Solutions to Problem Set 7

10.5.1 (a) Recall that [|€]l2,1 = [57 v/P(|¢] > u)du. However, this is not norm,
because it does not satisfy the triangle inequality.

(b)For the first inequality, if we can prove E(£2) = 2 [ P(|¢] > u)udu <
2[€l[2,1 X [[¢ ]2, then we have [|€]13 = E(£?) < 2[[¢]l2,1 % [|€]l2, which gives
11€ll2 < [[€]|2,1- Hence, what is left is to verify these inequalities.

i) First:
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ii) Second:
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Here, the inequality follows from Markov’s inequality.




For the second inequality,for any a > 0:
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If we let a = ||€]|,-, then we have ||€||l21 < [I€]l- + €7 - % et =
—3lEll-

12.3.2 (a)We have

(9(B) — ¢(A))(s,1] = 5505 — 545

also, from the Duhamel equation, we have:
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Let S =0, and ¢(A)(0) =1 for any A C D(0,b]. Then:

G(B)(t) = S(A)(t) = [io,y $(A) (u=) 50 (B — A)(du).

If B =0, then (B)(t) = exp(B°(1)) [Tp<oci (1+AB(s)) = exp(B(1)) [Tp<oci (14
0) = 1.Thus, we can get:

S(A) (1) = 1+ [igy 6(A)(u—)Adu.



Therefore,p(A)(s,t] = 1 + f(s,t] #(A)(s,u)Adu, and this finishes the
proof.

(b) From the uniqueness of (a),if we can prove
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satisfy the equation B(s,t] = 1 + f(s q B(s,u)A(du), then the result
follows.
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Here, the fourth equation follows from Fubini’s theorem. Therefore,
¢(A)(s,t] is equivalent to Peano series representation.

(c) It will be suffice to show
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satisfies this ”"backward” Volterra integral equation, and the proof can
be done similarly as part (b).

Another approach:

Denote a new process C(0,u] = B(t—u, t], then from part (a), ¢(A)(0, s—
t] is equivalent to the unique solution C' of the following Volterra inte-
gral equation:



C0,t—s]=1+ [, 4C(0,0)A(dv).
Then it is also the unique solution of equation:

B(s,t] =1+ f(o,t—s] B(t — v, t|A(dv).
Let u = —v, then

B(s,t]=1- [,

o Bl A = 1+ [ Bl fA(dw)

Since ¢(A)(0,s—t] and ¢(A)(s, t] are equivalent, then the desired result
follows.



