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Midterm

• Thursday, Mar 7 in Rosenau 230 from 930a-1045a

• Closed book

• No notes except one-sided, hand-written, 8.5×11 page of notes

• Bring calculator, but no smart phones, laptops, tablets, etc

• Blank/scratch paper
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Midterm

• Will cover HR §1 – 10, except §5.4 – 5.6

• Recommended to review (in order of priority)

1. Notes

2. HW

3. HR

• Qs may be directly from the HW or very similar to HW probs;
probs with lengthy answers are unlikely to be on the midterm,
whereas simpler problems are more likely

• Topics from HR not in the notes or HW less likely to be on midterm
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Definition of Causal Effect (§1)

• Potential outcomes/counterfactuals

• Causal consistency

Y = Y a=1A+Y a=0(1−A)

• SUTVA: no interference, not multiple versions of treatment

• Measures of causal effect vs measures of association, eg,

E(Y a=1)−E(Y a=0)

vs
E(Y |A = 1)−E(Y |A = 0)
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Randomized Experiments (§2)

• Full exchangeability

{Y a=0,Y a=1} ⊥⊥ A

implies exchangeability

Y a ⊥⊥ A for a = 0,1

implies mean exchangeability

E[Y a|A = 1] = E[Y a|A = 0] for a = 0,1

• Under mean exchangeability

E[Y a] = E[Y |A = a],

implying causal measures identifiable
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Randomized Experiments (§2)

• Conditionally randomized experiments: conditional exchangeabil-
ity

Y a ⊥⊥ A|L for a = 0,1

• Standardization. Under conditional exchangeability

E[Y a] = ∑
l

E[Y |A = a,L = l]Pr[L = l]

suggesting estimators of the form

R̂R =
∑l P̂r[Y = 1|L = l,A = 1]P̂r[L = l]

∑l P̂r[Y = 1|L = l,A = 0]P̂r[L = l]

• IPW

Ê(Y a) =
1
n

n

∑
i=1

I[Ai = a]Yi

Pr[Ai = a|Li]

BIOS 776 6 Midterm Review



Observational Studies (§3)

• Randomized Experiment Paradigm: An observational study can
be conceptualized as a conditionally randomized experiment under
the following three conditions:

1. Values of treatment under comparison correspond to well-defined
interventions (§3.4–3.5)

2. Conditional probability of receiving every value of treatment,
though not decided by investigators, depends only on the measured
covariates (§3.2)

Y a ⊥⊥ A|L for a = 0,1

3. Conditional probability of receiving every value of treatment is
positive (§3.3), i.e., for a = 0,1

Pr[A = a|L = l]> 0 for all l such that Pr[L = l]> 0
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Effect Modification (§4)

• Let M be some baseline covariate (and thus not affected by treat-
ment A) taking on values 0, 1

• The concept of effect modification is scale dependent

• There is additive effect modification if

E[Y a=1−Y a=0|M = 1] 6= E[Y a=1−Y a=0|M = 0]

• There is multiplicative effect modification if

E[Y a=1|M = 1]
E[Y a=0|M = 1]

6= E[Y a=1|M = 0]
E[Y a=0|M = 0]
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Interaction (§5)

• Consider two possible interventions A and E such that each indi-
vidual has four potential outcomes Y a,e for a,e = 0,1

• Interaction between two treatments A and E if the causal effect of
A on Y after a joint intervention that sets E to 1 differs from the
causal effect of A on Y after a joint intervention that sets E to 0

• Interaction between A and E on the additive scale if

E[Y a=1,e=1−Y a=0,e=1] 6= E[Y a=1,e=0−Y a=0,e=0]

• Marginal structural model (MSM)

E[Y a,e] = β0+β1a+β2e+β3ae

Additive interaction iff β3 6= 0

BIOS 776 9 Midterm Review



Graphical Representation of Causal Effects (§6)

• Markov-factorization: Density (or pmf) f (V ) of variables V in
DAG G satisfies the Markov factorization

f (v) =
M

∏
j=1

f (v j|pa j)

Conditional on its parents, Vj is independent of its non-descendants

• Causal DAGs

1. Lack of arrow from Vj to Vm can be interpreted as the absence
of a direct causal effect of Vj on Vm (relative to the other variables
on the graph)

