Hint/Correction for Problem Set 1

3.5.1 We first need to make one more assumption (which was not included in the printed version but should have been) that

$$
\begin{equation*}
\int \dot{\ell}_{\tilde{\theta}} \dot{\dot{\theta}}_{\hat{\theta}}^{\prime} p_{\tilde{\theta}} d \mu \rightarrow \int \dot{\ell}_{\theta} \dot{\ell}_{\theta}^{\prime} p_{\theta} d \mu, \text { as }\|\tilde{\theta}-\theta\| \rightarrow 0 \tag{1}
\end{equation*}
$$

Now use (1) to show that

$$
\begin{equation*}
H(\tilde{\theta}, \theta) \equiv \int\left(p_{\tilde{\theta}}^{1 / 2}-p_{\theta}^{1 / 2}\right)^{2} d \mu \rightarrow 0, \text { as }\|\tilde{\theta}-\theta\| \rightarrow 0 \tag{2}
\end{equation*}
$$

Next, show that (2) implies

$$
\begin{equation*}
\int\left|p_{\tilde{\theta}}-p_{\theta}\right| d \mu \rightarrow 0, \text { as }\|\tilde{\theta}-\theta\| \rightarrow 0 \tag{3}
\end{equation*}
$$

Finally, fill in the remaining steps to complete the problem (this is somewhat involved).

