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Abstract

Plasma biomarkers of exposure to environmental contaminants play an important role in

early detection of disease. The emerging field of protemics presents an attractive oppor-

tunity for candidate biomarker discovery, as it simultaneously measures and analyzes a

large number of proteins. This article presents a case study for measuring arsenic concen-

trations in a population residing in an As-endemic region of Bangladesh using plasma pro-

tein expressions measured by SELDI-TOF mass spectrometry. We analyze the data using

a unified statistical method based on functional learning to preprocess mass spectra and

extract MS features and to associate the selected mass spectrometry features with arsenic

exposure measurements. The task is challenging due to several factors, high dimension-

ality of mass spectrometry data, complicated error structures, and a multiple comparison

problem. We use nonparametric functional regression techniques for MS modeling, peak

detection based on the significant zero-downcrossing method and peak alignment using a
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warping algorithm. Our results show significant associations of arsenic exposure to either

under- or over-expressions of 20 proteins.
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1 Introduction

Arsenic, classified as a human carcinogen by International Agency for Research on Can-

cer (IARC), is one of the most serious environmental health hazards, with chronic arsenic

exposure occurring mainly through drinking water(Gebel [2000], Hughes [2002], IARC

[2000]). In Bangladesh, it is estimated that 35 to 77 million people are at risk of drinking

arsenic contaminated water, the largest mass poisoning of a population in history (Guha

[1998]). Pre-malignant skin lesions, including hyperpigmentation and hyperkeratosis, are

hallmarks of chronic arsenic ingestion by humans, which may eventually lead to the de-

velopment of skin cancer(Haque [2003], Council [2001]). In addition, population-based

epidemiologic studies have associated chronic arsenic exposure with numerous adverse

health outcomes, including internal organ cancers, neurological effects, hypertension, car-

diovascular disease, pulmonary disease, peripheral vascular disease, and diabetes mellitus

(Buchet [1981]).

With high affinity to the sulfhydryl groups in keratin, arsenic is usually found at the high-

est levels in the hair, skin, and nails, and is isolated from further metabolic processes once it

is deposited in keratin matrix Chen [1999]. Thus, arsenic detected in the keratin will reflect

only those conditions that occurred during its deposition, making it an ideal biomarker of

chronic arsenic exposure. Epidemiologic studies have correlated nail arsenic levels with

water exposure (Karagas [1996], Bonassi [2002]). Nail concentrations of arsenic are good

biomarkers of chronic body burden of arsenic exposure from drinking, representing an

internal dose exposure 9-12 months before sample collection.

Research on the biomarkers of the effects caused by chronic arsenic exposure, such as pre-

malignant skin lesions, is very limited. Without valid biomarkers of early effects, it is more

difficult to intervene for prevention and control of environmental disease. Biomarkers can

be singular measures of a protein, enzyme activity or a small molecule associated with

health, disease or toxicity (Wetmore [2004]). For many complex diseases and toxicities,
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it is unlikely that any single biomarker may be a sufficient indicator. Instead, multiple

markers that function as the signature patterns/profiles are necessary to achieve higher

sensitivity, and enable the early discovery of acute toxicity onset or the molecular signa-

tures of long-term toxicant exposure and disease (Bischoff [2004]).

Mass spectrometry proteomics provides such a tool by an attempt to identify and quan-

tify relative abundance of a large number of proteins using high-throughput technologies.

We concentrate in this paper on the surface-enhanced laser desorption/ionization time-of-

flight (SELDI-TOF) mass spectrometry (MS) which was developed by Ciphergen Biosys-

tem (Hutchens and Yip [1993]) for profiling protein (peptide) biomarkers from complex

biological samples.

In the present study, we investigate the plasma “proteome” profiles using SELDI TOF mass

spectrometry in a population with well-characterized arsenic exposure. The main objective

is to find the plasma proteomic profiles associated with arsenic-induced effects, and to

identify specific proteins that can be used as biomarkers of early diagnoses in high-risk

populations and hopefully used to find new treatment targets. In order to achieve these

goals, we propose a new statistical method based on functional learning for the analysis of

mass spectrometry proteomic data.

