Power and Sample Size Bios 662

Michael G. Hudgens, Ph.D.

mhudgens@bios.unc.edu

 $\rm http://www.bios.unc.edu/{\sim}mhudgens$

2008-10-31 14:06

Outline

- Introduction
- One sample:
 - $-\operatorname{continuous}$ outcome, Z test
 - $-\operatorname{continuous}$ outcome, t
 test
 - $-\operatorname{binary}$ outcome, Z test
 - binary outcome, exact test

Introduction

- \bullet Read Chs 5.8 and 6.3.3. of text
- In a test of a hypothesis, we are testing whether some population parameter has a particular value

 $H_0: \theta = \theta_0,$

where θ_0 is a known constant

• Generally,

 $H_A: \theta \neq \theta_0$

Introduction

- Once the data are collected, we will compute a statistic related to θ , say $S(\hat{\theta})$
- $S(\hat{\theta})$ is a random variable, since it is computed from a sample (and hence it has a probability distribution)

Power

$$\Pr[\text{Type I error}] = \alpha = \Pr[S(\hat{\theta}) \in C_{\alpha} | H_0]$$
$$\Pr[\text{Type II error}] = \beta = \Pr[S(\hat{\theta}) \notin C_{\alpha} | H_A]$$

 $Power = 1 - \beta = \Pr[S(\hat{\theta}) \in C_{\alpha} | H_A]$

- Example: One sample test
- \bullet Study: collect data on continuous outcome (Y) on N individuals

•
$$E(Y) = \mu, V(Y) = \sigma^2$$

$$H_0: \mu = \mu_0 \text{ vs } H_A: \mu > \mu_0$$

$$S(\hat{\theta}) = Z = \frac{\bar{Y} - \mu_0}{\sigma/\sqrt{N}}$$

$$\Pr[S(\hat{\theta}) \in C_{\alpha}|H_0] = \Pr[Z > z_{1-\alpha}|H_0] = \alpha$$

$$\Pr[S(\hat{\theta}) \in C_{\alpha} | H_A] = \Pr[Z > z_{1-\alpha} | H_A] = 1 - \beta$$

- Choose a value $\mu_A \in H_A$
- Q: what sample size do we need to detect this alternative with 1β power?

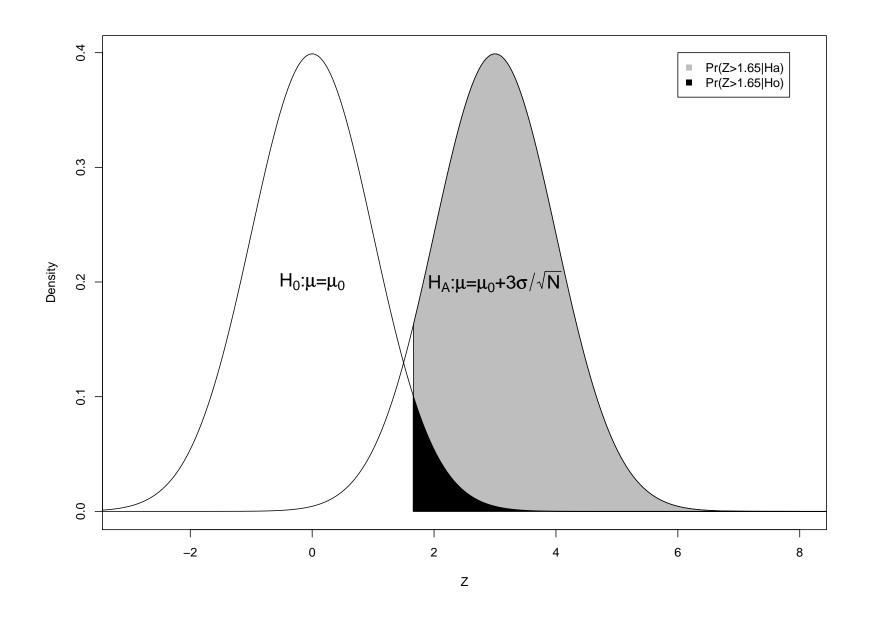
$$\bullet$$
 Under $H_A: \mu=\mu_A$
$$Z'=\frac{\overline{Y}-\mu_A}{\sigma/\sqrt{N}}\sim N(0,1)$$

$$Z' + \frac{\mu_A - \mu_0}{\sigma/\sqrt{N}} = \frac{\overline{Y} - \mu_0}{\sigma/\sqrt{N}} = Z$$

