
SKAT Package

Seunggeun (Shawn) Lee

March 2, 2013

1 Overview

SKAT package has functions to 1) test an association between SNP sets and
continuous/binary phenotypes and 2) compute power/sample size for future
sequence association studies.

2 Testing association between SNP sets and out-
come phenotypes.

2.1 Example Dataset

SKAT package provides an example dataset (SKAT.example) that has a geno-
type matrix (Z) of 2000 individuals and 67 SNPs, a vector of continuous phe-
notypes (y.c), a vector of binary phenotypes (y.b) and a covariates matrix (X).

> library(SKAT)

> data(SKAT.example)

> names(SKAT.example)

[1] "Z" "X" "y.c" "y.b"

> attach(SKAT.example)

To test an association, you first need to run SKAT Null Model function to
get parameters and residuals from the null model of no association, and then to
run SKAT to compute a p-value.

> # continuous trait

> obj<-SKAT_Null_Model(y.c ~ X, out_type="C")

> SKAT(Z, obj)$p.value

[1] 0.002877041

> # dichotomous trait

> obj<-SKAT_Null_Model(y.b ~ X, out_type="D")

> SKAT(Z, obj)$p.value

1

[1] 0.1401991

>

When the trait is binary and the sample size is small, SKAT can produce
conservative results. We recently developed a small sample adjustment method
that adjusts the asymptotic null distribution by estimating small sample mo-
ments. By default, SKAT (>= ver 0.7) will conduct a small sample adjustment
when the sample size < 2000. In the following code, we only use 200 samples
to run SKAT.

> IDX<-c(1:100,1001:1100)

> # With-adjustment

> obj.s<-SKAT_Null_Model(y.b[IDX] ~ X[IDX,],out_type="D")

Sample size = 200, which is < 2000. The small sample adjustment is applied!

> SKAT(Z[IDX,], obj.s, kernel = "linear.weighted")$p.value

[1] 0.1339498

>

If you don’t want to use the adjustment, please set Adjustment=FALSE
when you run the SKAT Null Model function.

> # Without-adjustment

> obj.s<-SKAT_Null_Model(y.b[IDX] ~ X[IDX,],out_type="D", Adjustment=FALSE)

> SKAT(Z[IDX,], obj.s, kernel = "linear.weighted")$p.value

[1] 0.147093

2.2 Assign weights for each SNP

It is generally assumed that rarer variants have larger effect sizes. To incorporate
it, the linear weighted kernel is formulated as ZWWZ ′, where Z is a genotype
matrix, and W = diag{w1, . . . , wm} is a weight matrix. In the previous exam-
ples, we have used the default beta(1,25) weight, wi = dbeta(pi, 1, 25), where
dbeta is the beta density function, and pi is a minor allele frequncy (MAF) of the
ith SNP. The beta weight with different parameter can be used by changing the
weights.beta parameter. For example, if you want to use Madsen and Browning
weight, use weight.beta=c(0.5,0.5).

> SKAT(Z, obj, kernel = "linear.weighted", weights.beta=c(0.5,0.5))$p.value

[1] 0.4931639

If you want to use different types of weights, you should make your own
weight vector and use it as weights parameter. For the logistic weight, we
provide a function that generates it.

2

> # Shape of the logistic weight

>

> MAF<-1:1000/1000

> W<-Get_Logistic_Weights_MAF(MAF, par1=0.07, par2=150)

> par(mfrow=c(1,2))

> plot(MAF,W,xlab="MAF",ylab="Weights",type="l")

> plot(MAF[1:100],W[1:100],xlab="MAF",ylab="Weights",type="l")

> par(mfrow=c(1,2))

> # Use logistic weight

> weights<-Get_Logistic_Weights(Z, par1=0.07, par2=150)

> SKAT(Z, obj, kernel = "linear.weighted", weights=weights)$p.value

[1] 0.3293643

2.3 Unified Test

The test statistic of the unified test is

Qρ = (1− ρ)QS + ρQB ,

where QS is a test statistic of SKAT, and QB is a score test statistic of weighted
burden test. Thus, ρ = 0 results in the original weighted linear kernel SKAT,
and ρ = 1 results in the weighted burden test. You can specify ρ value using
the r.corr parameter (default: , r.corr=0).