Several characteristics of proteomic spectra mandate pre-processing of the data. It has been

well recognized that appropriate preprocessing of MS data is critical to ensure meaning-

ful analysis of the association between proteins and disease or exposure in second-stage

analysis (Baggerly et al. [2003] and Listgarten and Emili [2005]). Standard pre-processing

steps often involve several sequential ad hoc steps including baseline subtraction, normal-

ization, peak detection and peak alignment. Some of these steps are implemented in the

Ciphergen software and the R package PROcess in Bioconductor (Li et al. [2005]). Specifi-

cally, baseline subtraction is performed to remove the elevation due to the presence of the

energy absorbing molecule contamination. Total area normalization is used to normalize

the intensities from different spectra. Peak detection is most frequently done by threshold-
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ing the signal over noise ratio using non-optimal cutoffs, and peak matching is performed

by binning the etected peaks on different spectra by location proximity. Correlation of

protein intensity measures over the spectra is often ignored.

We develop in this paper a unified statistical method that simultaneously takes into ac-

count different sources of variation that are present in mass spectrometry measurements.

Specifically, we propose a functional learning method to process the raw MS data, and use

the resulting dimensional-reduced measures of protein abundance to relate to the arsenic

exposure.

In particular, in the first stage, we decompose the MS raw spectrum into four components:

baseline, signal, instrumental noise component and random noise. Our primary inter-

est is in the signal component which is used to further define the peaks in the spectrum

corresponding to proteins detected in plasma. Characterization of the baseline and two

noise components is necessary though, since they influence the quantification and exis-

tence of peaks respectively. We pose minimal assumption on the statistical models used,

and estimate individual baseline and signal components nonparametrically using kernel

methods. The instrumental noise component is modeled as a harmonic function with two

frequencies detected in the preliminary analysis, and an exponential decay component cor-

responding to the inverse relationship between the mass over charge ratio and the noise

level. We perform peak detection based on the significant zero-downcrossing method, and

peak alignment using a warping algorithm. At the second stage, the identified protein ex-

pression features, e.g., peak intensities are related to arsenic exposure using two-sample

comparison and the dose response relationships are studied using linear regression. False

discovery rates are used to account for multiple comparison. Super-proteins are identified

using principal component analysis.
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2 Materials and Methods

Study Population

All study participants were selected from a large Arsenic Case-Control Study of Skin Dis-

ease in Bangladesh as described previously (Kile [2005]). Briefly, from 2000 to 2003, 900

pairs of skin lesion cases and controls were recruited from the Pabma district of Bangladesh,

located north of Dhaka on the Padma (Ganges) River, which is a region considered to

be moderately affected by arsenic contamination in drinking water. Blood samples were

collected from each study participant, and plasma were separated by centrifugation and

frozen at −80oC. Hair and toenails samples were also collected from each study partic-

ipant, and toenail levels of arsenic were analyzed as described previously (Kile [2005]).

In addition, questionnaires regarding exposure history, diet and lifestyle factors were col-

lected, as well as a drinking/tube well water sample. To investigate plasma proteomic

profiles of arsenic exposure, samples were selected by first sorting toenail arsenic levels

in 900 healthy controls, and then selecting 100 high toenail arsenic and 100 low toenail

arsenic samples with matched age (±3 years), gender and living location.

SELDI-TOF/MS

Surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) mass spectrom-

etry (MS) was developed by Ciphergen Biosystem (Hutchens and Yip, 1993) for profiling

protein (peptide) biomarkers from complex biological samples. This technology has been

applied to different body fluids, including serum, urine and nipple aspirate fluid, and has

been employed successfully in discovery of protein profiles of several diseases. For ex-

ample, protein profiles were used to distinguish ovarian (Petricoin et al., 2002), prostate

(Adam et al., 2002) and breast cancer (Li et al., 2002) patients from healthy controls.

Serum sample collection

We used IMAC (Immobilized Metal Affinity Chromatography) ProteinChip array (Ci-

phergen Biosystem Inc., Fremont, CA) in this study. Before analysis, ProteinChips were

6



washed with 50% acetonitrile (HPLC grade; Aldrich, Milwaukee, WI, USA) for 2 x 5 min,

dried for 1 h at room temperature, loaded onto a 192-well bioprocessor (Ciphergen), and

equilibrated with 10% acetonitrile/0.1% trifluoroacetic acid (Fisher Scientific International,

Hampton, NH, USA). Plasma samples were thawed at 4oC, centrifuged at 10,000 × g at

4oC for 10 min to remove any precipitates, and then aliquots of each sample were subjected

to Ciphergen fractionation or Sigma multiple-removal column. After mixing with sample

buffer (8 M urea, 2% 3-w (3-cholamidopropyl) dimethylammoniox-1-propansulfonate, pH

7.4) in a volume ratio of 2:3, the following procedure was carried out using a fully auto-

mated liquid-handling robotic system (Biomek FX, Beckman Coulter, Fullerton, CA, USA).

