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Preface

The goal of this book is to introduce statisticians, and other researchers
with a background in mathematical statistics, to empirical processes and
semiparametric inference. These powerful research techniques are surpris-
ingly useful for studying large sample properties of statistical estimates
from realistically complex models as well as for developing new and im-
proved approaches to statistical inference.

This book is more a textbook than a research monograph, although some
new results are presented in later chapters. The level of the book is more
introductory than the seminal work of van der Vaart and Wellner (1996).
In fact, another purpose of this work is to help readers prepare for the
mathematically advanced van der Vaart and Wellner text, as well as for
the semiparametric inference work of Bickel, Klaassen, Ritov and Wellner
(1997). These two books, along with Pollard (1990) and chapters 19 and 25
of van der Vaart (1998), formulate a very complete and successful elucida-
tion of modern empirical process methods. The present book owes much
by the way of inspiration, concept, and notation to these previous works.
What is perhaps new is the introductory, gradual and unified way this book
introduces the reader to the field.

The book consists of three parts. The first part is an overview which
concisely covers the basic concepts in both empirical processes and semi-
parametric inference, while avoiding many technicalities. The second part
is devoted to empirical processes, while the third part is devoted to semi-
parametric efficiency and inference. In each of the last two parts, the sec-
ond chapter (after the introductory chapter) is devoted to the relevant
mathematical concepts and techniques. For example, an overview of metric
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spaces—which are necessary to the study of weak convergence—is included
in the second chapter of the second part. Thus the book is largely self con-
tained. In addition, a chapter devoted to case studies is included at the end
of each of the three parts of the book. These case studies explore in detail
practical examples which illustrate applications of theoretical concepts.

The impetus for this work came from a course the author gave in the
Department of Statistics at the University of Wisconsin-Madison, during
the Spring semester of 2001. Accordingly, the book is designed to be used
as a text in a one or two semester sequence in empirical processes and
semiparametric inference. In a one semester course, some of the material
would need to be skipped. Students should have had at least half a year of
graduate level probability as well as a year of graduate level mathematical
statistics.
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1
Introduction

Both empirical processes and semiparametric inference techniques have be-
come increasingly important tools for solving statistical estimation and
inference problems. These tools are particularly important when the sta-
tistical model for the data at hand is semiparametric, in that it has one
or more unknown component which is a function, measure or some other
infinite dimensional quantity. Semiparametric models also typically have
one or more finite-dimensional Euclidean parameters of particular interest.
The term nonparametric is often reserved for semiparametric models with
no Euclidean parameters. Empirical process methods are powerful tech-
niques for evaluating the large sample properties of estimators based on
semiparametric models, including consistency, distributional convergence,
and validity of the bootstrap. Semiparametric inference tools complement
empirical process methods by evaluating whether estimators make efficient
use of the data.

Consider, for example, the semiparametric model

Y = β′Z + e,(1.1)

where β, Z ∈ Rp are restricted to bounded sets, prime denotes transpose,
(Y, Z) are the observed data, E[e|Z] = 0 and E[e2|Z] ≤ K < ∞ almost
surely, and E[ZZ ′] is positive definite. Given an independent and identically
distributed (i.i.d.) sample of such data (Yi, Zi), i = 1 . . . n, we are interested
in estimating β without having to further specify the joint distribution of
(e, Z). This is a very simple semiparametric model, and we definitely do
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not need empirical process methods to verify that

β̂ =

[
n∑
i=1

ZiZ
′
i

]−1 n∑
i=1

ZiYi

is consistent for β and that
√
n(β̂ − β) is asymptotically normal with

bounded variance.
A deeper question is whether β̂ achieves the lowest possible variance

among all “reasonable” estimators. One important criteria for “reasonable-
ness” is regularity which is satisfied by β̂ and most standard

√
n consistent

estimators and which we will define more precisely in chapter 3. A regu-
lar estimator is efficient if it achieves the lowest possible variance among
regular estimators. Semiparametric inference tools are required to establish
this kind of optimality. Unfortunately, β̂ does not have the lowest possi-
ble variance among all regular estimators, unless we are willing to make
some very strong assumptions. For instance, β̂ has optimal variance if we
are willing to assume, in addition to what we have already assumed, that
e has a Gaussian distribution and is independent of Z. In this instance,
the model is almost fully parametric (except that the distribution of Z re-
mains unspecified). Returning to the more general model in the previous
paragraph, there is a modification of β̂ that does have the lowest possible
variance among regular estimators, but computation of this modified esti-
mator requires estimation of the function z �→ E[e2|Z = z]. We will explore
this particular example in greater detail in chapters 3 and 4.

There is an interesting semiparametric model part way between the fully
parametric Gaussian residual model and the more general model which only
assumes E[e|Z] = 0 almost surely. This alternative model assumes that the
residual e and covariate Z are independent, with E[e] = 0 and E[e2] < ∞,
but no additional restrictions are placed on the residual distribution F .
Unfortunately, β̂ still does not have optimal variance. However, β̂ is a very
good estimator and may be good enough for most purposes. In this setting,
it may be useful to estimate F to determine whether the residuals are
Gaussian. One promising estimator is

F̂ (t) = n−1
n∑
i=1

1
{
Yi − β̂′Zi ≤ t

}
,(1.2)

where 1{A} is the indicator of A. Empirical process methods can be used to
show that F̂ is uniformly consistent for F and that

√
n(F̂−F ) converges “in

distribution” in a uniform sense to a certain Gaussian quantity, provided
f is uniformly bounded. Quotes are used here because the convergence
in question involves random real functions rather than Euclidean random
variables. This kind of convergence is called weak convergence and is a
generalization of convergence in distribution which will be defined more
precisely in chapter 2.
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Now we will consider a more complex example. Let N(t) be a count-
ing process over the finite interval [0, τ ] which is free to jump as long as
t ∈ [0, V ], where V ∈ (0, τ ] is a random time. A counting process, by defi-
nition, is nonnegative and piecewise constant with positive jumps of size 1.
Typically, the process counts a certain kind of event, such as hospitaliza-
tions, for an individual (see chapter 1 of Fleming and Harrington, 1991, or
chapter II of Andersen, Borgan, Gill and Keiding, 1993). Define also the
“at-risk” process Y (t) = 1{V ≥ t}. This process indicates whether an in-
dividual is at-risk at time t− (just to the left of t) for a jump in N at time
t. Suppose we also have baseline covariates Z ∈ Rp, and, for all t ∈ [0, τ ],
we assume

E {N(t)|Z} =
∫ t

0

E {Y (s)|Z} eβ′ZdΛ(s),(1.3)

for some β ∈ Rp and continuous nondecreasing function Λ(t) with Λ(0) = 0
and 0 < Λ(τ) < ∞. The model (1.3) is a variant of the “multiplicative in-
tensity model” (see definition 4.2.1 of Fleming and Harrington, 1991). Basi-
cally, we are assuming that the mean of the counting process is proportional
to eβ

′Z . We also need to assume that E{Y (τ)} > 0, E{N2(τ)} < ∞, and
that Z is restricted to a bounded set, but we do not otherwise restrict the
distribution of N . Given an i.i.d. sample (Ni, Yi, Zi), i = 1 . . . n, we are
interested in estimating β and Λ.

Under mild regularity conditions, the estimating equation

Un(t, β) = n−1
n∑
i=1

∫ t

0

[Zi − En(s, β)] dNi(s),(1.4)

where

En(s, β) =
n−1

∑n
i=1 ZiYi(s)e

β′Zi

n−1
∑n

i=1 Yi(s)eβ
′Zi

,

can be used for estimating β. The motivation for this estimating equation
is that it arises as the score equation from the celebrated Cox partial like-
lihood (Cox, 1975) for either failure time data (where the counting process
N(t) simply indicates whether the failure time has occurred by time t) or
the multiplicative intensity model under an independent increment assump-
tion on N (See chapter 4 of Fleming and Harrington, 1991). Interestingly,
this estimating equation can be shown to work under the more general
model (1.3). Specifically, we can establish that (1.4) has an asymptotically
unique zero β̂ at t = τ , that β̂ is consistent for β, and that

√
n
(
β̂ − β

)
is

asymptotically mean zero Gaussian. Empirical process tools are needed to
accomplish this. These same techniques can also establish that

Λ̂(t) =
∫ t

0

n−1
∑n

i=1 dNi(s)

n−1
∑n
i=1 Yi(s)eβ̂

′Zi
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is uniformly consistent for Λ(t) over t ∈ [0, τ ] and that
√
n(Λ̂−Λ) converges

weakly to a mean zero Gaussian quantity. These methods can also be used
to construct valid confidence intervals and confidence bands for β and Λ.

At this point, efficiency of these estimators is difficult to determine be-
cause so little has been specified about the distribution of N . Consider,
however, the special case of right-censored failure time data. In this set-
ting, the observed data are (Vi, di, Zi), i = 1 . . . n, where Vi = Ti ∧ Ci,
di = 1{Ti ≤ Ci}, Ti is a failure time of interest with integrated haz-
ard function eβ

′ZiΛ(t) given Zi, and Ci is a right censoring time inde-
pendent of Ti given Zi with distribution not depending on β or Λ. Here,
Ni(t) = di1{Vi ≤ t} and a ∧ b denotes the minimum of a and b. Semi-
parametric inference techniques can now establish that both β̂ and Λ̂ are
efficient. We will revisit this example in greater detail in chapters 3 and 4.