> # Shape of the logistic weight

>

> #rho=0

> SKAT(Z, obj, r.corr=0)$p.value

[1] 0.1401991

> #rho=0.9

> SKAT(Z, obj, r.corr=0.9)$p.value

[1] 0.06031026

If method=“optimal.adj”, ρ is selected from a grid of eight points ρ =
(0, 0.12, 0.22, 0.32, 0.42, 0.52, 0.5, 1) to maximize the power. If you want to use
the original implementation of SKAT-O, use method=“optimal”. We recom-
mend to use “optimal.adj”, since it has a better type I error control in the tail
area.

> #Optimal Test

> SKAT(Z, obj, method="optimal.adj")$p.value

[1] 0.1013505

>

3

2.4 Imputing missing genotypes.

If there are missing genotypes, SKAT automatically imputes them based on
Hardy-Weinberg equilibrium. You can choose either “random” or “fixed” im-
putation (default=“fixed”). The “random” imputation generates binomial(2,pi)
random numbers to impute missing values, where pi is the MAF of the ith

SNP calculated from non-missing genotypes, and the “fixed” imputation uses
the mean genotype value, 2pi, to impute missing values.

> # Assign missing

> Z1<-Z

> Z1[1,1:3]<-NA

> # random imputation

> SKAT(Z1,obj,impute.method = "random")$p.value

[1] 0.1401991

> # fixed imputation

> SKAT(Z1,obj,impute.method = "fixed")$p.value

[1] 0.1401982

2.5 Resampling

SKAT package provides functions to conduct resampling methods to compute
resampling p-values and to control family wise error rate. Two different resam-
pling methods are implemented. “bootstrap” conducts the parametric bootstrap
to resample residuals from H0 with considering covariates. When there is no
covariate, “bootstrap” is equivalent to the permutation method. “perturbation”
perturbs the residuals by multiplying mean zero and variance one normal ran-
dom variables. The default method is “bootstrap”. From ver 0.7, we do not
provide the “perturbation” method.

> # parametric boostrap.

> obj<-SKAT_Null_Model(y.b ~ X, out_type="D", n.Resampling=5000,

+ type.Resampling="bootstrap")

> # SKAT p-value

> re<- SKAT(Z, obj, kernel = "linear.weighted")

> re$p.value # SKAT p-value

[1] 0.1401991

> Get_Resampling_Pvalue(re) # get resampling p-value

$p.value

[1] 0.1409718

$is_smaller

[1] FALSE

4

When there are many genes/SNP sets to test, resampling methods can be
used to control family-wise error rate. You can find an example in the next
section.

2.6 Plink Binary format files

SKAT package can read plink binary format files for genome-wide data analysis.
To use plink files, plink bed, bim and fam files, and your own setid file that
contains information of SNP sets are needed. Example files can be found on the
SKAT webpage.

> # To run this code, first download and unzip example files

>

> ##

> # Generate SSD file

>

> # Create the MW File

> File.Bed<-"./Example1.bed"

> File.Bim<-"./Example1.bim"

> File.Fam<-"./Example1.fam"

> File.SetID<-"./Example1.SetID"

> File.SSD<-"./Example1.SSD"

> File.Info<-"./Example1.SSD.info"

> # To use binary ped files, you have to generate SSD file first.

> # If you already have a SSD file, you do not need to call this function.

> Generate_SSD_SetID(File.Bed, File.Bim, File.Fam, File.SetID, File.SSD, File.Info)

Check duplicated SNPs in each SNP set

No duplicate

1000 Samples, 10 Sets, 984 Total SNPs

[1] "SSD and Info files are created!"

Now you can open SSD and Info file and run SKAT. After finishing using it,
you must call close function to clse SSD file.

> FAM<-Read_Plink_FAM(File.Fam, Is.binary=FALSE)

> y<-FAM$Phenotype

> # To use a SSD file, please open it first. After finishing using it, you must close it.

>

> SSD.INFO<-Open_SSD(File.SSD, File.Info)

1000 Samples, 10 Sets, 984 Total SNPs

Open the SSD file

> # Number of samples

> SSD.INFO$nSample

[1] 1000

5

> # Number of Sets

> SSD.INFO$nSets

[1] 10

> obj<-SKAT_Null_Model(y ~ 1, out_type="C")

> out<-SKAT.SSD.All(SSD.INFO, obj)