Ten microliter sample mix was dispensed onto array spot, incubated for 1 h, washed, and

air dried according to manufacturer’s instruction. After applying energy absorbing ma-

trix (EAM) molecule, sinapinic acid (SPA; Fluka, Buchs, Switzerland), mass spectrometry

was carried out with the Protein Biology System II SELDI-TOF mass spectrometer reader

(Ciphergen). The reader was externally calibrated with 8 different calibrants (Ciphergen)

with molecular weights ranging from 1296.5 to 43,240 Da. Time-of-flight spectra were de-

rived at two different laser settings: one low-energy protocol, which is most suitable for

detection of peptides and proteins less than 10,000 Da; and a high-energy protocol, which

is optimal for capturing proteins between 10,000 and 40,000 Da, as recommended by the

manufacturer.

Statistical Model for Preprocessing MS data

We model the MS spectra as continuous functions using functional learning methods and

focus on feature (peak) extraction, alignment and quantification for the second-stage anal-

ysis. All the analyses are done on the time scale, and the final results are presented using

mass over charge (m/z) ratios corresponding to the instrument observation times. We

propose a model consisting of baseline, normalization, signal, and noise components. We

further decompose the noise structure into a harmonic instrument-related noise and a ran-

dom noise. Our main interest is nonparametric estimation of the signal portion of each

individual MS, and peak detection using significant zero down-crossings estimated by cal-
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culating the confidence intervals of the derivatives of the nonparametric signal curves. The

detected MS features (peaks) are then aligned using a warping algorithm. The resulting

MS features, e.g., peak intensities, are related to the arsenic exposure level in the second

stage that is described in detail in the next section.

We first describe our proposed generic functional model for MS spectra,

Z{w(t)} = B(t) +NS(t) + ε(t),

where Z(t) is the MS intensity at time t, w(t) is a warping (peak-alignment) function, B(t)

is a baseline function, N is a normalizing constant, S(t) is the signal of interest and ε(t)

is the noise process. We assume that B(t) and S(t) vary smoothly and estimate them us-

ing kernel smoothing. Specifically, B(t) is estimated by fitting a slowly varying smooth

function to a low quantile of the individual spectra. The normalizing constant N is calcu-

lated as the area under the baseline-subtracted portion of the spectrum. The signal curve

S(t) is estimated using local polynomial kernel smoothing with the bandwidth selected

by a plug-in method. Plug-in method of bandwidth selection has been shown to per-

form well in practice (Wand and Jones [1995]). It was chosen in our application as it is a

computationally efficient method and can be easily modified to incorporate a correlation

structure of the error terms. Estimation of the optimal bandwidth requires good estimates

of the variance and the covariance of the errors. To understand the error structure, we

performed exploratory analysis of the errors using fast Fourier transform in conjunction

with kernel smoothing. This analysis suggested to further decompose the error term into

the instrument-related noise and the random noise as

ε(t) = H(t) + e(t),

H(t) = exp{−kt} ∗ {a1s sin(ω1t) + a1c cos(ω1t) + a2s sin(ω2t) + a2c cos(ω2t)}, (1)

where k is the decay coefficient, a1s, a1c, a2s, a2c are the coefficients of the harmonic oscil-
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lations due to the instrument, ω1 and ω2 are the two periods of the harmonic component,

and e(t) is the random noise assumed to follow a distribution with mean 0, variance σ2(t)

and autoregressive correlation structure.

Features (peak locations) are identified for individual spectra and the mean spectrum

based on the zero-downcrossing idea of Chaudhuri and Marron [1999]. Specifically, the

zero downcrossing T is defined as the point where the first derivative estimate of the curve

is zero and the confidence bands are above zero for the values t < T and below zero for

t > T . The estimated zero-downcrossings are regarded as peak locations. We estimate

the peak locations for each individual and the mean spectrum of all the individuals. To

align the peaks, we use the mean spectrum peaks as empirical landmarks and individ-

ual curves are aligned to the landmarks using piecewise linear warping function w(t) and

partial matching of individual and mean curve peaks.

From the first stage functional modeling of the spectra, we get the estimates of the signal

functions, their derivatives, and standard errors which are used to arrive at the confidence

bands for the first derivative of the signal functions and the locations of the peaks and their

intensities.

