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1 Introduction

Recently, Wu et al. [4] have proposed the sequence kernel machine test (SKAT) to test association

between genetic variants in a gene or region and a continuous or binary trait. SKAT, which uses

the kernel machine regression framework, is very flexible and computationally efficient. From

extensive simulation studies and real data application, it has been shown that SKAT is more pow-

erful than the collapsing based burden tests under many circumstances [4].

To design new sequence association study with SKAT as a testing procedure, it is important

to know the required sample size to achieve a proper statistical power. Power and sample size

calculation can be done by simulations, however this computer intensive approach would be time

consuming. Here, we derive the analytical formula of the statistical power of SKAT. Required

sample size can be computed easily by inverting the power function. In addition, We have devel-

oped user friendly R package which implements the power and sample size calculation formula

(Web Resources).
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2 Power and Sample Size Calculation Formula for SKAT: Statistical

Derivations

2.1 Continuous Traits

For simplicity, we assume no covariates are present. However, the results presented can be easily

extended to accommodate covariates. Suppose there are n individuals and y = (y1, . . . , yn)′ is a

vector of continuous phenotype. We assume that p variants are observed in a particular gene or

genomic region, and G is an n × p genotype matrix with Gi being the ith row of the G. To relate

the SNP set to the phenotype, we consider the linear model

yi = α0 + G′iβ + εi,

where εi ∼ N(0, σ2). Without loss of generality and for the ease of presentation, we set each entry

of Gi to be centered such that E(Gi) = 0, and σ = 1 for continuous traits. The SKAT test statistic

with a kernel K(·, ·) is

Q = (y − ȳ1)′K(y − ȳ1), where ȳ = n−1
n∑
i=1

yi.

In the case of weighted linear kernel with a weight function w(·),

K = GWG′,

where W = diag{w(m̂1), . . . , w(m̂p)}, and m̂j is an observed MAF of the jth variant. Denote

µβ = Gβ and Z = y − ȳ1− µβ , and then

Q = (y − ȳ1)′K(y − ȳ1) = (Z + µβ)′K(Z + µβ).

By the spectral decomposition, K = UΛU′. Since each element of Z is an independent Gaus-

sian with mean 0 and asymptotic variance 1, Q asymptotically follows
∑m

j=1 λjχ
2
1(δj) with δj =

µ′βuju
′
jµβ . Here, λj is the jth diagonal element of Λ, and uj is the jth column of U.

For computational efficiency, we approximate the mixture of chi-square distributions of Q us-
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ing the non-central chi-square approximation with ν degrees of freedom and non-centrality pa-

rameter δ [2] under the null and alternative. Results using the Davies method [1] for power

calculations are similar. Specifically, we compute ck =
∑p

j=1 λ
k
j for the null distribution, and

ck =
∑p

j=1 λ
k
j + k

∑p
j=1 λ

k
j δj for the alternative distribution up to k = 4. These values can be

obtained from
p∑
j=1

λkj = trace(Kk) = trace{(G′GW)k} (1)

and
p∑
j=1

λkj δj = µ′βK
kµβ = trace(µ′βK

kµβ) = trace{(G′GW)k−1G′µβµ
′
βGW}. (2)

Suppose A = E(G′GW/n) and B = E(G′µβµ
′
βGW/n2). Since the distribution of G can be

inferred from population genetic simulations or existing data (e.g. 1000 genome project data),

we can obtain both A and B. By the continuity of trace and matrix multiplication, trace(Kk) =

nktrace(Ak) and trace(µ′βK
kµβ) = nk+1trace(Ak−1B). After computing c1, . . . , c4, we obtain

following values.

µQ = c1, σQ =
√

2c2, s1 = c3/c
3/2
2 , s2 = c4/c

2
2,

a =

 1/
(
s1 −

√
s21 − s2

)
if s21 > s2

1/
√
s2 if s21 ≤ s2

,

δ =

 s1a
3 − a2 if s21 > s2

0 if s21 ≤ s2
,

l = a2 − 2δ, µX = l + δ, and σX =
√

2
√
l + 2δ.

Note that we modified the approximation of Liu et al.(2009) [2] when s21 ≤ s2 by matching kurtosis,

instead of skewness, to improve the estimation of tail probability. To estimate the power, we first

compute µQ, µX , σQ, and σX under the null. A critical value with level α is

qc = (q(1− α;χ2
l (δ))− µX)

σQ
σX

+ µQ,

where q(·;χ2
l (δ)) is a quantile function of χ2

l (δ). Then, we recompute µQ, µX , σQ, and σX under
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the alternative and estimate the power

P

(
χ2
l (δ) >

σX
σQ

(qc − µQ) + µX

)
.