2. All common causes, even if unmeasured, of any pair of variables
on the graph are themselves on the graph

3. Any variable is a cause of its descendants
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Graphical Representation of Causal Effects (§6)

• D-separation

• A path is blocked iff

(i) it contains a noncolllider that has been conditioned on, or
(ii) it contains a collider which has not been conditioned on and
has no descendant that has been conditioned on

• Two variables are d-separated if all paths between them are blocked

Otherwise the two variables are d-connected

• If two variables (e.g., A and Y ) are d-separated given some other
variable (e.g., L), then then the two variables are conditionally in-
dependent given the third A⊥⊥ Y |L

74 Causal Inference

associated because aspirin has a causal effect on heart disease. Now suppose

we obtain an additional piece of information: aspirin  affects the risk of death

 because it reduces platelet aggregation . This new knowledge is translated

into the causal diagram of Figure 6.5 that shows platelet aggregation  (1:

A YB
Figure 6.5

high, 0: low) as a mediator of the effect of  on  .

Once a third variable is introduced in the causal diagram we can ask a new

question: is there an association between  and  within levels of (conditional

on) ? Or, equivalently: when we already have information on , does infor-

mation about  improve our ability to predict  ? To answer this question,

suppose data were collected on , , and  in a large number of individuals,

and that we restrict the analysis to the subset of individuals with low platelet

aggregation ( = 0). The square box placed around the node  in Figure 6.5

represents this restriction. (We would also draw a box around  if the analysis

were restricted to the subset of individuals with  = 1.)Because no conditional indepen-

dences are expected in complete

causal diagrams (those in which all

possible arrows are present), it is of-

ten said that information about as-

sociations is in the missing arrows.

Individuals with low platelet aggregation ( = 0) have a lower than average

risk of heart disease. Now take one of these individuals. Regardless of whether

the individual was treated ( = 1) or untreated ( = 0), we already knew

that he has a lower than average risk because of his low platelet aggregation.

In fact, because aspirin use affects heart disease risk only through platelet

aggregation, learning an individual’s treatment status does not contribute any

additional information to predict his risk of heart disease. Thus, in the subset of

individuals with  = 0, treatment  and outcome  are not associated. (The

same informal argument can be made for individuals in the group with  = 1.)

Even though  and  are marginally associated,  and  are conditionally

independent (unassociated) given  because the risk of heart disease is the

same in the treated and the untreated within levels of : Pr[ = 1| =

1  = ] = Pr[ = 1| = 0  = ] for all . That is,  q  |. Indeed
graph theory states that a box placed around variable  blocks the flow of

association through the path →  →  .

Let us now return to Figure 6.3. We concluded in the previous section that

carrying a lighter  was associated with the risk of lung cancer  because

the path  ←  →  was open to the flow of association from  to  . The

question we ask now is whether  is associated with  conditional on . This
L YA

Figure 6.6 new question is represented by the box around  in Figure 6.6. Suppose the

investigator restricts the study to nonsmokers ( = 1). In that case, learning

that an individual carries a lighter ( = 0) does not help predict his risk of

lung cancer ( = 1) because the entire argument for better prediction relied

on the fact that people carrying lighters are more likely to be smokers. This

argument is irrelevant when the study is restricted to nonsmokers or, more

generally, to people who smoke with a particular intensity. Even though 

and  are marginally associated,  and  are conditionally independent given

 because the risk of lung cancer is the same in the treated and the untreated

within levels of : Pr[ = 1| = 1  = ] = Pr[ = 1| = 0  = ] for all

. That is,  q  |. Graphically, we say that the flow of association betweenBlocking the flow of association

between treatment and outcome

through the common cause is

the graph-based justification to

use stratification as a method to

achieve exchangeability.

 and  is interrupted because the path  ←  →  is blocked by the box

around .

