Types of Studies

- Def 2.1. An *observational study* collects data from an existing situation. The data collection does not intentionally interfere with the running of the system.
 → beware *Hawthorne effect*.

- Def 2.2. An *experiment* is a study in which an investigator deliberately sets one or more factors to a specified level.
 → leads to stronger scientific/causal inference
Types of Biomedical Studies

- Observational studies:
 - Cross Sectional
 - Cohort (prospective)
 - Case Control

- Experimental Studies:
 - Clinical Trials
 - Laboratory
Cross Sectional Studies

• Def 2.16: A cross sectional study collects data on study units at only one point in time.

• Purposes:

 1. To describe the population at one point in time; measure prevalence
 Examples: U.S. Census, National Health and Nutrition Examination Surveys (NHANES)

 2. To examine associations
 Examples: menopause status and blood cholesterol level, hyperactivity and blood lead levels
Longitudinal Studies (Panel Studies; Repeated Measures)

- Def 2.16: A *longitudinal study* collects information on study units on at least two occasions.

- Purposes:
 1. To measure change
 Examples: change in height for each year of age; change in viral load in HIV+ individuals
 2. To develop predictions
 Example: given blood pressure at age 10, what would we expect blood pressure to be at age 15?
 3. To examine the association between the changes in 2 or more variables
 Example: is change in viral load associated with change in CD4+ T-cell count?
Cohort Studies

• Def 2.10: A *cohort study* or *prospective study* is one in which a cohort of people is identified at beginning of study and followed to observe specified endpoints (e.g., occurrence of disease).

• Purposes:

 1. Estimate incidence of disease; relate baseline measures to the occurrence of disease

 Example: Framingham Heart Study
Question:

- Are cohort and longitudinal studies mutually exclusive?
- If not, how do the two relate?
Case-Control Studies

- Def 2.13: A *case-control study* selects all cases, usually of a (rare) disease, that meet fixed criteria.

A disease-free group, called *controls*, that serve as a comparison for the cases is also selected.

The cases and controls are compared with respect to various characteristics (exposures, risk factors)

- Example 2: Investigators interested in association between thromboembolic disease and oral contraceptive (OC) use
 - Cases: women aged 16-40 who had been discharged from one of 19 hospitals for deep vein thrombosis, ...
 - Controls: women suffering acute medical conditions (other than thromboembosis) or elective surgery
 - All participants asked about OC history (50% cases, 14% controls)
Case-Control Studies

- Def 2.14: In a *matched case-control study*, controls are selected to match characteristics of individual cases. The cases and controls(s) are associated with each other. There may be more than one control for each case.

- Example 2: two controls per case; matched on age, date of hospital admission, parity
Experimental Studies

• Definition: Interventions are applied by investigator
• Purpose: to compare outcomes between two or more interventions
• Example: Compared to placebo, does a candidate vaccine result in a lower incidence of HIV in high risk individuals?
• Usually interventions are assigned using *randomization*: a random but known process by which participants are assigned to different treatments or interventions
 E.g., each participant is equally likely to be assigned drug or placebo
Randomization

• Attributed to R. A. Fisher

• “One of the greatest intellectual advances of the 20th century”

• Advantages:
 – Removes potential bias in allocating participants to different intervention groups
 – Tends to produce comparable groups on average
 – Provides a basis for statistical tests

• Disadvantages:
 – Ethical?
Crossover Experiment

- Def 2.6: In a *crossover experiment* the sample experimental unit receives more than one treatment during non-overlapping time periods.

- Advantage: each experimental unit serves as its own control, eliminating subject-to-subject variability

- Disadvantage: possible carryover effects of treatment, calendar time effects
Blinding

• Def 2.19: A study is *single blind* if subjects being treated are unaware of which treatment (including any control) they are receiving.

• A study is *double blind* if it is single blind and the people who are evaluating the outcome variable are also unaware of which treatment the subjects are receiving.

• *Triple blind*: double blind plus statistician/monitoring committee is unaware of treatment assignments (Friedman et al. 1998).
Blinding

• Aka masking

• Sometimes impossible/infeasible: nutrition, circumcision

• Unblinded studies (aka “open label”):
 – Disadvantage: potential for bias (systematic error)
 – Advantages: reflects clinical practice, simpler
Endpoints

- Def 2.9: An *endpoint* is a clearly defined outcome or event associated with an experimental or study unit.
- Important considerations in choosing an endpoint:
 - Relevance
 - Reliability
 - Rate
- Hierarchy: primary, secondary, tertiary, etc.
Inferences from a Study

● What was the design?

● Guard against bias:
 – Comparability
 – Representative of target population

● Source of, control for, and quantify uncertainty/variation
BIOS 668

Homework 1

1. Read Chs 1 and 2 BFHL.
2. Problem 2.1 page 23 BFHL.
3. Due Monday, August 25

General guidelines for HWs:

- Should be neat; typed preferable.
- Use complete sentences w/ correct spelling and grammar.
- Show all work; do not just provide answer.
- Do not show undigested computer output.