• Thus

$$Z \sim N\left(\frac{\mu_A - \mu_0}{\sigma/\sqrt{N}}, 1\right)$$

Distribution of Z-statistic under H_0 and H_A



• Power is given by

$$1 - \beta = \Pr[Z > z_{1-\alpha} | \mu = \mu_A]$$

$$= \Pr[Z' > z_{1-\alpha} + \frac{\sqrt{N}(\mu_0 - \mu_A)}{\sigma} | \mu = \mu_A]$$

• Therefore

$$z_{1-\alpha} + \frac{\sqrt{N}(\mu_0 - \mu_A)}{\sigma} = z_\beta = -z_{1-\beta}$$

• Equivalently

$$N = \frac{\sigma^2 (z_{1-\alpha} + z_{1-\beta})^2}{(\mu_0 - \mu_A)^2}$$

• For a two sided test

$$N = \frac{\sigma^2 (z_{1-\alpha/2} + z_{1-\beta})^2}{(\mu_0 - \mu_A)^2}$$

• Equivalent form

$$N = \left(\frac{z_{1-\alpha/2} + z_{1-\beta}}{\Delta}\right)^2$$

where

$$\Delta = \frac{|\mu_0 - \mu_A|}{\sigma}$$

 \bullet Δ is called the *standardized distance* or *difference*

- To apply this formula, we need to know α , β , $|\mu_0 \mu_A|$, and σ^2
- Example: a study to determine the effect of a drug on blood pressure.
- BP measured, drug administered, and BP measured 2 hours later

•
$$Y = (BP_{after} - BP_{before})$$

$$H_0: \mu = 0$$
 vs $H_A: \mu \neq 0$

- Choose $\alpha = 0.05, 1 \beta = 0.9$
- Estimate of σ^2 : need data from literature or pilot study; note we need variance of difference after-before
- The choice of μ_A is a subject matter decision. In example: a drug that changes BP only 1 mmHg would not be of practical importance, but a drug that changes BP 5 mmHg might be of interest

• Suppose
$$\alpha = 0.05, 1 - \beta = .9, \sigma^2 = 225$$
, and $\mu_A = 5$
$$N = \frac{225(1.96 + 1.28)^2}{5^2} = 94.5 \approx 95$$

- Often compute N for various different values of α , β , σ^2 , and μ_A
- Note $(1.96 + 1.28)^2 \approx 10.5$, so that $N \approx \frac{10.5}{\Lambda^2}$

One sample Z test									
α	$1-\beta$	σ^2	μ_A	N	α	$1 - \beta$	σ^2	μ_A	N
0.05	0.90	225 225 256 256	6 5	95 66 108 75	0.01	0.90	225 225 256 256	5 6 5 6	133 93 151 105
0.05	0.80	225 225 256 256	5 6 5 6	71 49 81 56	0.01	0.80	225 225 256 256	5 6 5 6	105 73 119 83

$$\alpha \downarrow \Rightarrow N \uparrow$$
$$1 - \beta \uparrow \Rightarrow N \uparrow$$

$$\sigma^2 \uparrow \Rightarrow N \uparrow$$

$$|\mu_0 - \mu_A| \downarrow \Rightarrow N \uparrow$$

• Sometimes N is fixed and we estimate the power of the test

$$N = \frac{\sigma^2 (z_{1-\alpha/2} + z_{1-\beta})^2}{(\mu_0 - \mu_A)^2}$$
$$z_{1-\beta} = \frac{|\mu_0 - \mu_A|\sqrt{N}}{\sigma} - z_{1-\alpha/2}$$

$$1 - \beta = \Phi \left\{ \frac{|\mu_0 - \mu_A|\sqrt{N}}{\sigma} - z_{1 - \alpha/2} \right\}$$

• Investigator says there are only 50 patients, $\alpha = .05$, $\sigma^2 = 225$, $|\mu_0 - \mu_A| = 5$

$$z_{1-\beta} = \frac{5\sqrt{50}}{15} - 1.96 = 0.40$$

$$1-\beta=0.6554$$

- \bullet In practice, σ is not know, so we use a t test instead of a Z test
- Results above should be viewed as approximations in this case
- Power of t test is as follows