Finally, consider Figure 6.4 again. We concluded in the previous section

that having the haplotype  was independent of being a cigarette smoker

 because the path between  and  ,  →  ←  , was blocked by the

collider . We now argue heuristically that, in general,  and  will be

conditionally associated within levels of their common effect . Suppose that

the investigators, who are interested in estimating the effect of haplotype 

on smoking status  , restricted the study population to subjects with heart
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Confounding Bias (§7)

• Confounding is the bias that arises when the treatment and the out-
come share a common cause

• Backdoor criterion: effect of treatment A on the outcome Y is
identifiable if all backdoor paths between them can be blocked by
conditioning on some set of measured variables which are non-
descendants A

• SWIGs
1. Split intervention node or nodes
2. Replace all descendants of split nodes with potential outcomes

• Eg Fig 7.7

90 Causal Inference

fore the average causal effect E[ =1]−E[ =0]may be calculated by adjusting

for the measured variables  via standardization. We say that there is no resid-Under conditional exchangeability,

E[ =1]− E[ =0] =P
 E[ | =   = 1]Pr [ = ]−P
 E[ | =   = 0]Pr [ = ].

ual confounding whose elimination would require adjustment for unmeasured

variables. For brevity, we say that there is no unmeasured confounding.

If conditioning on a set of variables  (that are non-descendants of )

blocks all backdoor paths, then the treated and untreated are exchangeable

within levels of , i.e.,  is a sufficient set for confounding adjustment (seeA formal proof of this result was

given by Pearl (2000). the previous section). To a non-mathematician such a result seems rather

magical as there appears to be no obvious relationship between counterfactual

independences and the absence of back door paths because counterfactuals are

not included as variables on a causal graph. A new type of graph–Single

World Intervention Graphs (SWIGs)–seamlessly unify the counterfactual andSWIGs overcome the shortcomings

of previously proposed twin causal

diagrams (Balke and Pearl 1994).

graphical approaches by explicitly including the counterfactual variables on

the graph. The SWIG depicts the variables and causal relations that would be

observed in a hypothetical world in which all subjects received treatment level

. That is, a SWIG is a graph that represents a counterfactual world created

by a single intervention. In contrast, a standard causal diagram represents the

variables and causal relations that are observed in the actual world. A SWIG

can be viewed as a function that transforms a given causal diagram under a

given intervention. The following examples describe this transformation.

L YaA   a

U

Figure 7.7

L A

U2

U1

a Ya

Figure 7.8

Suppose the causal diagram in Figure 7.2 represents the observed study

data. The SWIG in Figure 7.7 is a transformation of Figure 7.2 that repre-

sents the data from a hypothetical intervention in which all subjects receive

the same treatment level . The treatment node is split into left and right

semicircles. The right semicircle encodes the treatment intervention ; the left

semicircle encodes the value of  that would have been observed in the absence

of intervention. We use semicircles simply to remind the reader that these two

variables were derived by splitting the treatment node in Figure 7.2. Note that

 is not a cause–does not have an arrow into– because the value  is the

same for all subjects. The outcome is  , the value of  in the hypothetical

study. The remaining variables are temporally prior to . Thus these vari-

ables and  take the same value as in the observational study. Conditional

exchangeability   q | holds because, on the SWIG, all paths between  

and  are blocked after conditioning on .

Consider now the causal diagram in Figure 7.4 and the SWIG in Figure

7.8. Marginal exchangeability   q  holds because, on the SWIG, all paths

between   and  are blocked (without conditioning on ). In contrast,

conditional exchangeability   q | does not hold because, on the SWIG,

the path   ←− 1 −→  ←− 2 −→  is open when the collider  is

conditioned on. This is why the marginal - association is causal, but the

conditional - association given  is not, and thus any method that adjusts

for  results in bias. These examples show how SWIGs unify the counterfactual

and graphical approaches. See also Fine Point 7.2.

Knowledge of the causal structure is a prerequisite to determine the exis-

tence of confounding and label a variable as a confounder, and thus to decide

which variables need to be measured and adjusted for. In observational stud-

ies, investigators measure many variables  in an attempt to ensure that the

treated and the untreated are conditionally exchangeable given the measured

covariates . The underlying assumption is that, even though common causes

may exist (confounding), the measured variables  are sufficient to block all

backdoor paths (no unmeasured confounding). Of course, there is no guaran-

tee that the assumption of no unmeasured confounding is true, which makes

causal inference from observational data a risky undertaking.
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Selection Bias (§8)

• General definition of selection bias: Conditioning on a common
effect of (i) treatment A or a cause of A, and (ii) outcome Y or a
cause of Y

96 Causal Inference

open path between treatment and outcome would be  →  , and thus the

entire association between  and  would be due to the causal effect of  on

A CY S
Figure 8.2

 . That is, the associational risk ratio Pr[ = 1| = 1]Pr[ = 1| = 0]

would equal the causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
; association

would be causation.