In both of the previous examples, the estimator of the infinite-dimensional
parameter (F in the first example and Λ in the second) is

√
n consistent,

but slower rates of convergence for the infinite dimensional part are also
possible. As a third example, consider the partly linear logistic regression
model described in Mammen and van de Geer (1997) and van der Vaart
(1998, page 405). The observed data are n independent realizations of the
random triplet (Y, Z, U), where Z ∈ Rp and U ∈ R are covariates which
are not linearly dependent, and Y is a dichotomous outcome with

E {Y |Z,U} = ν [β′Z + η(U)] ,(1.5)

where β ∈ Rp, Z is restricted to a bounded set, U ∈ [0, 1], ν(t) = 1/(1+e−t),
and η is an unknown smooth function. We assume, for some integer k ≥ 1,
that the first k − 1 derivatives of η exist and are absolutely continuous
with J2(η) ≡

∫ 1

0

[
η(k)(t)

]2
dt < ∞, where superscript (k) denotes the k-

th derivative. Given an i.i.d. sample Xi = (Yi, Zi, Ui), i = 1 . . . n, we are
interested in estimating β and η.

The conditional density at Y = y given the covariates (Z,U) = (z, u)
has the form

pβ,η(x) = {ν [β′z + η(u)]}y {1 − ν [β′z + η(u)]}1−y
.

This cannot be used directly for defining a likelihood since for any 1 ≤ n <
∞ and fixed sample x1, . . . , xn, there exists a sequence of smooth functions
{η̂m} satisfying our criteria which converges to η̂, where η̂(ui) = ∞ when
yi = 1 and η̂(ui) = −∞ when yi = 0. The issue is that requiring J(η̂) < ∞
does not restrict η̂ on any finite collection of points. There are a number
of methods for addressing this problem, including requiring J(η̂) ≤Mn for
each n, where Mn ↑ ∞ at at an appropriately slow rate, or using a series
of increasingly complex spline approximations.

An important alternative is to use the penalized log-likelihood

L̃n(β, η) = n−1
n∑
i=1

log pβ,η(Xi) − λ̂2
nJ

2(η),(1.6)
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where λ̂n is a possibly data-dependent smoothing parameter. L̃n is max-
imized over β and η to obtain the estimators β̂ and η̂. Large values of
λ̂n lead to very smooth but somewhat biased η̂, while small values of
λ̂n lead to less smooth but less biased η̂. The proper trade-off between
smoothness and bias is usually best achieved by data-dependent schemes
such as cross-validation. If λ̂n is chosen to satisfy λ̂n = op(n−1/4) and
λ̂−1
n = Op(nk/(2k+1)), then both β̂ and η̂ are uniformly consistent and

√
n
(
β̂ − β

)
converges to a mean zero Gaussian vector. Furthermore, β̂

can be shown to be efficient even though η̂ is not
√
n consistent. More

about this example will be discussed in chapter 4.
These three examples illustrate the goals of empirical process and semi-

parametric inference research as well as hint at the power of these methods
for solving statistical inference problems involving infinite-dimensional pa-
rameters. The goal of the first part of this book is to present the key ideas of
empirical processes and semiparametric inference in a concise and heuristic
way, without being distracted by technical issues, and to provide motivation
to pursue the subject in greater depth as given in the remaining parts of
the book. Even for those anxious to pursue the subject in depth, the broad
view contained in this first part provides a valuable context for learning
the details.

Chapter 2 presents an overview of empirical process methods and re-
sults, while chapter 3 presents an overview of semiparametric inference
techniques. Several case studies illustrating these methods, including fur-
ther details on the examples given above, are presented in chapter 4, which
concludes the overview part. The empirical process part of the book (part
II) will be introduced in chapter 5, while the semiparametric inference part
(part III) will be introduced in chapter 16.
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2
An Overview of Empirical Processes

This chapter presents an overview of the main ideas and techniques of em-
pirical process research. The emphasis is on those concepts which directly
impact statistical estimation and inference. The major distinction between
empirical process theory and more standard asymptotics is that the ran-
dom quantities studied have realizations as functions rather real numbers
or vectors. Proofs of results and certain details in definitions are postponed
until part II of the book.

We begin by defining and sketching the main features and asymptotic
concepts of empirical processes with a view towards statistical issues. An
outline of the main empirical process techniques covered in this book is pre-
sented next. This chapter concludes with a discussion of several additional
related topics which will not be pursued in later chapters.

2.1 The Main Features

A stochastic process is a collection of random variables {Xt, t ∈ T } on the
same probability space, indexed by an arbitrary index set T . An empirical
process is a stochastic process based on a random sample. For example,
consider a random sample X1, . . . , Xn of i.i.d. real random variables with
distribution F . The empirical distribution function is

Fn(t) = n−1
n∑
i=1

1{Xi ≤ t},(2.1)
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where the index t is allowed to vary over T = R, the real line.
More generally, we can consider a random sample X1, . . . , Xn of inde-

pendent draws from a probability measure P on an arbitrary sample space
X . We define the empirical measure to be Pn = n−1

∑n
i=1 δXi , where δx is

the measure which assigns mass 1 at x and zero elsewhere. For a measur-
able function f : X �→ R, we denote Pnf = n−1

∑n
i=1 f(Xi). For any class

F of measurable functions f : X �→ R, an empirical process {Pnf, f ∈ F}
can be defined. This simple approach can generate a surprising variety of
empirical processes, many of which we will consider in later sections in this
chapter as well as in part II.

Setting X = R, we can now re-express Fn as the empirical process
{Pnf, f ∈ F}, where F = {1{x ≤ t}, t ∈ R}. Thus one can view the stochas-
tic process Fn as indexed by either t ∈ R or f ∈ F . We will use either
indexing approach, depending on which is most convenient for the task at
hand. However, because of its generality, indexing empirical processes by
classes of functions will be the primary approach taken throughout this
book.

By the law of large numbers, we know that

Fn(t)
as→ F (t)(2.2)

for each t ∈ R, where as→ denotes almost sure convergence. A primary
goal of empirical process research is to study empirical processes as ran-
dom functions over the associated index set. Each realization of one of
these random functions is a sample path. To this end, Glivenko (1933) and
Cantelli (1933) demonstrated that (2.2) could be strengthened to

sup
t∈R

|Fn(t) − F (t)| as→ 0.(2.3)

Another way of saying this is that the sample paths of Fn get uniformly
closer to F as n → ∞. Returning to general empirical processes, a class
F of measurable functions f : X �→ R, is said to be a P -Glivenko-Cantelli
class if

sup
f∈F

|Pnf − Pf | as∗→ 0,(2.4)

where Pf =
∫
X f(x)P (dx) and as∗→ is a mode of convergence slightly stronger

than as→ but which will not be precisely defined until later in this chapter
(both modes of convergence are equivalent in the setting of (2.3)). Some-
times the P in P -Glivenko-Cantelli can be dropped if the context is clear.

Returning to Fn, we know by the central limit theorem that for each
t ∈ R

Gn(t) ≡
√
n [Fn(t) − F (t)] � G(t),
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where � denotes convergence in distribution and G(t) is a mean zero
normal random variable with variance F (t) [1 − F (t)]. In fact, we know
that Gn, simultaneously for all t in a finite set Tk = {t1, . . . , tk} ∈ R,
will converge in distribution to a mean zero multivariate normal vector
G = {G(t1), . . . , G(tk)}′, where

cov [G(s), G(t)] = E [G(s)G(t)] = F (s ∧ t) − F (s)F (t)(2.5)

for all s, t ∈ Tk, and where a ∧ b is the minimum of a and b.
Much more can be said. Donsker (1952) showed that the sample paths

of Gn, as functions on R, converge in distribution to a certain stochastic
process G. Weak convergence is the generalization of convergence in dis-
tribution from vectors of random variables to sample paths of stochastic
processes. Donsker’s result can be stated succinctly as Gn � G in �∞(R),
where, for any index set T , �∞(T ) is the collection of all bounded functions
f : T �→ R. �∞(T ) is used in settings like this to remind us that we are
thinking of distributional convergence in terms of the sample paths.

The limiting processG is a mean zero Gaussian process with E [G(s)G(t)]
= (2.5) for every s, t ∈ R. A Gaussian process is a stochastic process
{Zt, t ∈ T }, where for every finite Tk ⊂ T , {Zt, t ∈ Tk} is multivariate
normal, and where all sample paths are continuous in a certain sense which
will be made more explicit later in this chapter. The process G can be
written G(t) = B(F (t)), where B is a standard Brownian bridge on the
unit interval. The process B has covariance s ∧ t − st and is equivalent to
the process W(t) − tW(1), for t ∈ [0, 1], where W is a standard Brownian
motion process. The standard Brownian motion is a Guassian process on
[0,∞) with continuous sample paths, with W(0) = 0, and with covariance
s ∧ t. Both B and W are important examples of Gaussian processes.