Specifically, we give a simplified description of the algorithm used to recover the protein

expression features (peaks) here, and provide more details in the Appendix. First, for each

subject i = 1, . . . , n, we estimate the baseline function Bi(t) using a local polynomial ker-

nel smoothing technique with a large bandwidth fit to the low quantile points in the large

neighborhood around values of t. Second, we subtract this estimate from the raw values

Zi(t), calculate the area under the curve Ni and obtain the baseline-subtracted normalized

values Z?i (t) = [Zi(t) − Bi(t)]/Ni. Third, we use the backfitting procedure to estimate

the signal curve Si(t) using local linear kernel regression and the harmonic component

Hi(t) using nonlinear least squares of the noise process. Fourth, we obtain the locations

of the peaks on the individuals curves using the significant zero-downcrossing method

and denote them as T̂i1, . . . T̂iQi , where Qi is the number of peak locations for subject i.
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Fifth, we estimate the average curve S(t) using the average baseline-subtracted spectrum

Z̄?(t) = n−1
∑n

i=1 Z
?
i (t), where the average is a cross-sectional averaging at each t over all

the subjects. Sixth, we obtain the locations of the peaks on the average curve via the signif-

icant zero-downcrossing method and denote them by T̂1, . . . T̂Q, where Q is the number of

peak locations on the average curve. Seventh, we associate the subject-specific peaks with

the peaks detected on the average curve and warp the subject-specific signal estimates

Si(t) to locally align the subject-specific peaks to the peaks on the average curve. If an

individual does not have a peak in the neighborhood of any population peak, this individ-

ual peak is not aligned. We go back to the fifth step, where we use the warped individual

curves to go through detection of average peaks and alignment till convergence. We de-

fine the stopping criterion to be the distance between the estimates of the average curve to

be small and the number of peaks detected on an average curve to be not changing. The

individual peak intensities at the population peak locations T1, . . . , TQ are regarded as the

dimension reduced individual features from the first stage analysis.

Second Stage Analysis

To identify protein peaks associated with high arsenic exposure, we first treat the expo-

sure status as a dichotomous variable (0 = low/1 = high) and for each ascertained peak,

the log-transformed protein expression value was regressed on exposure status. Wald p-

values testing for association between exposure status and protein expression level were

computed for all protein peaks. To account for multiple hypothesis tests, false discovery

rates (FDRs) are calculated and the corresponding q-values are reported (Benjamini and

Hochberg [1995], Storey [2002]). To account for confounding of covariates, we also per-

form confounder adjusted analysis by including covariates - age, body mass index (BMI),

sex, smoking, smoking environment, chewing tobacco, and chewing betel nuts - in the

model and regressing the log-transformed protein expression values at each peak on all

variables. The Wald p-values and FDRs for testing for an association between exposure

status and protein expression are calculated while adjusting for potential confounders.
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Dose Response Analysis

We next perform a dose response analysis to examine the continuous relationship between

arsenic concentration and protein expressions. Specifically, we fit a linear regression model

of log-transformed protein expression at each peak on continuous log toe-nail arsenic con-

centration. Both unadjusted analysis and confounder adjusted analysis are performed and

the Wald p-values and FDR q-values are calculated.

“Super-Protein” Based Analysis

In proteomic profiling, some of the protein peak intensities are often highly correlated,

possibly as a result of doubly charged molecules or biological mechanism, such as protein

interactions. As such, the individual peak analyses described above, such as FDR esti-

mates, tend to be conservative as the number of comparisons is inflated. To overcome this

problem, we conduct a “super-protein” analysis. We first perform an agglomeration hier-

archical clustering analysis to all the peak intensities with the pairwise correlation between

peaks used as the distance metric. The cluster dendrogram can be cut to generate clusters

which are then combined to form the membership of a “super-protein”. The expression of

each super-protein is calculated as the first principal component of its constituent protein

peaks’ expressions. The unadjusted and confounder adjusted analyses as described above

are performed.

3 Results

We provide in Table 1 descriptive statistics of the covariates in the Bangladesh study. The

covariates are similar in the high and low arsenic exposure groups except that slightly

more subjects in the high arsenic exposure group chewed tobacco and betal nuts. No sta-

tistically significant difference in the covariates between the two arsenic exposure groups

was found.
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We next applied the proposed method to the study of the arsenic exposure effects on pro-

tein expressions in the Bangladesh data described in Section 2. We restrict our analysis to

the range of mass over charge (m/z) values of 3000Da and 20,000Da. All analyses were

performed on the equally spaced time scale and the final results are presented on the m/z

scale. Fast Fourier analysis using the original baseline-subtracted data suggested an AR(1)

error structure for the noise component εi(t), with a preliminary estimate of the correla-

tion parameter equal to ρ = 0.6. This estimate was used to obtain preliminary estimates

of the individual signal curves Si(t), which were used in turn to get estimates of the har-

monic component of the noise Hi(t) (see Figure 1). For the harmonic noise component

