAT has much smaller p-values than two burden methods (CAST and WST) and VT, and has a 

slightly higher p-value than the counting-based burden test (N) and VTP.  Note that SKAT was 

easier to apply, since it did not require prior functional information (available for only a subset of 

variants) or permutation, and adjusted for covariates without assuming gene-covariate 

independence.    

 

Computation time  

The computation time for the SKAT depends on the sample size and the number of 

markers.  To analyze a 30kb region sequenced on 1000, 2500, or 5000 individuals, SKAT 

required 0.21, 0.73, and 2.3 sec for continuous traits and ~20% longer for dichotomous traits, on 

a 2.33 GHz Laptop with 6Gb memory.  To analyze 300kb, 3Mb, or 3Gb (the entire genome) on 

1000 individuals requires 2.5s, 25s, and 7h.   

 

DISCUSSION 

We propose SKAT as a supervised, flexible, and computationally efficient statistical 

method to test for association between a phenotype, continuous or dichotomous, and rare and 

common genetic variants in sequencing-based association studies.  We demonstrate that SKAT’s 

power is greater than that of several burden tests over a range of genetic models.  Furthermore, 

we have developed analytical power and sample size calculations for SKAT to assist in 

designing sequencing-based association studies. 

Like burden tests, SKAT performs region based testing.  However, SKAT has several 

major advantages over the existing tests.  As a supervised method, SKAT directly performs 
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multiple regression of a phenotype on genotypes for all variants in the region, adjusting for 

covariates.  Hence, as with conventional multiple regression models, neither directionality nor 

magnitudes of the associations are assumed a priori but are instead estimated from the data.  To 

test efficiently for the joint effects of rare variants in the region on the phenotype, SKAT 

assumes a distribution for the regression coefficients of the markers, whose variances depend on 

flexible weights.  SKAT performs a score-based variance component test, whose calculation only 

requires fitting the null model by regressing phenotypes on covariates alone and computing p-

values analytically.  The flexible regression framework also allows us to allow for epistatic 

effects. 

Besides region-based analysis, SKAT can also be applied to any biologically meaningful 

SNP set.  As SKAT is a regression based method, it can be easily extended to survival, 

longitudinal, and multivariate phenotypes, and hence provides a comprehensive framework for a 

wide variety of sequencing-based association studies. 

The ability to obtain a p-value directly without the need for permutation is an attractive 

feature of SKAT, and allows for rapid estimation of p-values in exome and genome wide 

sequencing studies.  Our simulations showed that for continuous phenotype, the p-values are 

accurate when the sample size is moderate or large; for dichotomous phenotypes, the p-values 

are conservative at lower α-levels (e.g. <10
-4

) if the sample size is modest or small.  Permutation 

can be used to obtain a more accurate estimate in the absence of covariates.  In the presence of 

covariates, e.g., population stratification, standard permutations fail and require careful 

modifications.  Despite the conservative nature of the score test, SKAT often still has higher 

power than competing methods at small α-levels.   

 SKAT can be combined with collapsing strategies to form a hybrid testing approach.  If 

most of the variants within a range of allele frequencies are causal and have the same 

directionality (i.e. under settings that are optimal for burden based tests), collapsing these 

variants and then applying SKAT to the collapsed variants can improve power.  For example, 

since singletons are common in sequencing studies (57 of 93 variants in the Dallas Heart Study 

data), a possible hybrid strategy is to first collapse all of the singletons into a single value and 

then apply SKAT to the collapsed value and the other 36 variants.  Compared to the original 

SKAT, this strategy gives a slightly lower p-value 3.1x10
-5

 for the continuous trait and a slight 
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higher p-value 1.6x10
-4

 for the dichotomous trait.  Simulation studies showed that the two 

methods are of similar power under the settings used to generate Fig. 1.   

An important feature of SKAT is that it allows for incorporation of flexible weight 

functions to boost analysis power, e.g. by up-weighting variants with lower MAFs and down-

weighting information from variants inferred with lower confidence.  Good choices of weights 

are likely to improve the power of the association test using SKAT, although simulations show 

that even equal weights can yield high power when combined with thresholding.  In our 

simulation studies, we employed a class of flexible continuous weights as a function of MAF 

using the Beta function, which up-weights rare variants and does not require thresholding.  Users 

can define other types of weight functions. To further improve analysis power, one can estimate 

weights by incorporating information besides MAF, e.g. using Polyphen score or integrating 

other annotation information, which will become increasingly available as our understanding of 

genome variation improves.  Therefore, because of its flexibility, SKAT has the capacity to 

mature, and its power to increase, as the field progresses. 

  

APPENDIX 

Estimating the Null Distribution for Q. 