• Need the following result: if $U \sim N(\lambda, 1)$ and $V \sim \chi^2_{\nu}$ where $U \perp V$, then

$$\frac{U}{\sqrt{V/\nu}} \sim t_{\nu,\lambda}$$

i.e., a non-central t distribution with df ν and non-centrality parameter λ

- Consider $H_0: \mu = 0$ versus $H_A: \mu = \mu_A$ for $\mu_A \neq 0$
- Under H_A ,

$$\overline{Y} \sim N(\mu_A, \sigma^2/N)$$

• Thus

$$\frac{\overline{Y}\sqrt{N}}{\sigma} \sim N(\mu_A \frac{\sqrt{N}}{\sigma}, 1)$$

 \bullet Recall

$$\frac{(N-1)s^2}{\sigma^2} \sim \chi^2_{N-1}$$

• Since
$$\overline{Y} \perp s^2$$
,

$$T = \frac{\overline{Y}}{s/\sqrt{N}} \sim t_{N-1,\lambda}$$
where $\lambda = \mu_A \sqrt{N}/\sigma$
• So power of two-sided *t*-test for $\mu_A > 0$
 $\Pr[T \ge t_{N-1,0;1-\alpha/2}]$
where $T \sim t_{N-1,\mu_A} \sqrt{N}/\sigma$

```
# by hand
> 1-pt(qt(.975,49), 49, 5/15*sqrt(50))
[1] 0.6370846
```

> power.t.test(n=50, sd=15, delta=5, type="one.sample")

One-sample t test power calculation

One sample t test: SAS

proc power; onesamplemeans mean = 5 ntotal = 50 stddev = 15 power = .; run;

The POWER Procedure One-sample t Test for Mean

Fixed Scenario Elements

Distribution	Normal
Method	Exact
Mean	5
Standard Deviation	15
Total Sample Size	50
Number of Sides	2
Null Mean	0
Alpha	0.05

Computed Power

Power

0.637

One sample Z test: Binary Outcome

• Null hypothesis

$$H_0: \pi = \pi_0$$

• Test statistic

$$Z = \frac{\hat{p} - \pi_0}{\sqrt{\pi_0(1 - \pi_0)/N}}$$

• Sample size formula

$$N = \frac{\left(z_{1-\alpha/2}\sqrt{\pi_0(1-\pi_0)} + z_{1-\beta}\sqrt{\pi_A(1-\pi_A)}\right)^2}{(\pi_A - \pi_0)^2}$$

One sample Z test: Binary Outcome

- Example: Study of risk of breast cancer in sibs.
- Prevalence in general population of women 50-54 years old: 2%
- Sample sisters of women with breast cancer

$$H_0: \pi = 0.02$$
 vs $H_A: \pi \neq .02$

One sample Z test: Binary Outcome

- Suppose $\alpha = .05, 1 \beta = .9, \pi_A = .05$
- Then

$$N = \frac{\left(1.96\sqrt{.02(.98)} + 1.28\sqrt{.05(.95)}\right)^2}{(.05 - .02)^2} = 340.65 \approx 341$$

One sample Z test with binary outcome: SAS

```
proc power;
onesamplefreq test = z
method = normal
nullp = .02
p = .05
power = .9
ntotal = .;
run;
```

The POWER Procedure Z Test for Binomial Proportion

Fixed Scenario Elements				
Method	Normal	approximation		
Null Proportion		0.02		
Binomial Proportion		0.05		
Nominal Power		0.9		
Number of Sides		2		
Alpha		0.05		

Actual	N
Power	Total
0.900	341

One sample exact test: binary outcome

- What is power of exact test?
- Let Y, the number of successes, be test statistic.
- Under $H_0, Y \sim Binomial(N, \pi_0)$ Under $H_A, Y \sim Binomial(N, \pi_A)$
- Power

$$\Pr[Y \ge y_{1-\alpha/2} | \pi = \pi_A] + \Pr[Y \le y_{\alpha/2} | \pi = \pi_A]$$

where $y_{\alpha/2}$ and $y_{1-\alpha/2}$ determined as in Counting Data slides

One sample exact test: binary outcome

- Exact example. Suppose N = 20, $\pi_0 = .2$, $\pi_A = .5$, $\alpha = 0.05$. What is exact power of two-sided test?
- Based on CDF of Binomial(20, .2), choose $y_{\alpha/2} = 0$ and $y_{1-\alpha/2} = 9$ such that power equals

 $\Pr[Y \ge 9|\pi = .5] + \Pr[Y \le 0|\pi = .5] = 0.748$

One sample exact test, binary outcome: SAS

```
proc power;
onesamplefreq test = exact
method = exact
nullp = .2
p = .5
power = .
ntotal = 20;
run;
```

Computed Power

Lower	Upper		
Crit	Crit	Actual	
Val	Val	Alpha	Power
0	9	0.0215	0.748