Returning again to general empirical processes, define the random mea-
sure Gn =

√
n(Pn − P ), and, for any class F of measurable functions

f : X �→ R, let G be a mean zero Gaussian process indexed by F , with
covariance E [f(X)g(X)] − Ef(X)Eg(X) for all f, g ∈ F , and having ap-
propriately continuous sample paths. Both Gn and G can be thought of as
being indexed by F . We say that F is P -Donsker if Gn � G in �∞(F).
The P and/or the �∞(F) may be dropped if the context is clear. Donsker’s
(1952) theorem tells us that F = {1{x ≤ t}, t ∈ R} is Donsker for all proba-
bility measures which are based on some real distribution function F . With
f(x) = 1{x ≤ t} and g(x) = 1{x ≤ s},

E [f(X)g(X)] − Ef(X)Eg(X) = F (s ∧ t) − F (s)F (t).

For this reason, G is also referred to as a Brownian bridge.
Suppose we are interested in forming confidence bands for F over some

subset T ⊂ R. Because F = {1{x ≤ t}, t ∈ R} is Glivenko-Cantelli, we can
uniformly consistently estimate the covariance σ(s, t) = F (s∧t)−F (s)F (t)
of G with σ̂(s, t) = Fn(s∧t)−Fn(s)Fn(t). While such a covariance could be
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used to form confidence bands when H is finite, it is of little use when H is
infinite, such as when H is a subinterval of R. In this case, it is preferable
to make use of the Donsker result for Gn. Let Un = supt∈T |Gn(t)|. The
continuous mapping theorem tells us that whenever a process {Zn(t), t ∈
T } converges weakly to a tight limiting process {Z(t), t ∈ T } in �∞(T ),
then h(Zn)� h(Z) in h(�∞(T )) for any continuous map h. In our setting
Un = h(Gn), where h(g) = supt∈T |g(t)|, for any g ∈ �∞(R), is a continuous
real function. Thus the continuous mapping theorem tells us that Un �
U = supt∈R

|G(t)|. When F is continuous and T = R, U = supt∈[0,1] |B(t)|
has a known distribution from which it is easy to compute quantiles. If we
let up be the p-th quantile of U , then an asymptotically valid symmetric
1 − α level confidence band for F is Fn ± u1−α/

√
n.

An alternative is to construct confidence bands based on a large num-
ber of bootstraps of Fn. The bootstrap for Fn can be written as F̂n(t) =
n−1

∑n
i=1Wni1{Xi ≤ t}, where (Wn1, . . . ,Wnn) is a multinomial random

n-vector, with probabilities 1/n, . . . , 1/n and number of trials n, and which
is independent of the data X1, . . . , Xn. The conditional distribution of
Ĝn =

√
n(F̂n − Fn) given X1, . . . , Xn can be shown to converge weakly

to the distribution of G in �∞(R). Thus the bootstrap is an asymptotically
valid way to obtain confidence bands for F .

Returning to the general empirical process set-up, let F be a Donsker
class and suppose we wish to construct confidence bands for Ef(X) which
are simultaneously valid for all f ∈ H ⊂ F . Provided certain second
moment conditions hold on F , the estimator σ̂(f, g) = Pn [f(X)g(X)] −
Pnf(X)Png(X) is consistent for σ(f, g) = E [f(X)g(X)] − Ef(X)Eg(X)
uniformly over all f, g ∈ F . As with the empirical distribution function
estimator, this covariance is enough to form confidence bands provided H
is finite. Fortunately, the bootstrap is always asymptotically valid when
F is Donsker and can therefore be used for infinite H. More precisely, if
Ĝn =

√
n(P̂n−Pn), where P̂nf = n−1

∑n
i=1Wnif(Xi) and (Wn1, . . . ,Wnn)

is defined as before, then the conditional distribution of Ĝn given the data
converges weakly to G in �∞(F). Since this is true for all of F , it is cer-
tainly true for any H ⊂ F . The bootstrap result for Fn is clearly a special
case of this more general result.

Many important statistics based on i.i.d. data cannot be written as em-
pirical processes, but they can frequently be written in the form φ(Pn),
where Pn is indexed by some F and φ is a smooth map from �∞(F) to some
set B (possibly infinite-dimensional). Consider, for example, the quantile
process ξn(p) = F−1

n (p) for p ∈ [a, b], where H−1(p) = inf{t : H(t) ≥ p}
for a distribution function H and 0 < a < b < 1. Here, ξn = φ(Fn),
where φ maps a distribution function H to H−1. When the underlying
distribution F is continuous over N = [H−1(a) − ε,H−1(b) + ε] ⊂ [0, 1],
for some ε > 0, with continuous density f such that 0 < inft∈N f(t) ≤
supt∈N f(t) < ∞, then

√
n(ξn(p) − ξp), where ξp = F−1(p), is uniformly
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asymptotically equivalent to −Gn(F−1(p))/f(F−1(p)) and hence converges
weakly to G(F−1(p))/f(F−1(p)) in �∞([a, b]). (Because the process G is
symmetric around zero, both −G and G have the same distribution.) The
above weak convergence result is a special case of the functional delta-
method principle which states that

√
n [φ(Pn) − φ(P )] converges weakly in

B to φ′(G), whenever F is Donsker and φ has a “Hadamard derivative” φ′

which will be defined more precisely later in this chapter.
Many additional statistics can be written as zeros or maximizers of

certain data-dependent processes. The former are known as Z-estimators
and the latter as M-estimators. Consider the linear regression example
given in chapter 1. Since β̂ is the zero of Un(β) = Pn [X(Y −X ′β)], β̂
is a Z-estimator. In contrast, the penalized likelihood estimators (β̂, η̂) in
the partly linear logistic regression example of the same chapter are M-
estimators since they are maximizers of L̃(β, η) given in (1.6). As is the
case with Un and L̃n, the data-dependent objective functions used in Z-
and M- estimation are often empirical processes, and thus empirical process
methods are frequently required when studying the large sample properties
of the associated statistics.

The key attribute of empirical processes is that they are random func-
tions—or stochastic processes—based on a random data sample. The main
asymptotic issue is studying the limiting behavior of these processes in
terms of their sample paths. Primary achievements in this direction are
Glivenko-Cantelli results which extend the law of large numbers, Donsker
results which extend the central limit theorem, the validity of the bootstrap
for Donsker classes, and the functional delta method.

2.2 Empirical Process Techniques

In this section, we expand on several important techniques used in empirical
processes. We first define and discuss several important kinds of stochastic
convergence, including convergence in probability as well as almost sure
and weak convergence. We then introduce the concept of entropy and in-
troduce several Glivenko-Cantelli and Donsker theorems based on entropy.
The empirical bootstrap and functional delta method are described next.
A brief outline of Z- and M- estimator methods are then presented. This
section is essentially a review in miniature of the main points covered in
Part II of this book, with a minimum of technicalities.

2.2.1 Stochastic Convergence

When discussing convergence of stochastic processes, there is always a met-
ric space (D, d) implicitly involved, where D is the space of possible values
for the processes and d is a metric (distance measure), satisfying d(x, y) ≥ 0,
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d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z), and d(x, y) = 0 if and only if
x = y, for all x, y, z ∈ D. Frequently, D = �∞(T ), where T is the index
set for the processes involved, and d is the uniform distance on D, i.e.,
d(x, y) = supt∈T |x(t) − y(t)| for any x, y ∈ D. We are primarily interested
in the convergence properties of the sample paths of stochastic processes.
Weak convergence, or convergence in distribution, of a stochastic process
Xn happens when the sample paths of Xn begin to behave in distribution,
as n → ∞, more and more like a specific random process X . When Xn

and X are Borel measurable, weak convergence is equivalent to saying that
Ef(Xn) → Ef(X) for every bounded, continuous function f : D �→ R,
where the notation f : A �→ B means that f is a mapping from A to B,
and where continuity is in terms of d. Hereafter, we will let Cb(D) denote
the space of bounded, continuous maps f : D �→ R. We will define Borel
measurability in detail later in part II, but, for now, it is enough to say
that lack of this property means that there are certain important subsets
A ⊂ D where the probability that Xn ∈ A is not defined.

In many statistical applications, Xn may not be Borel measurable. To
resolve this problem, we need to introduce the notion of outer expectation
for arbitrary maps T : Ω �→ R̄ ≡ [−∞,∞], where Ω is the sample space. T
is not necessarily a random variable because it is not necessarily Borel mea-
surable. The outer expectation of T , denoted E∗T , is the infimum over all
EU , where U : Ω �→ R is measurable, U ≥ T , and EU exists. For EU to ex-
ist, it must not be indeterminate, although it can be ±∞, provided the sign
is clear. We analogously define inner expectation: E∗T = −E∗[−T ]. There
also exists a measurable function T ∗ : Ω �→ R, called the minimal measur-
able majorant, satisfying T ∗(ω) ≥ T (ω) for all ω ∈ Ω and which is almost
surely the smallest measurable function ≥ T . Furthermore, when E∗T < ∞,
E∗T = ET ∗. The maximal measurable minorant is T∗ = −(−T )∗. We also
define outer probability for possibly nonmeasurable sets: P∗(A) as the in-
fimum over all P(B) with A ⊂ B ⊂ Ω and B a Borel measurable set. Inner
probability is defined as P∗(A) = 1 − P∗(Ω − A). This use of outer mea-
sure permits defining weak convergence, for possibly nonmeasurable Xn,
as E∗f(Xn) �→ Ef(X) for all f ∈ Cb(D). We denote this convergence by
Xn � X . Notice that we require the limiting process X to be measurable.
This definition of weak convergence also carries with it an implicit mea-
surability requirement on Xn: Xn � X implies that Xn is asymptotically
measurable, in that E∗f(Xn) − E∗f(Xn) → 0, for every f ∈ Cb(D).