The causal diagram in Figure 8.2 shows another example of selection bias.

This diagram includes all variables in Figure 8.1 plus a node  representing

parental grief (1: yes, 0: no), which is affected by vital status at birth. Suppose

the study was restricted to non grieving parents  = 0 because the others were

unwilling to participate. As discussed in Chapter 6, conditioning on a variable

 affected by the collider  also opens the path →  ←  .

L CA Y

U
Figure 8.3

A CL Y

U
Figure 8.4

L CA Y

U

W

Figure 8.5

A CL Y

U

W

Figure 8.6

Both Figures 8.1 and 8.2 depict examples of selection bias in which the bias

arises because of conditioning on a common effect of treatment and outcome:

 in Figure 8.1 and  in Figure 8.2. However, selection bias can be defined

more generally as illustrated by Figures 8.3 to 8.6. Consider the causal diagram

in Figure 8.3, which represents a follow-up study of HIV-infected individuals

to estimate the effect of certain antiretroviral treatment  on the 3-year risk

of death  . The unmeasured variable  represents high level of immunosup-

pression (1: yes, 0: no). Patients with  = 1 have a greater risk of death.

If a patient drops out from the study or is otherwise lost to follow-up before

death or the end of the study, we say that he is censored ( = 1). Patients

with  = 1 are more likely to be censored because the severity of their disease

prevents them from participating in the study. The effect of  on censoring

 is mediated by the presence of symptoms (fever, weight loss, diarrhea, and

so on), CD4 count, and viral load in plasma, all included in , which could

or could not be measured. The role of , when measured, in data analysis is

discussed in Section 8.5; in this section, we take  to be unmeasured. Patients

receiving treatment are at a greater risk of experiencing side effects, which

could lead them to dropout, as represented by the arrow from  to . For

simplicity, assume that treatment  does not cause  and so there is no arrow

from  to  . The square around  indicates that the analysis is restricted to

those patients who remained uncensored ( = 0) because those are the only

patients in which  can be assessed.

According to the rules of d-separation, conditioning on the collider  opens

the path →  ← ←  →  and thus association flows from treatment 

to outcome  , i.e., the associational risk ratio is not equal to 1 even though

the causal risk ratio is equal to 1. Figure 8.3 can be viewed as a simple

transformation of Figure 8.1: the association between  and  resulting from

a direct effect of  on  in Figure 8.1 is now the result of  , a common

cause of  and . Some intuition for this bias: If a treated subject with

treatment-induced side effects (and thereby at a greater risk of dropping out)

did in fact not drop out ( = 0), then it is generally less likely that a second

independent cause of dropping out (e.g.,  = 1) was present. Therefore, an

inverse association between  and  would be expected in those who did not

dropped out ( = 0). Because  is positively associated with the outcome  ,

restricting the analysis to subjects who did not drop out of this study induces

an inverse association (mediated by ) between  and  .

The bias in Figure 8.3 is an example of selection bias that results from

conditioning on the censoring variable , which is a common effect of treat-

ment  and a cause  of the outcome  , rather than of the outcome itself.