> out

$results

SetID P.value N.Marker.All N.Marker.Test

1 GENE_01 0.77747880 94 94

2 GENE_02 0.06245208 84 84

3 GENE_03 0.38416582 108 108

4 GENE_04 0.46179268 101 101

5 GENE_05 0.18548863 103 103

6 GENE_06 0.93255760 94 94

7 GENE_07 0.18897220 104 104

8 GENE_08 0.73081683 96 96

9 GENE_09 0.67366458 100 100

10 GENE_10 0.40310682 100 100

$P.value.Resampling

NULL

attr(,"class")

[1] "SKAT_SSD_ALL"

If you have more than one gene/SNP set to test an association, you should
adjust multiple testing. It can be done either by conducting bonferroni cor-
rection or by estimating false discovery rate. However, if gene/SNP sets are
correlated, these approaches would produce conservative results. Alternatively,
you can directly control family wise error rate (FWER) using the resampling
method. Example code is given in following.

> obj<-SKAT_Null_Model(y ~ 1, out_type="C", n.Resampling=1000, type.Resampling="bootstrap")

> out<-SKAT.SSD.All(SSD.INFO, obj)

> # No gene is significant with controling FWER = 0.05

> Resampling_FWER(out,FWER=0.05)

$result

NULL

$n

[1] 0

$ID

NULL

6

> # 1 gene is significnat with controling FWER = 0.5

> Resampling_FWER(out,FWER=0.5)

$result

SetID P.value N.Marker.All N.Marker.Test

2 GENE_02 0.06245208 84 84

$n

[1] 1

$ID

[1] 2

If you want to test a single gene/SNP set, not all genes/SNP sets, you can use
either “SKAT.SSD.OneSet” or “SKAT.SSD.OneSet SetIndex”. Or you can get
a genotype matrix using “Get Genotypes SSD” function and then run SKAT. If
you want to use different types of weights (ex. logistic weights), you should use
this approach.

> obj<-SKAT_Null_Model(y ~ 1, out_type="C")

> # test the second gene

> id<-2

> SetID<-SSD.INFO$SetInfo$SetID[id]

> SKAT.SSD.OneSet(SSD.INFO,SetID, obj)$p.value

[1] 0.06245208

> SKAT.SSD.OneSet_SetIndex(SSD.INFO,id, obj)$p.value

[1] 0.06245208

> # test the second gene with the logistic weight.

> Z<-Get_Genotypes_SSD(SSD.INFO, id)

> weights = Get_Logistic_Weights(Z, par1=0.07, par2=150)

> SKAT(Z, obj, weights=weights)$p.value

[1] 0.7227001

>

After finishing, please close the SSD file.

> Close_SSD()

Close the opened SSD file: /private/var/folders/zs/nf_6qpd12r1dm4v3y2y298fr0000gn/T/RtmpC4piLJ/Rbuild1f83602dbcd/SKAT/inst/doc/Example1.SSD

7

3 Power/Sample Size calculation.

3.1 Dataset

SKAT package provides a haplotype dataset (SKAT.haplotypes) which contains
a haplotype matrix of 10,000 haplotypes over 200kb region (Haplotype), and
a dataframe with informations of each SNP. These haplotypes were simulated
using a calibrated coalescent model with mimicking linkage disequilibrium struc-
ture of European ancestry. If you don’t have any haplotype information, please
use this dataset to compute power/sample size.

> data(SKAT.haplotypes)

> names(SKAT.haplotypes)

[1] "Haplotype" "SNPInfo"

> attach(SKAT.haplotypes)

3.2 Power/Sample Size calculation

SKAT package provides functions to compute the power/sample size for future
sequence association studies. In the following example, we carried out sample
size calculation using the haplotypes in SKAT.haplotypes with the following
parameters.

1. Subregion length = 3k bp

2. Causal percent = 20%

3. Negative percent = 20%

4. For continuous traits, β = c|log10(MAF)| (BetaType = “Log”) with β = 2
at MAF = 10−4

5. For binary traits, log(OR) = c|log10(MAF)| (OR.Type = “Log”) with OR
= 2 at MAF = 10−4, and 50% of samples are cases and 50% of samples
are controls

> set.seed(500)

> out.c<-Power_Continuous(Haplotype,SNPInfo$CHROM_POS, SubRegion.Length=5000,

+ Causal.Percent= 20, N.Sim=10, MaxBeta=2,Negative.Percent=20)

[1] "10/10"

> out.b<-Power_Logistic(Haplotype,SNPInfo$CHROM_POS, SubRegion.Length=5000,

+ Causal.Percent= 20, N.Sim=10 ,MaxOR=7, Negative.Percent=20)