We now consider convergence in probability and almost surely. We say
Xn converges to X in probability if P {d(Xn, X)∗ > ε} → 0 for every ε > 0,
and we denote this Xn

P→ X . We say that Xn converges outer almost surely
to X if there exists a sequence Δn of measurable random variables with
d(Xn, X) ≤ Δn for all n and with P{lim supn→∞ Δn = 0} = 1. We denote
this kind of convergence Xn

as∗→ X . While these modes of convergence are
slightly different than the standard ones, they are identical when all the
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quantities involved are measurable. The properties of the standard modes
are also generally preserved in these new modes. The major difference is
that these new modes can accommodate many situations in statistics and in
other fields which could not be as easily accommodated with the standard
ones. As much as possible, we will keep measurability issues suppressed
throughout this book, except where it is necessary for clarity. From this
point on, the metric d of choice will be the uniform metric unless noted
otherwise.

For almost all of the weak convergence applications in this book, the
limiting quantity X will be tight, in the sense that the sample paths of X
will have a certain minimum amount of smoothness. To be more precise, for
an index set T , let ρ be a semimetric on T , in that ρ has all the properties
of a metric except that ρ(s, t) = 0 does not necessarily imply s = t. We
say that T is totally bounded by ρ if for every ε > 0, there exists a finite
collection Tk = {t1, . . . , tk} ⊂ T such that for all t ∈ T , we have ρ(t, s) ≤ ε
for some s ∈ Tk. Now define UC(T, ρ) to be the subset of �∞(T ) where
each x ∈ UC(T, ρ) satisfies

lim
δ↓0

sup
s,t∈T with ρ(s,t)≤δ

|x(t) − x(s)| = 0.

The “UC” refers to uniform continuity. The stochastic process X is tight if
X ∈ UC(T, ρ) almost surely for some ρ for which T is totally bounded. If X
is a Gaussian process, then ρ can be chosen as ρ(s, t) = (var[X(s) −X(t)])1/2.
Tight Gaussian processes will be the most important limiting processes
considered in this book.

Two conditions need to be met in order for Xn to converge weakly in
�∞(T ) to a tight X . This is summarized in the following theorem which we
present now but prove later in chapter 7:

Theorem 2.1 Xn converges weakly to a tight X in �∞(T ) if and only
if:

(i) For all finite {t1, . . . , tk} ⊂ T , the multivariate distribution of {Xn(t1),
. . . , Xn(tk)} converges to that of {X(t1), . . . , X(tk)}.

(ii) There exists a semimetric ρ for which T is totally bounded and

lim
δ↓0

lim sup
n→∞

P∗

{
sup

s,t∈T with ρ(s,t)<δ

|Xn(s) −Xn(t)| > ε

}
= 0,(2.6)

for all ε > 0.

Condition (i) is convergence of all finite dimensional distributions and con-
dition (ii) implies asymptotic tightness. In many applications, condition (i)
is not hard to verify while condition (ii) is much more difficult.

In the empirical process setting based on i.i.d. data, we are interested in
establishing that Gn � G in �∞(F), where F is some class of measurable
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functions f : X �→ R, and where X is the sample space. When Ef2(X) < ∞
for all f ∈ F , condition (i) above is automatically satisfied by the standard
central limit theorem, whereas establishing condition (ii) is much more
work and is the primary motivator behind the development of much of
modern empirical process theory. Whenever F is Donsker, the limiting
process G is always a tight Gaussian process, and F is totally bounded
by the semimetric ρ(f, g) = {var [f(X) − g(X)]}1/2. Thus conditions (i)
and (ii) of theorem 2.1 are both satisfied with T = F , Xn(f) = Gnf , and
X(f) = Gf , for all f ∈ F .

Another important result is the continuous mapping theorem. This the-
orem states that if g : D �→ E is continuous at every point of a set D0 ⊂ D,
and if Xn � X , whereX takes all its values in D0, then g(Xn)� g(X). For
example, if F is a Donsker class, then supf∈F |Gnf | has the same limiting
distribution as supf∈F |Gf |, since the supremum map is uniformly con-
tinuous, i.e.,

∣∣supf∈F |x(f)| − supf∈F |y(f)|
∣∣ ≤ supf∈F |x(f) − y(f)| for all

x, y ∈ �∞(F). This fact can be used to construct confidence bands for Pf .
The continuous mapping theorem has many other practical uses which we
will utilize at various points throughout this book.

2.2.2 Entropy for Glivenko-Cantelli and Donsker Theorems

The major challenge in obtaining Glivenko-Cantelli or Donsker theorems
for classes of functions F is to somehow show that going from pointwise
convergence to uniform convergence is feasible. Clearly the complexity, or
entropy, of F plays a major role. The easiest entropy to introduce is en-
tropy with bracketing. For 1 ≤ r < ∞, Let Lr(P ) denote the collection
of functions g : X �→ R such that ‖g‖r,P ≡

[∫
X |g(x)|rdP (x)

]1/r
< ∞.

An ε-bracket in Lr(P ) is a pair of functions l, u ∈ Lr(P ) with P{l(X) ≤
u(X)} = 1 and with ‖l−u‖r,P ≤ ε. A function f ∈ F lies in the bracket l, u
if P{l(X) ≤ f(X) ≤ u(X)} = 1. The bracketing number N[](ε,F , Lr(P )) is
the minimum number of ε-brackets in Lr(P ) needed to ensure that every
f ∈ F lies in at least one bracket. The logarithm of the bracketing num-
ber is the entropy with bracketing. The following is one of the simplest
Glivenko-Cantelli theorems (the proof is deferred until part II):

Theorem 2.2 Let F be a class of measurable functions and suppose that
N[](ε,F , L1(P )) < ∞ for every ε > 0. Then F is P -Glivenko-Cantelli.

Consider, for example, the empirical distribution function Fn based on
an i.i.d. sample X1, . . . , Xn of real random variables with distribution F
(which defines the probability measure P on X = R). In this setting, Fn
is the empirical process Gn with class F = {1{x ≤ t}, t ∈ R}. For any
ε > 0, a finite collection of real numbers −∞ = t1 < t2 < · · · < tk = ∞
can be found so that F (tj−) − F (tj−1) ≤ ε for all 1 < j ≤ k, F (t1) = 0
and F (tk−) = 1, where H(t−) = lims↑tH(s) when such a limit exists.
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This can always be done in such a way that k ≤ 2 + 1/ε. Consider the
collection of brackets {(lj , uj), 1 < j ≤ k}, with lj(x) = 1{x ≤ tj−1} and
uj(x) = 1{x < tj} (notice that uj is not in F). Now each f ∈ F is in at least
one bracket and ‖uj−lj‖P,1 = F (tj−)−F (tj−1) ≤ ε for all 1 < j ≤ k. Thus
N[](ε,F , L1(P )) < ∞ for every ε > 0, and the conditions of theorem 2.2
are met.

Donsker theorems based on entropy with bracketing require more strin-
gent conditions on the number of brackets needed to cover F . The brack-
eting integral,

J[](δ,F , Lr(P )) ≡
∫ δ

0

√
logN[](ε,F , Lr(P ))dε,

needs to be bounded for r = 2 and δ = ∞ to establish that F is Donsker.
Hence the bracketing entropy is permitted to go to ∞ as ε ↓ 0, but not
too quickly. For most of the classes F of interest, the entropy does go to
∞ as ε ↓ 0. However, a surprisingly large number of these classes satisfy
the conditions of theorem 2.3 below, our first Donsker theorem (which we
prove in chapter 8):

Theorem 2.3 Let F be a class of measurable functions with J[](∞,F ,
L2(P )) < ∞. Then F is P -Donsker.

Returning again to the empirical distribution function example, we have
for the ε-brackets used previously that ‖uj − lj‖P,2 = (‖uj − lj‖P,1)1/2 ≤
ε1/2. Hence the minimum number of L2 ε-brackets needed to cover F is
bounded by 1 + 1/ε2, since an L1 ε

2-bracket is an L2 ε-bracket. For ε > 1,
the number of brackets needed is just 1. J[](∞,F , L2(P )) will therefore be
finite if

∫ 1

0

√
log(1 + 1/ε2)dε < ∞. Using the fact that log(1+a) ≤ 1+log(a)

for a ≥ 1 and the variable substitution u = 1 + log(1/ε2), we obtain that
this integral is bounded by

∫∞
0
u1/2e−u/2du =

√
2π. Thus the conditions of

theorem 2.3 are easily satisfied. We now give two other examples of classes
with bounded Lr(P ) bracketing integral. Parametric classes of the form
F = {fθ : θ ∈ Θ} work, provided Θ is a bounded subset of Rp and there
exists an m ∈ Lr(P ) such that |fθ1(x) − fθ2(x)| ≤ m(x)‖θ1 − θ2‖ for all
θ1, θ2 ∈ Θ. Here, ‖ · ‖ is the standard Euclidean norm on Rp. The class F
of all monotone functions f : R �→ [0, 1] also works for all 1 ≤ r < ∞ and
all probability measures P .