Under the null hypothesis, Q follows a mixture of chi-square distributions
29-30

.  More 

specifically, we define 1

0 ( ' ) ' P V VX X VX X V where X   is the n×(p+1) matrix equal to [1, 

X]. For continuous phenotypes, 
2

0V I  where 0  is the estimator of   under the null model 

where f(G) = 0, and I is an n×n identity matrix. For dichotomous phenotypes, 

 01 01 02 02 0 0
ˆ ˆ ˆ ˆ ˆ ˆ(1 ), (1 ), , (1 )        n nV diag where 1

0
ˆ ˆˆ logit ( ' )  i iα X is the estimated 

probability that the i-th subject is a case under the null model.  Then under the null, 

2

1,

1

 



n

i i

i

Q     (6) 

where (λ1, λ2, … , λn) are the eigenvalues of 1/2 1/2

0 0P KP  and 2

1, i are independent 2

1 random 

variables. 

Several approximation and exact methods have been suggested to obtain the distribution 

of Q
39

.  Among these, the Davies exact method
26

, based on inverting the characteristic function 

of (6), appears to work well in practice and is used here. 
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SKAT is a Generalization of the C-alpha test 

The recently proposed the C-alpha test has advantages over burden tests in that it 

explicitly models the possibility that minor alleles can be deleterious or protective.  However, it 

does not currently allow for the analysis of quantitative outcomes or the inclusion of covariates 

and p-value calculation requires permutation. We demonstrate that for a dichotomous trait in the 

absence of covariates, the C-alpha test statistic is equivalent to the SKAT statistic with un-

weighted linear kernel. 

Suppose the j-th variant is observed jd times in the cases, out of jn times total in cases 

and controls, and that 0 1
/

n

i i
p y n


 . For a dichotomous trait and no covariates, the C-alpha test 

statistic 

   
2

0 0 0

1

1
p

j j j

j

T d n p n p p


    
  

   

(7) 

 

Denote  
2

1

01

p

j jj
T d n p 

  . Since  0 01
1

p

jj
n p p


 is the mean of T under the null 

hypothesis of no association, 1T is the C-alpha test statistic without mean centering. Since 

' .j jd y G and ' .j jn J G , where . jG  is the j-th column of the genotype matrix G  and 

(1,1, ,1) 'J , it can be easily shown that  

  1

0 0( ) ' '( ).   T p py J GG y J

     

(8) 

Note that under the un-weighted linear kernel, K = GG’ and 
0 0

ˆ  pμ J if no covariates are 

present. Hence, equation (8) is identical to equation (3), i.e. 1T  is equivalent to the SKAT test 

statistic with un-weighted linear kernel. 

Although the SKAT statistic with unweighted linear kernel and the C-alpha test statistic 

are equivalent,  SKAT and C-alpha test use different null distributions to assess significance: C-

alpha test uses a normal approximation, while we use a mixture of chi-squares. The normal 

approximation gives a valid p-value when the tested rare variants are independent and sample 

sizes are large, and so requires an assumption of linkage equilibrium. In the presence of LD, 

permutation is used by the C-alpha test for significance testing.   One can easily see that the test 

statistic takes a quadratic form of y, which follows a mixture of chi-square distributions.  SKAT 
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approximates this distribution directly using the Davies method and hence gives accurate 

estimation of significance regardless of the LD structure when sample size is sufficient. 

 

WEB RESOURCES 

The URLs for data presented herein are as follows: 

Online Mendelian Inhereitance in Man (OMIM), http://www.omim.org 

An implementation of SKAT and power/sample size calculations in the R language can be found 

at http://www.hsph.harvard.edu/~xlin/software.html.   

 

SUPPLEMENTAL DATA 

Supplemental Data includes 15 figures and can be found with this article online at 

http://www.cell.com/AJHG. 
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FIGURE LEGENDS 

Fig. 1) Power comparisons comparing SKAT with burden tests based on simulation studies  

 Empirical power at α=10
-6

 assuming 5% of the rare variants with MAF<3% within 

random 30kb regions were causal.  Top panel considers continuous phenotypes with
 
maximum 

effect size (|β|) equal to 1.6 when MAF=10
-4

; bottom panel considers case-control studies with 

maximum OR=5 when MAF=10
-4

.  Regression coefficients for the s causal variants were 

assumed to be a decreasing function of MAF as 10logj jc MAF   (j=1,…,p (See Fig. S2)), 

where c was chosen to result in these maximum effect sizes.  From left to right, the plots 

consider settings in which the coefficients for the causal rare variants are 100% positive/0% 

negative, 80% positive/20% negative, and 50% positive/50% negative.  Total sample sizes 

considered are 500, 1000, 2500, and 5000, with half being cases in case-control studies.  For 

each setting, six methods are compared: SKAT, SKAT in which 10% of the genotypes were set 

to missing and then imputed (SKAT_M), restricted SKAT (rSKAT) in which un-weighted 

SKAT is applied to variants with MAF<3%, the weighted sum burden test (W) with the same 

weights as used by SKAT, counting based burden test (N), and the CAST method (C).  All the 

burden tests used MAF<3% as the threshold.  For each method, power was estimated as the 

proportion of p-values<α among 1000 simulated data sets. 