Hi(t), the estimated frequencies ω1 and ω2 were approximately 32.0 MHz and 93.8 MHz

(see Figure 2). The estimates were almost identical for all the subjects indicating that the

harmonic noise is due to the instrument itself, not due to the plasma samples. The removal

of the harmonic component Hi(t) resulted in the errors ei(t) showing little or no correla-

tion in the final iteration with the correlation coefficient ρ not statistically significant from

0 (mean=0.075, sd=0.052). The variance σ2(t) of the noise component e(t) was estimated

using difference-based estimator and was used in the construction of confidence bands for

the derivatives of the signal curves Si(t).

The iterative warping procedure took four steps to converge. We detected a total ofQ = 77

protein peaks on the average curve S(t). The number of peaks on the individual signal

curves ranged from 73 to 161. We used the 77 population peak locations as population

landmarks and aligned the individual curves by warping them locally using the popula-

tion landmarks. To illustrate the results, we present in Figure 3 the signal estimates in the

range 8.8kDa and 9.0kDa for 10 randomly selected subjects before and after the alignment.

The vertical line denotes the peak detected at 8,911Da. The results after alignment show

good agreement in the peak locations. The individual intensities from the estimated indi-

vidual curves at the 77 population peak locations are used for the second stage analysis.

At the second stage analysis, we associated the intensity of each of 77 protein peaks with
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arsenic exposure. We first treated the exposure status as a dichotomous variable (0 = low/1

= high) and regressed the log-transformed protein expression value on the exposure status.

We performed both crude analysis and covariate-adjusted analysis. The covariates in the

covariate-adjusted analysis included age, body mass index (BMI), sex (female = 0/male =

1), smoking (no = 0/yes = 1), smoking environment (no = 0/yes = 1), chews tobacco (no =

0/yes = 1), and chews betel nuts (no = 0/yes = 1) (Kile [2005]) The results are presented in

table 2.

Setting the FDR at 5%, for the crude analysis, 28 protein peaks were found to be signif-

icantly associated with the high arsenic exposure status. Among these, 16 were over-

expressed for subjects with high exposure. After controlling for covariates, a total of 24

protein peaks were found to be significantly associated with the high exposure status.

Among these, 14 protein peaks were over-expressed for subjects with high exposure. These

peaks are a subset of the 28 peaks identified by the unadjusted analysis. We present in Ta-

ble 3 the dose-response analysis results. Without the covariate adjustment, we identified

23 significant peaks at the FDR = 0.05 level. As expected, these dose response results were

quite consistent with the earlier dichotomous exposure analysis with a substantial overlap

of significant peaks. Adjusting for covariates yielded identical results to the crude analysis.

Although these individual protein analyses help in identifying promising candidate sin-

gle biomarkers for arsenic exposure, some protein peaks are highly correlated, as can be

seen from the left panel of figure 4, a heatmap of the correlation structure of the peaks.

Therefore, we applied the super-proteins based analysis to increase the statistical power.

Following complete aglommeration hierarchical clustering, the cluster dendrogram was

then cut a height of 1.5. This left a final group of 46 super-proteins. The pairwise cor-

relations of the super-proteins are shown in the right panel of figure 4. Although a few

super-proteins are still highly correlated, overall, the blocks of strongly correlated markers

have been removed.

Using the super-proteins, both the unadjusted and covariate-adjusted analyses were per-
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formed. At the FDR = 0.05 level, 17 super-proteins were determined to be significantly

associated with exposure status. Results are given in table 4. Although only 17 super-

proteins are significant, in contrast to the 28 protein peaks identified in the initial crude

analysis, these super-proteins actually correspond to 31 protein peaks. Out of these 31

constituent protein peaks, 25 were identified in the earlier analysis which also identified

3 peaks not found here. However, the super-protein based analysis identified 6 addi-

tional proteins not previously found. The covariate-adjusted analysis identified 14 super-

proteins as significant, but these super-proteins correspond to 24 proteins. Although using

the covariate-adjusted super-protein based analysis did not identify more protein peaks

than the original covariate-adjusted analysis, the list of interesting protein peaks were not

the same: 19 protein peaks were identified by both analyses, while each analysis found 5

more proteins peaks that the other did not.