Entropy calculations for other classes that arise in statistical applications
can be difficult. However, there are a number of techniques for doing this
which are not difficult to apply in practice and which we will explore briefly
later on in this section. Unfortunately, there are also many classes F for
which entropy with bracketing does not work at all. An alternative which
can be useful in such settings is entropy based on covering numbers. The
covering number N(ε,F , Lr(Q)) is the minimum number of Lr(Q) ε-balls
needed to cover F , where an Lr(Q) ε-ball around a function g ∈ Lr(Q) is



18 2. An Overview of Empirical Processes

the set {h ∈ Lr(Q) : ‖h− g‖Q,r < ε}. For a collection of balls to cover F ,
all elements of F must be included in at least one of the balls, but it is not
necessary that the centers of the balls be contained in F . The entropy is
the logarithm of the covering number. The bracketing entropy conditions
in theorems 2.2 and 2.3 can be replaced by conditions based on the uniform
covering numbers

sup
Q
N (ε‖F‖Q,r,F , Lr(Q)) ,(2.7)

where F : X �→ R is an envelope for F , meaning that |f(x)| ≤ F (x)
for all x ∈ X and all f ∈ F , and where the supremum is taken over
all finitely discrete probability measures Q with ‖F‖Q,r > 0. A finitely
discrete probability measure on X puts mass only at a finite number of
points in X . Notice that the uniform covering number does not depend
on the probability measure P for the observed data. The uniform entropy
integral is

J(δ,F , Lr) =
∫ δ

0

√
log sup

Q
N (ε‖F‖Q,r,F , Lr(Q))dε,

where the supremum is taken over the same set used in (2.7).
The following two theorems (given without proof) are Glivenko-Cantelli

and Donsker results for uniform entropy:

Theorem 2.4 Let F be an appropriately measurable class of measurable
functions with supQN(ε‖F‖1,Q,F , L1(Q)) < ∞ for every ε > 0, where the
supremum is taken over the same set used in (2.7). If P ∗F < ∞, then F
is P -Glivenko-Cantelli.

Theorem 2.5 Let F be an appropriately measurable class of measurable
functions with J(1,F , L2) < ∞. If P ∗F 2 <∞, then F is P -Donsker.

Discussion of the “appropriately measurable” condition will be postponed
until part II, but suffice it to say that it is satisfied for many function classes
of interest in statistical applications.

An important collection of function classes F , which satisfies J(1,F , Lr)
< ∞ for any 1 ≤ r < ∞, are the Vapnik-C̆ervonenkis classes, or VC
classes. Many classes of interest in statistics are VC, including the class of
indicator functions explored earlier in the empirical distribution function
example and also vector space classes. A vector space class F has the
form {

∑k
i=1 λifi(x), (λ1, . . . λk) ∈ Rk} for fixed functions f1, . . . , fk. We

will postpone further definition and discussion of VC classes until part II.
The important thing to know at this point is that one does not need

to calculate entropy for each new problem. There are a number of easy
methods which can be used to determine whether a given class is Glivenko-
Cantelli or Donsker based on whether the class is built up of other, well-
known classes. For example, subsets of Donsker classes are Donsker since
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condition (ii) of theorem 2.1 is clearly satisfied for any subset of T if it is
satisfied for T . One can also use theorem 2.1 to show that finite unions of
Donsker classes are Donsker. When F and G are Donsker, the following are
also Donsker: {f∧g : f ∈ F , g ∈ G}, {f∨g : f ∈ F , g ∈ G}, where ∨ denotes
maximum, and {f + g : f ∈ F , g ∈ G}. If F and G are bounded Donsker
classes, then {fg : f ∈ F , g ∈ G} is Donsker. Also, Lipschitz continuous
functions of Donsker classes are Donsker. Furthermore, if F is Donsker,
then it is also Glivenko-Cantelli. These, and many other tools for verifying
that a given class is Glivenko-Cantelli or Donsker, will be discussed in
greater detail in chapter 9.

2.2.3 Bootstrapping Empirical Processes

An important aspect of inference for empirical processes is to be able to
obtain covariance and confidence band estimates. The limiting covariance
for a P -Donsker class F is σ : F × F �→ R, where σ(f, g) = Pfg −
PfPg. The covariance estimate σ̂ : F × F �→ R, where σ̂(f, g) = Pnfg −
PnfPng, is uniformly consistent for σ outer almost surely if and only if
P ∗ [supf∈F(f(X) − Pf)2

]
< ∞. This will be proved later in part II. How-

ever, this is only of limited use since critical values for confidence bands
cannot in general be determined from the covariance when F is not finite.
The bootstrap is an effective alternative.

As mentioned earlier, some care must be taken to ensure that the concept
of weak convergence makes sense when the statistics of interest may not
be measurable. This issue becomes more delicate with bootstrap results
which involve convergence of conditional laws given the observed data.
In this setting, there are two sources of randomness, the observed data
and the resampling done by the bootstrap. For this reason, convergence
of conditional laws is assessed in a slightly different manner than regular
weak convergence. An important result is that Xn � X in the metric space
(D, d) if and only if

sup
f∈BL1

|E∗f(Xn) − Ef(X)| → 0,(2.8)

where BL1 is the space of functions f : D �→ R with Lipschitz norm
bounded by 1, i.e., ‖f‖∞ ≤ 1 and |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ D,
and where ‖ · ‖∞ is the uniform norm.

We can now use this alternative definition of weak convergence to define
convergence of the conditional limit laws of bootstraps. Let X̂n be a se-
quence of bootstrapped processes in D with random weights which we will

denote M . For some tight process X in D, we use the notation X̂n
P�
M
X to

mean that suph∈BL1

∣∣∣EMh(X̂n) − Eh(X)
∣∣∣ P→ 0 and EMh(X̂n)∗−EMh(X̂n)∗

P→ 0, for all h ∈ BL1, where the subscript M in the expectations indicates



20 2. An Overview of Empirical Processes

conditional expectation over the weights M given the remaining data, and
where h(X̂n)∗ and h(X̂n)∗ denote measurable majorants and minorants
with respect to the joint data (including the weights M). We use the nota-
tion X̂n

as∗�
M
X to mean the same thing except with all P→’s replaced by as∗→’s.

Note that the h(X̂n) inside of the supremum does not have an asterisk: this
is because Lipschitz continuous function of the bootstrapped processes we
will study in this book will always be measurable functions of the random
weights when conditioning on the data.

As mentioned previously, the bootstrap empirical measure can be de-
fined as P̂nf = n−1

∑n
i=1Wnif(Xi), where �Wn = (Wn1, . . . ,Wnn) is a

multinomial vector with probabilities (1/n, . . . , 1/n) and number of trials
n, and where �Wn is independent of the data sequence �X = (X1, X2, . . .).
We can now define a useful and simple alternative to this standard non-
parametric bootstrap. Let �ξ = (ξ1, ξ2, . . .) be an infinite sequence of non-
negative i.i.d. random variables, also independent of �X, which have mean
0 < μ < ∞ and variance 0 < τ2 <∞, and which satisfy ‖ξ‖2,1 < ∞, where
‖ξ‖2,1 =

∫∞
0

√
P (|ξ| > x)dx. This last condition is slightly stronger than

bounded second moment but is implied whenever the 2 + ε moment exists
for any ε > 0. We can now define a multiplier bootstrap empirical measure
P̃nf = n−1

∑n
i=1(ξi/ξ̄n)f(Xi), where ξ̄n = n−1

∑n
i=1 ξi and P̃n is defined

to be zero if ξ̄ = 0. Note that the weights add up to n for both bootstraps.
When ξ1 has a standard exponential distribution, for example, the moment
conditions are clearly satisfied, and the resulting multiplier bootstrap has
Dirichlet weights.

Under these conditions, we have the following two theorems (which we
prove in part II), for convergence of the bootstrap, both in probability and
outer almost surely. Let Ĝn =

√
n(P̂n−Pn), G̃n =

√
n(μ/τ)(P̃n−Pn), and

G be the standard Brownian bridge in �∞(F).

Theorem 2.6 The following are equivalent:

(i) F is P -Donsker.

(ii) Ĝn
P�
W

G in �∞(F) and the sequence Ĝn is asymptotically measurable.

(iii) G̃n
P�
ξ

G in �∞(F) and the sequence G̃n is asymptotically measurable.

Theorem 2.7 The following are equivalent:

(i) F is P -Donsker and P ∗ [supf∈F(f(X) − Pf)2
]
< ∞.

(ii) Ĝn
as∗�
W

G in �∞(F).