 

Fig. 2) Required sample sizes to reach 80% power  

 Required sample sizes estimated analytically to reach 80% power to detect rare variants 

associated with a continuous (top panel) or dichotomous phenotype in case-control studies (half 

are cases) (bottom panel) at the α=10
-6

, 10
-3

, and 10
-2 

levels, assuming 5% of rare variants with 

MAF<3% within the 30kb regions are causal.  Plots correspond to 100%, 80%, and 50% of the 

causal variants associated with increase in the continuous phenotype or risk of the dichotomous 

phenotype.  Regression coefficients for the s causal variants were assumed to be the same 

decreasing function of MAF as that in Fig. 1.  Required total sample sizes are plotted again the 

“maximum” effect sizes (ORs) when MAF=10
-4

.  Estimated total sample sizes were averaged 

over 100 random 30kb regions.   
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Fig. 3) Comparisons of the power based on simulation and analytic estimation  

 Power as a function of total sample size estimated by simulation using 1000 replicates 

and by the proposed power formula for continuous and dichotomous case-control traits.  

Simulation configurations correspond to those used in Fig. 1 in which 80% of the regression 

coefficients for the causal rare variants were positive.   
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Table 1 Type I error estimates of SKAT to test an association between randomly selected 
30kb regions with a continuous trait at type I error rates as low as the genome-wide α=10-6 
level.  Each entry represents type I error rate estimates as the proportion of p-values α 
under the null hypothesis based on 108 simulated phenotypes. 
 

 Continuous Phenotypes Dichotomous Phenotypes 

Total Sample Size (n) α=10
-4 

α=10
-5

 α=10
-6

 α=10
-4

 α=10
-5

 α=10
-6

 

500 7.4×10
-5 

6.5×10
-6

 5.9×10
-7 

2.2×10
-5

 1.0×10
-6

 1.0×10
-8

 

1000 8.5×10
-5

 8.2×10
-6

 8.0×10
-7

 5.0×10
-5

 3.5×10
-6

 2.3×10
-7

 

2500 9.6×10
-5

 9.1×10
-6

 8.4×10
-7

 7.6×10
-5

 6.3×10
-6

 5.6×10
-7

 

5000 9.8×10
-5

 9.6×10
-6

 8.8×10
-7

 8.9×10
-5

 7.8×10
-6

 7.0×10
-7

 

 

 

Table 2 Characteristics of the 30kb region data sets used in the simulation studies.  The number 

of observed variants and the number of observed causal variants within the region are averaged 

over the 1000 simulated data sets.   

 

 Sample size (n) 

 500 1000 2500 5000 

Average Number of Observed Variants     

All traits 255 330 438 512 

     

Average Number of Observed Causal Variants     

Continuous Trait 9.6 13.3 18.6 22.3 

Dichotomous Trait  (β+/- = 100/0)  14.4 18.7 23.5 25.2 

Dichotomous Trait  (β+/- = 80/20) 13.3 17.1 22.0 24.3 

Dichotomous Trait  (β+/- = 50/50) 11.1 14.9 19.7 22.6 
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Table 3 Required total sample size to achieve 80% power to detect rare variants associated with 

a continuous or dichotomous case-control phenotype at the genome-wide level = 10
-6

.  Power 

was estimated using the analytical formulae assuming 5% or 10% of variants with MAF<3% are 

causal.  Regression coefficients for the s causal variants were assumed to be a decreasing 

function of MAF, 10logj jc MAF   (j=1,…,s) See Fig. S2. Required total sample sizes 

(cases+controls) are given for different “maximum” effect sizes (or ORs) when MAF=10
-4

 and 

different prevalences for case-control studies.  Estimated sample sizes were averaged over 100 

random 30kb regions.   

  

                                             Total Sample Size 

 Max β=1.6/ Max OR=5 Max β=1.9/ Max OR=7 

 5% causal 10% causal 5% causal 10% causal 

Continuous Trait 5,990 1,800 4,260 1,290 

Dichotomous Trait with  

Prevalence 10% 
15,120 4,810 9,650 3,120 

Dichotomous Trait with 

Prevalence 1% 
12,030 3,870 7,010 2,290 

 

 

 

 

Table 4 Analysis of the Dallas Heart Study sequencing data using SKAT, the weighted sum 

burden test (W), the counting based burden test (N), the CAST method (C), the varying threshold 

method (VT), and the Polyphen-score adjusted VT (VTP) method.  Beta(1,25) is used as the 

weight in the SKAT and the weighted sum test. 

 

 SKAT C N W VT
a
 VTP

a
 

Continuous 

TG Level 
9.510

-5
 1.910

-3
 7.210

-5
 2.310

-4
 3.510

-4
 2.010

-5
 

 

Dichotomized 

TG Level 
1.310

-4
 3.210

-2
 2.210

-3
 3.110

-3
 8.610

-3
 2.110

-3
 

 
a 
P-values estimated based on 10

6
 permutations. 

 