4 Conclusions

Mass spectrometry shows significant potentials to identify biomarkers for early detection

of a disease. Pre-processing of the MS data is critical in proteomic research. However,

the existing pre-procesing methods are often ad-hoc and lack sound statistical justifica-

tions and raise concerns of the validity and reliability of the identified peaks. We propose

in this paper a unified statistical approach based on functional learning to pre-process

protein expressions in plasma as measured by the SELDI-TOF-MS instrument and study

the association of the identified protein peaks and arsenic exposure in the population of

Bangladesh. This unified framework allows us to flexibly model the mass spectra using ad-

vanced nonparametric regression techniques such as error structures, peak alignment, and

peak detection. In the second stage analysis, we perform both individual protein analysis

and super-protein analysis. Although our method is applied to the SELDI-TOF-MS data,

this functional learning method is applicable for pre-processing of mass spectrometry data

collected from other platforms, such as LC-MS-MS and MALDI-TOF-TOF.
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5 Appendix

Notation

Let Bi(t) be a subject-specific baseline function, Si(t) be a signal function for subject i, and

Hi(t) be a harmonic part of the noise process. The observed MS Zi(t) is decomposed as

Zi{wi(t)} = Bi(t) +NiSi(t) + εi(t), (2)

εi(t) = Hi(t) + ei(t),

Hi(t) = exp{−kit} ∗ [a1s sin(ω1t) + a1c cos(ω1t) + a2s sin(ω2t) + a2c cos(ω2t)]. (3)

We provide here a detailed description of the functional learning algorithm for estimation

of the population peak locations T1, . . . , TQ and subject-specific peak intensities at these

locations.

1. For a subject i, i = 1, . . . , n, estimate the baseline-subtracted signal curve using a

kernel smoother with a large bandwidth fitted to the low quantiles of the raw data.

Denote it by B̂i(t) and calculate Z?i (t) = Zi(t)− B̂i(t).

2. Calculate the area under the Z?i (t) curve and denote it by N̂i. Calculate ZN?i (t) =

median(N̂i)Z?i (t)/Ni. For the following steps, we work with the so-called “baseline-

subtracted and normalized” curve and drop the N? from the Zi to simplify the nota-

tion.

3. Use a local polynomial kernel smoother with a location-varying bandwidth ĥi(t) ob-

tained using the plug-in method with starting values for the variance σ2(t) and cor-

relation coefficient ρ to get a preliminary estimate of Si(t). Denote the residuals of

this fit by εSi (t) = Zi(t)− Si(t).

4. Fit a parametric function Hi(t) to the εSi (t), and remove the instrument-related har-

monic noise from the data as ZSi (t) = Zi(t)− Si(t).

18



5. For subject i, set the initial warping function wi(t) = t.

6. Calculate the average spectrum z = {Z(t1), . . . , Z(tm)}>, and obtain the estimates

of the signal S(t) and harmonic part of the noise H(t) using the same steps as those

for the individual spectra Zi(t).

7. Estimate the peak locations on the average curve: T1, . . . , TQ using the zero-downcrossing

method, Specifically, Tq is declared to be a peak location if

(a) S(1)(Tq) = 0 and S(1)(T−q ) > 0, S(1)(T+
q ) < 0

(b) Tq is a significant zero-downcrossing,

where S(1)(t) denotes the first derivative of S(t)

8. Estimate the significant zero-downcrossings on the individual curves i = 1, . . . ,m

similar to step 8. Denote the elements of the set of individual downcrossing locations

as Tiqi where i = 1, . . . ,m and qi = 1, . . . , Qi.

9. For each subject, estimate the individual time-warping function wi(t) using a piece-

wise linear function by registering each individual peak locally using the population

peaks T1, · · · , TQ as landmarks. Register the curves using the estimated warping

functions.

10. Go back to step 6. Repeat until convergence defined as:

||Z(b+1) − Z(b)|| < ε,

and Q(b+1) = Q(b),

where b is the iteration number.

11. At convergence, calculate the individual peak intensities Fiq for all Q peaks and all

curves i = 1, . . . , n. The peak intensities Fiq (q = 1, · · · , Q) at the peak locations

T1, · · · , TQ are used in the second stage analysis.
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Table 1: Descriptive Statistics of the 214 Subjects in the Bangladesh Proteomic Study of the
Arsenic Exposure Effect

Continuous Characteristics
Overall High Exposure Low Exposure

Characteristic Median (Range ) Median (Range) Median (Range)
Toenail Arsenic (ugg) 4.06 (0.12-44.74) 7.31 (2.8 0-44.74) 0.59 (0.12-0.79)

Age 28.5 (16-78) 29.5 (16-78) 27.5 (16-75)
BMI 19.4 (14.7-33.8) 19.1 (14.7-20.8) 19.7 (15. 4-33.8)