[1] "10/10"

> out.c

8

$Power

0.01 0.001 1e-06

500 0.5601495 0.4507543 0.2745436

1000 0.6983510 0.6372979 0.4477310

1500 0.7393476 0.6978347 0.5840998

2000 0.7741144 0.7169529 0.6649380

2500 0.8041370 0.7386689 0.6938517

3000 0.8224103 0.7660432 0.6997755

3500 0.8349515 0.7896737 0.7015918

4000 0.8484832 0.8037123 0.7049269

4500 0.8647970 0.8109526 0.7122846

5000 0.8834324 0.8165985 0.7253563

$R.sq

[1] 0.0693529

attr(,"class")

[1] "SKAT_Power"

> out.b

$Power

0.01 0.001 1e-06

500 0.3894872 0.2757429 0.1330505

1000 0.5888308 0.4573657 0.2436726

1500 0.7021843 0.5859396 0.3485361

2000 0.7763091 0.6650800 0.4668508

2500 0.8234240 0.7280271 0.5483447

3000 0.8516985 0.7775865 0.5943673

3500 0.8718116 0.8108489 0.6269605

4000 0.8899993 0.8317031 0.6603647

4500 0.9081573 0.8464714 0.6968862

5000 0.9262225 0.8594656 0.7324297

attr(,"class")

[1] "SKAT_Power"

> Get_RequiredSampleSize(out.c, Power=0.8)

$`alpha = 1.00e-02`
[1] 2431.102

$`alpha = 1.00e-03`
[1] 3867.782

$`alpha = 1.00e-06`
[1] "> 5000"

9

> Get_RequiredSampleSize(out.b, Power=0.8)

$`alpha = 1.00e-02`
[1] 2251.417

$`alpha = 1.00e-03`
[1] 3336.919

$`alpha = 1.00e-06`
[1] "> 5000"

>

In this example, we used N.Sim=10 to get results quickly. When you do
the power calculation, please increase it to more than 100. When BetaType =
“Log” or OR.Type = “Log”, the effect size of continuous trait and the log odds
ratio of binary traits are c|log10(MAF)|, where c is determined by Max Beta
or Max OR. For example, c = 2/4 = 0.5 when the Max Beta = 2. In this case,
a causal variant with MAF=0.01 has β = 1. For binary traits, c = log(7)/4 =
0.486 with MAX OR=7. And thus, a causal variant with MAF=0.01 has log
OR = 0.972.

If you consider non-zero r.corr (ρ) values to compute the power, Power Continuous R
or Power Logistic R functions can be used instead. For example, r.corr=0 is
SKAT and r.corr=1 is a burden test. Since they use slightly different method to
compute the power, the powers from Power Continuous R and Power Logistic R
can be slightly different from the powers from Power Continuous and Power Logistic
although r.corr=0.

If you want to computer the power of SKAT-O by estimating the optimal
r.corr, use r.corr=2. The estimated optimal r.corr is

r.corr = p21(2p2 − 1)2,

where p1 is the proportion of nonzero βs, and p2 is the proportion of negative
(or positive) βs among the non-zero βs.

> set.seed(500)

> out.c<-Power_Continuous_R(Haplotype,SNPInfo$CHROM_POS, SubRegion.Length=5000,

+ Causal.Percent= 20, N.Sim=10, MaxBeta=2,Negative.Percent=20, r.corr=2)

[1] "10/10"

> out.c

$Power

0.01 0.001 1e-06

500 0.5584048 0.4465557 0.2700370

1000 0.6980094 0.6374870 0.4403217

1500 0.7367947 0.6977547 0.5830013

10

2000 0.7707641 0.7148115 0.6664808

2500 0.8032711 0.7341910 0.6946357

3000 0.8253110 0.7606592 0.6998229

3500 0.8407660 0.7863270 0.7011542

4000 0.8569269 0.8038311 0.7035340

4500 0.8759197 0.8137950 0.7089662

5000 0.8968032 0.8214246 0.7192218

$R.sq

[1] 0.0693529

$r.corr

[1] 0.0144

attr(,"class")

[1] "SKAT_Power"

> Get_RequiredSampleSize(out.c, Power=0.8)

$`alpha = 1.00e-02`
[1] 2449.686

$`alpha = 1.00e-03`
[1] 3890.566

$`alpha = 1.00e-06`
[1] "> 5000"

>

11