2.2 Dichotomous Traits in Cross-Sectional and Prospective Studies

In the absence of covariates, the logistic model we consider is

logit (πi) = α0 + G′iβ, (3)

where yi is a disease status (1 = disease, 0 = non-disease). We assume that the prevalence/incidence

of disease is known. Our SKAT test statistic with a weighted linear kernel K is

Q = (y − π̂01)′K(y − π̂01),

where π̂0 = n−1
∑n

i=1 yi, the estimated disease probability underH0. Denote µβ = (π1−π̂0, . . . , πn−

π̂0)
′, where π satisfies (3), and V = diag[v1, . . . , vn], and vi = πi(1 − πi) is var(yi). Then Q can be

written as

Q = (y − π̂01)′K(y − π̂01)

= (y − π̂01− µβ + µβ)′V−1/2V1/2KV1/2V−1/2(y − π̂01− µβ + µβ)

= (Z + V−1/2µβ)′K̃(Z + V−1/2µβ),

where Z = V−1/2(y − π̂01 − µβ), and K̃ = V1/2KV1/2. Since each element of Z has mean 0 and

variance 1, (u′jZ)2 asymptotically follows independent χ2
1 distribution. Now we apply the same

argument shown in the Section 2.1 using K̃ instead of K, and estimate the power.

2.3 Modifications of Power Calculations for Rare Variants

With finite sample size n, causal variants that are rare may not be observed. Our power and

sample size calculations can account for this uncertainty. Suppose the population MAF for the jth
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variant is mj . Let θj be the chance the variant j is observed (polymorphic) in sample size n. Then

θj = 1− (1−mj)
2n,

and the sample size required to observe this variant with at least πj chance is

n >
ln(1− θj)

2ln(1−mj)
.

For example, to have θj = 99.9% chance to observe a variant with a given MAF, the required

minimum sample size is

MAF 0.1 0.01 0.001 0.0001

Minimum n 33 344 3453 34537

One can see larger sample size is needed to observe a rarer variant.

Suppose there are p variants in a region in the population, with rare variants, the model we fit is

actually yi = α0 + G̃iβ+ εi for continuous traits, and logit (πi) = α0 + G̃iβ for dichotomous traits,

where G̃i = (Gi1∆1, . . . , Gip∆p)
′ = ∆Gi, and ∆ = diag[∆1, . . . ,∆p]. Here, ∆j is an indicator

that variant j is observed in sample size n. Under this model, the weighted linear kernel K =

G̃W G̃ = G∆W∆G′, and trace(Kk) and trace(µ′βK
kµβ) can be approximated as trace(Kk) ≈

nktrace((AΠ)k) and trace(µ′βK
kµβ) ≈ nk+1trace((AΠ)k−1BΠ), where Π = diag[θ1, . . . , θp]. We

further improve the approximation by incorporating the fact that E(∆i) = E(∆2
i ). Let A2 be

a p × p matrix with the (i, j)th element being aijθiθ
I(i 6=j)
j , where aij is the (i, j)th element of A,

and then E(∆G′GW∆/n) ≈ A2. Let us denote A1 = Π, A3 = ΠAA2, A4 = A2AA2, and

then trace(Kk) ≈ nktrace(AAk), and trace(µ′βK
kµβ) ≈ nk+1trace(BAk). Now we compute the

power from the χ2 approximation method which is described in the previous section.

2.4 Power and Sample Size Calculations for Retrospective Case-Control Studies

It is well known that logistic regression can be used to analyze case-control data [3]. However,

it is necessary to incorporate the retrospective nature of case-control studies to properly estimate

the power. Let S be a selection indicator such that S = 1 denotes a subject is selected in the

case-control sample. Then the conditional distribution of G and y given S = 1, instead of the

unconditional distribution of G and y, should be used to compute power. Denote by π̃i = Pr(yi =
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1|Gi, Si = 1) the case-control probability , if the the population disease probability follows the

logistic model (3), then the case-control probability π̃i also follows the same logistic model except

for a different intercept [3] as

logit (π̃i) = α̃0 + G′iβ, (4)

where

α̃0 = α0 + log

{
P (S = 1|y = 1)

P (S = 1|y = 0)

}
= α0 + log

{
π̂0P (y = 0)

(1− π̂0)P (y = 1)

}
, (5)

where P (S = 1|y = 1) is the probability that a case is sampled and P (S = 1|y = 0) is the prob-

ability that a control is sampled, and P (y = 1) is the population disease prevalence/incidence.

Further one can show that

P (G|S = 1) = P (G|y = 1, S = 1)P (y = 1|S = 1) + P (G|y = 0, S = 1)P (y = 0|S = 1)

=
π̂0

P (y = 1)
P (y = 1|G)P (G) +

1− π̂0
P (y = 0)

P (y = 0|G)P (G). (6)

We compute A, B, W, A2 and Π by estimating µβ and V using (5) and by using conditional

distribution (6), and subsequently estimate the power.

3 Computing the average power over different regions

The statistical power of rare variants analysis depends on the LD structure of genomic regions to

be investigated, and MAFs of causal variants. If one is interested in only one known region and

knows in advance which variants are causal, they can directly estimate power using the power

formula given above. In practice, however, one is often interested in more than one region and

only hypothesizes a disease model of causal variants. For example, one may hypothesize that a

certain percentage of rare variants are causal, instead of selecting priori causal variants. In this

case, we propose to use the average power of regions given a disease model. This average power

can be easily computed from taking mean of obtained powers from the power formula using

randomly selected regions/causal variants. Our experience shows that 50 ∼ 100 sets of different

regions/causal variants are enough to compute the average power stably.
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4 Web Resources

An implementation of SKAT and power/sample size calculations in the R language can be found

at http://www.hsph.harvard.edu/∼xlin/software.html.
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