Discrete Characteristics
Number Among Number Among

Characteristic Value Overall Number (%) High Exposure (%) Low Exposure (%)
Overall 214 (100) 116 (54.3) 98 (45.8)

Sex Male 116 (54.2) 67 (57.8) 55 (56.1)
Female 92(43.0) 49 (42.2) 43 (43.9)

Ever Smoked Yes 58 (27.1) 31 (26.7) 27 (27.6)
No 154 (72.0) 84 (72.4) 70 (71.4)

Unknown 2 (0.9) 1 (0.9) 1 (1.0)

Smoking Yes 161 (75.2) 90 (77.6) 71 (72.4)
Environment No 51 (23.8) 24 (20.7) 27 (27.6)

Unknown 2(0.9) 2 (1.7) 0 (0.0)

Chew Tobacco Yes 32 (15.0) 21 (18.1) 11 (11.2)
No 177 (82.7) 90 (77.6) 87 (88.8)

Uknown 5 (2.3) 5 (4.3) 0 (0.0)

Chew Betel Yes 45 (21.0) 29 (25.0) 16 (16.3)
Nuts No 167 (78.0) 86 (74.1) 81 (82.7)

Unknown 2 (0.9) 1 (0.9) 1 (1.0)

20



Table 2: Regression coefficient estimates and p-values of the identified proteins that are
significantly associated with the arsenic exposure status (high/low) at the FDR = 0.05 level
for both the unadjusted analysis and the covariate-adjusted analysis for the Bangladesh
study. The ↑ sign indicates that the protein is over-expressed in the high exposed group,
while ↓ indicates that the protein is under-expressed in the exposed group.

Unadjusted Analysis Adjusted Analysis Trend in
Protein Intensity (m/z) Estimate p-value q-value Estimate p-value q-value Exposed Subjects
3255 -0.319 0.015 0.044 -0.288 0.034 0.090 ↓
3428.6 0.145 < 0.001 0.002 0.131 0.001 0.007 ↑
3669.7 -0.224 0.001 0.005 -0.230 0.001 0.007 ↓
4124.7 -0.192 < 0.001 0.004 -0.179 0.002 0.011 ↓
4277 -0.401 0.002 0.009 -0.388 0.003 0.017 ↓
4566.9 0.124 0.009 0.028 0.122 0.013 0.043 ↑
4640.1 0.145 0.004 0.019 0.133 0.012 0.043 ↑
5248.1 0.314 0.001 0.005 0.291 0.002 0.011 ↑
5577.5 -0.147 0.001 0.005 -0.150 0.001 0.007 ↓
5800.9 -0.272 < 0.001 0.004 -0.272 0.001 0.007 ↓
5905.1 0.320 0.008 0.028 0.263 0.035 0.090 ↑
6630.9 0.107 0.014 0.041 0.116 0.011 0.043 ↑
6849.2 -0.330 < 0.001 0.002 -0.330 < 0.001 0.005 ↓
7052.7 -0.158 0.001 0.006 -0.165 0.001 0.007 ↓
7426 0.105 < 0.001 0.002 0.111 < 0.001 0.002 ↑
7465 0.068 0.003 0.012 0.077 0.001 0.007 ↑
7558.8 0.152 < 0.001 < 0.001 0.153 < 0.001 0.001 ↑
7754.5 0.179 < 0.001 0.001 0.170 < 0.001 0.004 ↑
8114.1 -0.107 0.018 0.048 -0.104 0.021 0.062 ↓
8324.8 -0.098 0.007 0.027 -0.096 0.010 0.041 ↓
8584.6 0.150 0.009 0.028 0.133 0.023 0.065 ↑
8911 0.147 0.006 0.023 0.139 0.012 0.043 ↑
10034.7 -0.215 < 0.001 < 0.001 -0.204 < 0.001 0.001 ↓
10487.2 0.076 0.003 0.014 0.074 0.006 0.026 ↑
12367.5 -0.104 0.001 0.006 -0.091 0.006 0.026 ↓
14576.6 0.130 0.002 0.009 0.142 0.001 0.007 ↑
15140.1 0.164 0.013 0.041 0.171 0.013 0.043 ↑
15745.3 0.208 0.006 0.024 0.222 0.006 0.026 ↑
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Table 3: Regression coefficient estimates and p-values of the identified protein peaks that
have significant dose responses for the Bangladesh data . Both unadjusted and adjusted
results are provided. False discovery rates were set 0.05 and linear dose response models
were fit.