(iii) G̃n
as∗�
ξ

G in �∞(F).
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According to theorem 2.7, the almost sure consistency of the bootstrap
requires the same moment condition required for almost sure uniform con-
sistency of the covariance estimator σ̂. In contrast, the consistency in proba-
bility of the bootstrap given in theorem 2.6 only requires that F is Donsker.
Thus consistency in probability of the bootstrap empirical process is an au-
tomatic consequence of weak convergence in the first place. Fortunately,
consistency in probability is adequate for most statistical applications,
since this implies that confidence bands constructed from the bootstrap
are asymptotically valid. This follows because, as we will also establish in
part II, whenever the conditional law of a bootstrapped quantity (say X̂n)
in a normed space (with norm ‖ · ‖) converges to a limiting law (say of
X), either in probability or outer almost surely, then the conditional law of
‖X̂n‖ converges to that of ‖X‖ under mild regularity conditions. We will
also establish a slightly more general in-probability continuous mapping
theorem for the bootstrap when the continuous map g is real valued.

Suppose we wish to construct a 1−α level confidence band for {Pf, f ∈
F}, where F is P -Donsker. We can obtain a large number, sayN , bootstrap
realizations of supf∈F

∣∣∣Ĝnf
∣∣∣ to estimate the 1−α quantile of supf∈F |Gf |. If

we call this estimate ĉ1−α, then theorem 2.6 tells us that {Pnf ± ĉ1−α, f ∈ F}
has coverage 1−α for large enough n and N . For a more specific example,
consider estimating F (t1, t2) = P{Y1 ≤ t1, Y2 ≤ t2}, where X = (Y1, Y2)
has an arbitrary bivariate distribution. We can estimate F (t1, t2) with
F̂n(t1, t2) = n−1

∑n
i=1 1{Y1i ≤ t1, Y2i ≤ t2}. This is the same as estimat-

ing {Pf, f ∈ F}, where F = (f(x) = 1{y1 ≤ t1, y2 ≤ t2} : t1, t2 ∈ R). This
is a bounded Donsker class since F = {f1f2 : f1 ∈ F1, f2 ∈ F2}, where
Fj = (1{yj ≤ t}, t ∈ R) is a bounded Donsker class for j = 1, 2. We thus
obtain consistency in probability of the bootstrap. We also obtain outer al-
most sure consistency of the bootstrap by theorem 2.7, since F is bounded
by 1.

2.2.4 The Functional Delta Method

Suppose Xn is a sequence of random variables with
√
n(Xn − θ) � X for

some θ ∈ Rp, and the function φ : Rp �→ Rq has a derivative φ′(θ) at θ.
The standard delta method now tells us that

√
n(φ(Xn)−φ(θ))� φ′(θ)X .

However, many important statistics based on i.i.d. data involve maps from
empirical processes to spaces of functions, and hence cannot be handled by
the standard delta method. A simple example is the map φξ which takes
cumulative distribution functions H and computes {ξp, p ∈ [a, b]}, where
ξp = H−1(p) = inf{t : H(t) ≥ p} and [a, b] ⊂ (0, 1). The sample p-th
quantile is then ξ̂n(p) = φξ(Fn)(p). Although the standard delta method
cannot be used here, the functional delta method can be.

Before giving the main functional delta method results, we need to define
derivatives for functions between normed spaces D and E. A normed space
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is a metric space (D, d), where d(x, y) = ‖x−y‖, for any x, y ∈ D, and where
‖ · ‖ is a norm. A norm satisfies ‖x + y‖ ≤ ‖x‖ + ‖y‖, ‖αx‖ = |α| × ‖x‖,
‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0, for all x, y ∈ D and all complex
numbers α. A map φ : Dφ ⊂ D �→ E is Gateaux-differentiable at θ ∈ D, if
for every fixed h ∈ D with θ + th ∈ Dφ for all t > 0 small enough, there
exists an element φ′θ(h) ∈ E such that

φ(θ + th) − φ(θ)
t

→ φ′θ(h)

as t ↓ 0. For the functional delta method, however, we need φ to have the
stronger property of being Hadamard-differentiable. A map φ : Dφ �→ E is
Hadamard-differentiable at θ ∈ D, tangentially to a set D0 ⊂ D, if there
exists a continuous linear map φ′θ : D �→ E such that

φ(θ + tnhn) − φ(θ)
tn

→ φ′θ(h),

as n → ∞, for all converging sequences tn → 0 and hn → h ∈ D0, with
hn ∈ D and θ + tnhn ∈ Dφ for all n ≥ 1 sufficiently large.

For example, let D = D[0, 1], where DA, for any interval A ⊂ R, is the
space of cadlag (right-continuous with left-hand limits) real functions on
A with the uniform norm. Let Dφ = {f ∈ D[0, 1] : |f | > 0}. Consider the
function φ : Dφ �→ E = D[0, 1] defined by φ(g) = 1/g. Notice that for any
θ ∈ Dφ, we have, for any converging sequences tn ↓ 0 and hn → h ∈ D,
with hn ∈ D and θ + tnhn ∈ Dφ for all n ≥ 1,

φ(θ + tnhn) − φ(θ)
tn

=
1

tn(θ + tnhn)
− 1
tnθ

= − hn
θ(θ + tnhn)

→ − h

θ2
,

where we have suppressed the argument in g for clarity. Thus φ is Hadamard-
differentiable, tangentially to D, with φ′θ(h) = −h/θ2.

Sometimes Hadamard differentiability is also called compact differentia-
bility. Another important property of this kind of derivative is that it satis-
fies a chain rule, in that compositions of Hadamard-differentiable functions
are also Hadamard-differentiable. Details on this and several other aspects
of functional differentiation will be postponed until part II. We have the
following important result (the proof of which will be given in part II):

Theorem 2.8 For normed spaces D and E, let φ : Dφ ⊂ D �→ E be
Hadamard-differentiable at θ tangentially to D0 ⊂ D. Assume that rn(Xn−
θ)� X for some sequence of constants rn → ∞, where Xn takes its values
in Dφ, and X is a tight process taking its values in D0. Then rn(φ(Xn) −
φ(θ))� φ′θ(X).

Consider again the quantile map φξ, and let the distribution function
F be absolutely continuous over N = [u, v] = [F−1(a) − ε, F−1(b) + ε],
for some ε > 0, with continuous density f such that 0 < inft∈N f(t) ≤



2.2 Empirical Process Techniques 23

supt∈N f(t) < ∞. Also let D1 ⊂ D[u, v] be the space of all distribution
functions restricted to [u, v]. We will now argue that φξ is Hadamard-
differentiable at F tangentially to C[u, v], where for any interval A ⊂ R,
CA is the space of continuous real functions on A. Let tn → 0 and {hn} ∈
D[u, v] converge uniformly to h ∈ C[u, v] such that F + tnhn ∈ D1 for all
n ≥ 1, and denote ξp = F−1(p), ξpn = (F + tnhn)−1(p), ξNpn = (ξpn∨u)∧v,
and εpn = t2n ∧ (ξNpn − u). The reason for the modification ξNpn is to ensure
that the quantile estimate is contained in [u, v] and hence also εpn ≥ 0.
Thus there exists an n0 <∞, such that for all n ≥ n0, (F + tnhn)(u) < a,
(F + tnhn)(v) > b, εpn > 0 and ξNpn = ξpn for all p ∈ [a, b], and therefore

(F + tnhn)(ξNpn − εpn) ≤ F (ξp) ≤ (F + tnhn)(ξNpn)(2.9)

for all p ∈ [a, b], since (F + tnhn)−1(p) is the smallest x satisfying (F +
tnhn)(x) ≥ p and F (ξp) = p.

Since F (ξNpn − εpn) = F (ξNpn) + O(εpn), hn(ξNpn) − h(ξNpn) = o(1), and
hn(ξNpn − εpn) − h(ξNpn − εpn) = o(1), where O and o are uniform over
p ∈ [a, b] (here and for the remainder of our argument), we have that (2.9)
implies

F (ξNpn) + tnh(ξNpn − εpn) + o(tn) ≤ F (ξp)(2.10)

≤ F (ξNpn) + tnh(ξNpn) + o(tn).

But this implies that F (ξNpn) + O(tn) ≤ F (ξp) ≤ F (ξNpn) + O(tn), which
implies that |ξpn − ξp| = O(tn). This, together with (2.10) and the fact
that h is continuous, implies that F (ξpn)−F (ξp) = −tnh(ξp)+ o(tn). This
now yields

ξpn − ξp
tn

= −h(ξp)
f(ξp)

+ o(1),

and the desired Hadamard-differentiability of φξ follows, with derivative
φ′F (h) = {−h(F−1(p))/f(F−1(p)), p ∈ [a, b]}.

The functional delta method also applies to the bootstrap. Consider the
sequence of random elements Xn(Xn) in a normed space D, and assume
that rn(Xn−μ)� X, where X is tight in D, for some sequence of constants
0 < rn � ∞. Here, Xn is a generic empirical process based on the data
sequence {Xn, n ≥ 1}, and is not restricted to i.i.d. data. Now assume
we have a bootstrap of Xn, X̂n(Xn,Wn), where W = {Wn} is a sequence
of random bootstrap weights which are independent of Xn. Also assume

X̂n
P�
W

X. We have the following bootstrap result:

Theorem 2.9 For normed spaces D and E, let φ : Dφ ⊂ D �→ E be
Hadamard-differentiable at μ tangentially to D0 ⊂ D, with derivative φ′μ.
Let Xn and X̂n have values in Dφ, with rn(Xn−μ)� X, where X is tight and
takes its values in D0, the maps Wn �→ X̂n are appropriately measurable,

and where rnc(X̂n − Xn)
P�
W

X. Then rnc(φ(X̂n) − φ(Xn))
P�
W
φ′μ(X).
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We will postpone until part II a more precise discussion of what “appro-
priately measurable” means in this context.