We now present three additional causal diagrams that could lead to selection

bias by differential loss to follow up. In Figure 8.4 prior treatment  has a

direct effect on symptoms . Restricting the study to the uncensored individ-

• Differential loss-to-follow-up, informative censoring, missing data
bias, nonresponse bias (of complete case analysis), healthy worker
bias, self-selection bias, volunteer bias, case-control studies

• Under certain assumptions can account for selection bias using
IPW or standardization, e.g.,

Ê(Y a) =
1
n

n

∑
i=1

I[Ai = a,Ci = 0]Yi

Pr[Ci = 0|Ai,Li]Pr[Ai = a|Li]
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Measurement Bias (§9)

• Measurement bias when the association between treatment and
outcome is weakened or strengthened as a result of the process
by which the study data are measured

• Measurement error in A or Y
Dependent/independent
Differential/non-differential

• Confounders L may also be measured with error; can cause bias
even if A and Y measured without error

112 Causal Inference

Technical Point 9.1

Independence and nondifferentiality. Let (·) denote a probability density function (pdf). The measurement errors
 for treatment and  for outcome are independent if their joint pdf equals the product of their marginal pdfs, i.e.,
(  ) = ( )(). The measurement error  for the treatment is nondifferential if its pdf is independent of
the outcome  , i.e., (| ) = (). Analogously, the measurement error  for the outcome is nondifferential if

its pdf is independent of the treatment , i.e., ( |) = ( ).

prior hepatitis  are less likely to be prescribed drug  and more likely to

L YA

L*

Figure 9.8

develop liver disease  . As discussed in Chapter 7, there is confounding for

the effect of the treatment  on the outcome  because there exists a back-

door path  ←  →  , but there is no unmeasured confounding given 

because the backdoor path  ←  →  can be blocked by conditioning on

. That is, there is exchangeability of the treated and the untreated condi-

tional on the confounder , and one can apply IP weighting or standardization

to compute the average causal effect of  on  . The standardized, or IP

weighted, risk ratio based on ,  , and  will equal the causal risk ratio

Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
.

Again the implicit assumption in the above reasoning is that the confounder

 was perfectly measured. Suppose investigators did not have access to the

study participants’ medical records. Rather, to ascertain previous diagnoses of

hepatitis, investigators had to ask participants via a questionnaire. Since not all

participants provided an accurate recollection of their medical history–some

did not want anyone to know about it, others had memory problems or simply

made a mistake when responding to the questionnaire–the confounder  was

measured with error. Investigators had data on the mismeasured variable ∗

rather than on the variable . Unfortunately, the backdoor path ← → 

cannot be generally blocked by conditioning on ∗. The standardized (or

IP weighted) risk ratio based on ∗,  , and  will generally differ from the

causal risk ratio Pr
£
 =1 = 1

¤
Pr

£
 =0 = 1

¤
. We then say that there is

measurement bias or information bias.

L YA

U

L*

Figure 9.9

The causal diagram in Figure 9.9 shows an example of confounding of the

causal effect of  on  in which  is not the common cause shared by  and

 . Here too mismeasurement of  leads to measurement bias because the

backdoor path ← ←  →  cannot be generally blocked by conditioning

on ∗. (Note that Figures 9.8 and 9.9 do not include the measurement error 
because the particular structure of this error is not relevant to our discussion.)

Alternatively, one could view the bias due to mismeasured confounders in

Figures 9.8 and 9.9 as a form of unmeasured confounding rather than as a form

of measurement bias. In fact the causal diagram in Figure 9.8 is equivalent

to that in Figure 7.5. One can think of  as an unmeasured variable and of

∗ as a surrogate confounder (see Fine Point 7.1). The particular choice of
terminology–unmeasured confounding versus bias due to mismeasurement of

the confounders–is irrelevant for practical purposes.

Mismeasurement of confounders may also result in apparent effect modi-

fication. As an example, suppose that all study participants who reported a

prior diagnosis of hepatitis (∗ = 1) and half of those who reported no prior
diagnosis of hepatitis (∗ = 0) did actually have a prior diagnosis of hepatitis
( = 1). That is, the true and the measured value of the confounder coin-

cide in the stratum ∗ = 1, but not in the stratum ∗ = 0. Suppose further

• Non-compliance in randomized trials:
ITT, per-protocol, compliers
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Random Variability (§10)

• Large sample frequentist inference

Assume (Y1,A1), . . . ,(Yn,An) i.i.d. based on a random sample from
an infinite (super-)population

Under exchangeability, i.e., Y a ⊥⊥ A,

∑iYiI(Ai = a)
∑i I(Ai = a)

p→ E(Y a)

• Randomization-based inference

Sharp null hypothesis, Fisher’s exact test, permutation test, etc
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