Unadjusted Analysis Adjusted Analysis
Protein Peaks (m/z) Estimate p-value q-value Estimate p-value q-value
3428.6 0.044 0.001 0.008 0.041 0.003 0.016
3669.7 -0.074 0.001 0.008 -0.080 0.001 0.008
4124.7 -0.060 0.002 0.010 -0.057 0.005 0.024
4277 -0.122 0.006 0.025 -0.124 0.007 0.033
4566.9 0.041 0.013 0.043 0.039 0.023 0.069
4640.1 0.044 0.013 0.043 0.040 0.032 0.087
5248.1 0.096 0.003 0.016 0.087 0.008 0.033
5577.5 -0.048 0.002 0.010 -0.051 0.001 0.011
5800.9 -0.089 0.001 0.007 -0.093 0.001 0.008
6849.2 -0.109 < 0.001 0.006 -0.112 < 0.001 0.007
7052.7 -0.056 0.001 0.007 -0.058 0.001 0.008
7426 0.033 < 0.001 0.006 0.035 < 0.001 0.007
7465 0.021 0.009 0.032 0.022 0.006 0.029
7558.8 0.053 < 0.001 < 0.001 0.053 < 0.001 0.001
7754.5 0.065 < 0.001 < 0.001 0.061 < 0.001 0.004
8911 0.053 0.004 0.017 0.049 0.011 0.043
10034.7 -0.073 < 0.001 < 0.001 -0.069 < 0.001 0.001
10487.2 0.029 0.001 0.008 0.028 0.003 0.016
12367.5 -0.032 0.004 0.017 -0.029 0.013 0.048
14576.6 0.049 0.001 0.007 0.050 0.001 0.008
15745.3 0.074 0.005 0.020 0.084 0.003 0.016
18011 0.030 0.008 0.032 0.032 0.008 0.033
19985.8 -0.020 0.003 0.016 -0.022 0.003 0.016
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Table 4: Regression coefficient estimates, p-values, and q-values of super-proteins signifi-
cantly associated with exposure status at the FDR = 0.05 level for both the crude analysis
and the covariate adjusted analysis. The “+” indicates the combination of protein peaks
into a super-protein.

Unadjusted Analysis Adjusted Analysis
Super-Protein Peaks (m/z) Estimate p-value q-value Estimate p-value q-value
3005.4+3255+3763+4277 0.643 0.009 0.028 0.586 0.021 0.065
3428.6+5336.9+5905.1 -0.662 0.002 0.009 -0.551 0.012 0.042
4124.7+7177.6 0.557 0.002 0.009 0.529 0.005 0.032
4464.8+4566.9 -0.431 0.018 0.049 -0.396 0.037 0.09
4640.1 0.388 0.004 0.018 0.357 0.012 0.042
4676.3+5248.1 -0.543 0.004 0.017 -0.488 0.011 0.042
5577.5+5800.9+6849.2 0.838 < 0.001 0.002 0.843 < 0.001 0.002
7052.7 -0.453 0.001 0.008 -0.471 0.001 0.007
7426+7465 -0.664 < 0.001 0.002 -0.721 < 0.001 0.001
7558.8+7754.5 -0.811 < 0.001 < 0.001 -0.792 < 0.001 0.001
8114.1+8324.8 0.488 0.010 0.029 0.476 0.013 0.042
8584.6 0.359 0.009 0.028 0.318 0.023 0.065
8911 0.378 0.006 0.021 0.357 0.012 0.042
10034.7 -0.660 < 0.001 < 0.001 -0.625 < 0.001 < 0.001
12367.5 -0.444 0.001 0.008 -0.386 0.006 0.035
14576.6 0.426 0.002 0.009 0.463 0.001 0.007
15140.1+15745.3 0.503 0.008 0.028 0.531 0.008 0.040

23



Figure 1: Estimate of the harmonic component of the noise Hi(t) for one subject in the
range of ’m/z’ between 7,800 Da and 8,000 Da.
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Figure 2: Estimate of the frequency of the harmonic component of the noise Hi(t) for one
subject in the range of ’m/z’ between 1,700 Da and 3,700 Da.
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Figure 3: Estimates of the signal curves Si(t) in the range of ’m/z’ between 8,800 Da and
9,000 Da for 10 randomly selected subjects: before alignment (left) and after alignment
(right).
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Figure 4: Heatmap of the correlation structure of the initial 77 protein peaks (left) and the
46 super-protein peaks (right). Highly correlated blocks of protein peaks are present in the
protein peak heatmap and not as apparent among the super-proteins.
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