When Xn in the previous theorem is the empirical process Pn indexed by
a Donsker class F and rn =

√
n, the results of theorem 2.6 apply with μ = P

for either the nonparametric or multiplier bootstrap weights. Moreover, the
above measurability condition also holds (this will be verified in chapter 12).
Thus the bootstrap is automatically valid for Hadamard-differentiable func-
tions applied to empirical processes indexed by Donsker classes. As a sim-
ple example, bootstraps of the quantile process {ξ̂n(p), p ∈ [a, b] ⊂ (0, 1)}
are valid, provided the conditions given in the example following theo-
rem 2.8 for the density f over the interval N are satisfied. This can be
used, for example, to create asymptotically valid confidence bands for
{F−1(p), p ∈ [a, b]}. There are also results for outer almost sure con-
ditional convergence of the conditional laws of the bootstrapped process
rn(φ(X̂n) − φ(Xn)), but this requires stronger conditions on the differen-
tiability of φ, and we will not pursue this further in this book.

2.2.5 Z-Estimators

A Z-estimator θ̂n is the approximate zero of a data-dependent function. To
be more precise, let the parameter space be Θ and let Ψn : Θ �→ L be a
data-dependent function between two normed spaces, with norms ‖ · ‖ and
‖ · ‖L , respectively. If ‖Ψn(θ̂n)‖L

P→ 0, then θ̂n is a Z-estimator. The main
statistical issues for such estimators are consistency, asymptotic normality
and validity of the bootstrap. Usually, Ψn is an estimator of a fixed function
Ψ : Θ �→ L with Ψ(θ0) = 0 for some parameter of interest θ0 ∈ Θ. We save
the proof of the following theorem as an exercise:

Theorem 2.10 Let Ψ(θ0) = 0 for some θ0 ∈ Θ, and assume ‖Ψ(θn)‖L →
0 implies ‖θn − θ0‖ → 0 for any sequence {θn} ∈ Θ (this is an “identifia-
bility” condition). Then

(i) If ‖Ψn(θ̂n)‖L

P→ 0 for some sequence of estimators θ̂n ∈ Θ and
supθ∈Θ ‖Ψn(θ) − Ψ(θ)‖L

P→ 0, then ‖θ̂n − θ0‖
P→ 0.

(ii) If ‖Ψn(θ̂n)‖L

as∗→ 0 for some sequence of estimators θ̂n ∈ Θ and
supθ∈Θ ‖Ψn(θ) − Ψ(θ)‖L

as∗→ 0, then ‖θ̂n − θ0‖
as∗→ 0.

Consider, for example, estimating the survival function for right-censored
failure time data. In this setting, we observe X = (U, δ), where U = T ∧C,
δ = 1{T ≤ C}, T is a failure time of interest with distribution function F0

and survival function S0 = 1 − F0 with S0(0) = 1, and C is a censoring
time with distribution and survival functions G and L = 1−G, respectively,
with L(0) = 1. For a sample of n observations {Xi, i = 1 . . . n}, let {T̃j, j =
1 . . .mn} be the unique observed failure times. The Kaplan-Meier estimator
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Ŝn of S0 is then given by

Ŝn(t) =
∏

j:T̃j≤t

(
1 −

∑n
i=1 δi1{Ui = T̃j}∑n
i=1 1{Ui ≥ T̃j}

)
.

Consistency and other properties of this estimator can be demonstrated via
standard continuous-time martingale arguments (Fleming and Harrington,
1991; Andersen, Borgun, Keiding and Gill, 1993); however, it is instructive
to use empirical process arguments for Z-estimators.

Let τ < ∞ satisfy L(τ−)S0(τ−) > 0, and let Θ be the space of all
survival functions S with S(0) = 1 and restricted to [0, τ ]. We will use the
uniform norm ‖ ·‖∞ on Θ. After some algebra, the Kaplan-Meier estimator
can be shown to be the solution of Ψn(Ŝn) = 0, where Ψn : Θ �→ Θ has the
form Ψn(S)(t) = PnψS,t, where

ψS,t(X) = 1{U > t} + (1 − δ)1{U ≤ t}1{S(U) > 0} S(t)
S(U)

− S(t).

This is Efron’s (1967) “self-consistency” expression for the Kaplan-Meier.
For the fixed function Ψ, we use Ψ(S)(t) = PψS,t. Somewhat surprisingly,
the class of function F = {ψS,t : S ∈ Θ, t ∈ [0, τ ]} is P -Donsker. To see
this, first note that the class M of monotone functions f : [0, τ ] �→ [0, 1] of
the real random variable U has bounded entropy (with bracketing) integral,
which fact we establish later in part II. Now the class of functions M1 =
{ψ̃S,t : S ∈ Θ, t ∈ [0, τ ]}, where

ψ̃S,t(U) = 1{U > t} + 1{U ≤ t}1{S(U) > 0} S(t)
S(U)

,

is a subset of M, since ψ̃S,t(U) is monotone in U on [0, τ ] and takes values
only in [0, 1] for all S ∈ Θ and t ∈ [0, τ ]. Note that (1{U ≤ t} : t ∈ [0, τ ]) is
also Donsker (as argued previously), and so is {δ} (trivially) and {S(t) : S ∈
Θ, t ∈ [0, τ ]}, since any class of fixed functions is always Donsker. Since all of
these Donsker classes are bounded, we now have that F is Donsker sinces
sums and products of bounded Donsker classes are also Donsker. Since
Donsker classes are also Glivenko-Cantelli, we have that supS∈Θ ‖Ψn(S)−
Ψ(S)‖∞ as∗→ 0. If we can establish the identifiability condition for Ψ, the
outer almost sure version of theorem 2.10 gives us that ‖Ŝn − S0‖∞ as∗→ 0.

After taking expectations, the function Ψ can be shown to have the form

Ψ(S)(t) = PψS,t = S0(t)L(t) +
∫ t

0

S0(u)
S(u)

dG(u)S(t) − S(t).(2.11)

Thus, if we make the substitution εn(t) = S0(t)/Sn(t) − 1, Ψ(Sn)(t) → 0
uniformly over t ∈ [0, τ ] implies that un(t) = εn(t)L(t)+

∫ t
0 εn(u)dG(u) → 0
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uniformly over the same interval. By solving this integral equation, we
obtain εn(t) = un(t)/L(t−)−

∫ t−
0 [L(s)L(s−)]−1

un(s)dG(s), which implies
εn(t) → 0 uniformly, since L(t−) ≥ L(τ−) > 0. Thus ‖Sn − S0‖∞ → 0,
implying the desired identifiability.

We now consider weak convergence of Z-estimators. Let Ψn, Ψ, Θ and
L be as at the beginning of this section. We have the following master
theorem for Z-estimators, the proof of which will be given in part II:

Theorem 2.11 Assume that Ψ(θ0) = 0 for some θ0 in the interior of
Θ,

√
nΨn(θ̂n)

P→ 0, and ‖θ̂n − θ0‖ P→ 0 for the random sequence {θ̂n} ∈ Θ.
Assume also that

√
n(Ψn−Ψ)(θ0)� Z, for some tight random Z, and that∥∥∥√n(Ψn(θ̂n) − Ψ(θ̂n)) −

√
n(Ψn(θ0) − Ψ(θ0))

∥∥∥
L

1 +
√
n‖θ̂n − θ0‖

P→ 0.(2.12)

If θ �→ Ψ(θ)is Fréchet-differentiable at θ0 (defined below) with continuously-
invertible (also defined below) derivative Ψ̇θ0 , then

‖
√
nΨ̇θ0(θ̂n − θ0) +

√
n(Ψn − Ψ)(θ0)‖L

P→ 0(2.13)

and thus
√
n(θ̂n − θ0)� −Ψ̇−1

θ0
(Z).

Fréchet-differentiability of a map φ : Θ ⊂ D �→ L at θ ∈ Θ is stronger
than Hadamard-differentiability, in that it means there exists a continuous,
linear map φ′θ : D �→ L with

‖φ(θ + hn) − φ(θ) − φ′θ(hn)‖L

‖hn‖
→ 0(2.14)

for all sequences {hn} ⊂ D with ‖hn‖ → 0 and θ + hn ∈ Θ for all n ≥ 1.
Continuous invertibility of an operator A : Θ �→ L essentially means A is
invertible with the property that for a constant c > 0 and all θ1, θ2 ∈ Θ,

‖A(θ1) −A(θ2)‖L ≥ c‖θ1 − θ2‖.(2.15)

An operator is a map between spaces of function, such as the maps Ψ
and Ψn. We will postpone further discussion of operators and continuous
invertibility until part II.

Returning to our Kaplan-Meier example, with Ψn(S)(t) = PnψS,t and
Ψ(S)(t) = PψS,t as before, note that since F = {ψS,t, S ∈ Θ, t ∈ [0, τ ]} is
Donsker, we easily have that

√
n(Ψn − Ψ)(θ0)� Z, for θ0 = S0 and some

tight random Z. We also have that for any {Sn} ∈ Θ converging uniformly
to S0,

sup
t∈[0,τ ]

P (ψSn,t − ψS0,t)
2 ≤ 2 sup

t∈[0,τ ]

∫ t

0

[
Sn(t)
Sn(u)

− S0(t)
S0(u)

]2

S0(u)dG(u)

+2 sup
t∈[0,τ ]

(Sn(t) − S0(t))2

→ 0.
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This can be shown to imply (2.12). After some analysis, Ψ can be shown
to be Fréchet-differentiable at S0, with derivative

Ψ̇θ0(h)(t) = −
∫ t

0

S0(t)h(u)
S0(u)

dG(u) − L(t)h(t),(2.16)

for all h ∈ D[0, τ ], having continuous inverse

Ψ̇−1
θ0

(a)(t) = −S0(t)(2.17)

×
{
a(0) +

∫ t

0

1
L(u−)S0(u−)

[
da(u) +

a(u)dF0(u)
S0(u)

]}
,

for all a ∈ D[0, τ ]. Thus all of the conditions of theorem 2.11 are satisfied,
and we obtain the desired weak convergence of

√
n(Ŝn − S0) to a tight,

mean zero Gaussian process. The covariance of this process is

V (s, t) = S0(s)S0(t)
∫ s∧t

0

dF0(u)
L(u−)S0(u)S0(u−)

,

which can be derived after lengthy but straightforward calculations (which
we omit).

Returning to general Z-estimators, there are a number of methods for
showing that the conditional law of a bootstrapped Z-estimator, given the
observed data, converges to the limiting law of the original Z-estimator.
One important approach which is applicable to non-i.i.d. data involves es-
tablishing Hadamard-differentiability of the map φ which extracts a zero
from the function Ψ. We will explore this approach in part II. We close this
section with a simple bootstrap result for the setting where Ψn(θ)(h) =
Pnψθ,h and Ψ(θ)(h) = Pψθ,h, for random and fixed real maps indexed
by θ ∈ Θ and h ∈ H. Assume that Ψ(θ0)(h) = 0 for some θ0 ∈ Θ
and all h ∈ H, that suph∈H |Ψ(θn)(h)| → 0 implies ‖θn − θ0‖ → 0 for
any sequence {θn} ∈ Θ, and that Ψ is Fréchet-differentiable with continu-
ously invertible derivative Ψ̇′

θ0
. Also assume that F = {ψθ,h : θ ∈ Θ, h ∈

H} is P -G-C with supθ∈Θ,h∈G P |ψθ,h| < ∞. Furthermore, assume that
G = {ψθ,h : θ ∈ Θ, ‖θ − θ0‖ ≤ δ, h ∈ H}, where δ > 0, is P -Donsker
and that suph∈H P (ψθn,h − ψθ0,h)

2 → 0 for any sequence {θn} ∈ Θ with
‖θn−θ0‖ → 0. Then, using arguments similar to those used in the Kaplan-
Meier example and with the help of theorems 2.10 and 2.11, we have
that if θ̂n satisfies suph∈H

∣∣∣√nΨn(θ̂n)
∣∣∣ P→ 0, then ‖θ̂n − θ0‖ P→ 0 and

√
n(θ̂n − θ0) � −Ψ̇−1

θ0
(Z), where Z is the tight limiting distribution of√

n(Ψn(θ0) − Ψ(θ0)).
Let Ψ◦

n(θ)(h) = P◦
nψθ,h, where P◦

n is either the nonparametric bootstrap
P̂n or the multiplier bootstrap P̃n defined in section 2.2.3, and define the
bootstrap estimator θ̂◦n ∈ Θ to be a minimizer of suph∈H |Ψ◦

n(θ)(h)| over
θ ∈ Θ. We will prove in part II that these conditions are more than enough
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to ensure that
√
n(θ̂◦n− θ̂n)

P�
W

− Ψ̇−1
θ0

(Z), where W refers to either the non-
parametric or multiplier bootstrap weights. Thus the bootstrap is valid.
These conditions for the bootstrap are satisfied in the Kaplan-Meier exam-
ple, for either the nonparametric or multiplier weights, thus enabling the
construction of confidence bands for S0(t) over t ∈ [0, τ ].

2.2.6 M-Estimators

An M-estimator θ̂n is the approximate maximum of a data-dependent func-
tion. To be more precise, let the parameter set be a metric space (Θ, d)
and let Mn : Θ �→ R be a data-dependent real function. If Mn(θ̂n) =
supθ∈ΘMn(θ)−op(1), then θ̂n is an M-estimator. Maximum likelihood and
least-squares (after changing the sign of the objective function) estima-
tors are some of the most important examples, but there are many other
examples as well. As with Z-estimators, the main statistical issues for M-
estimators are consistency, weak convergence and validity of the bootstrap.
Unlike Z-estimators, the rate of convergence for M-estimators is not nec-
essarily

√
n, even for i.i.d. data, and finding the right rate can be quite

challenging.
For establishing consistency, Mn is often an estimator of a fixed function

M : Θ �→ R. We now present the following consistency theorem (the proof
of which is deferred to part II):

Theorem 2.12 Assume for some θ0 ∈ Θ that lim infn→∞M(θn) ≥
M(θ0) implies d(θn, θ0) → 0 for any sequence {θn} ∈ Θ (this is another
identifiability condition). Then, for a sequence of estimators θ̂n ∈ Θ,

(i) If Mn(θ̂n) = supθ∈ΘMn(θ) − op(1) and supθ∈Θ |Mn(θ) −M(θ)| P→ 0,

then d(θ̂n, θ0)
P→ 0.

(ii) If Mn(θ̂n) = supθ∈ΘMn(θ) − oas∗(1) and supθ∈Θ |Mn(θ) −M(θ)| as∗→
0, then d(θ̂n, θ0)

as∗→ 0.

Suppose, for now, we know that the rate of convergence for the M-
estimator θ̂n is rn, or, in other words, we know that Zn = rn(θ̂n − θ0) =
Op(1). Zn can now be re-expressed as the approximate maximum of the
criterion function h �→ Hn(h) = Mn(θ0 + h/rn) for h ranging over some
metric space H. If the argmax of Hn over bounded subsets of H can now be
shown to converge weakly to the argmax of a tight limiting process H over
the same bounded subsets, then Zn converges weakly to argmaxh∈H

H(h).
We will postpone the technical challenges associated with determining

these rates of convergence until part II, and restrict ourselves to an inter-
esting special case involving Euclidean parameters, where the rate is known
to be

√
n. The proof of the following theorem is also deferred to part II:
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Theorem 2.13 Let X1, . . . , Xn be i.i.d. with sample space X and law
P , and let mθ : X �→ R be measurable functions indexed by θ ranging over
an open subset of Euclidean space Θ ⊂ Rp. Let θ0 be a bounded point of
maximum of Pmθ in the interior of Θ, and assume for some neighborhood
Θ0 ⊂ Θ including θ0, that there exists measurable functions ṁ : X �→ R

and ṁθ0 : X �→ Rp satisfying

|mθ1(x) −mθ2(x)| ≤ ṁ(x)‖θ1 − θ2‖,(2.18)
P [mθ −mθ0 − (θ − θ0)′ṁθ0 ]

2 = o(‖θ − θ0‖2),(2.19)

Pṁ2 < ∞, and P‖ṁθ0‖2 < ∞, for all θ1, θ2, θ ∈ Θ0. Assume also that
M(θ) = Pmθ admits a second order Taylor expansion with nonsingular
second derivative matrix V . Denote Mn(θ) = Pnmθ, and assume the ap-
proximate maximizer θ̂n satisfies Mn(θ̂n) = argmaxθ∈ΘMn(θ) − op(n−1)

and ‖θ̂n − θ0‖ P→ 0. Then
√
n(θ̂n − θ0)� −V −1Z, where Z is the limiting

Gaussian distribution of Gnṁθ0 .

Consider, for example, least absolute deviation regression. In this setting,
we have i.i.d. random vectors U1, . . . , Un in Rp and random errors e1, . . . , en,
but we observe only the data Xi = (Yi, Ui), where Yi = θ′0Ui + ei, i =
1 . . . n. The least-absolute-deviation estimator θ̂n minimizes the function
θ �→ Pnm̃θ, where m̃θ(X) = |Y − θ′U |. Since a minimizer of a criterion
function Mn is also a maximizer of −Mn, M-estimation methods can be
used in this context with only a change in sign. Although boundedness
of the parameter space Θ is not necessary for this regression setting, we
restrict—for ease of discourse—Θ to be a bounded, open subset of Rp

containing θ0. We also assume that the distribution of the errors ei has
median zero and positive density at zero, which we denote f(0), and that
P [UU ′] is positive definite.

Note that since we are not assuming E|ei| < ∞, it is possible that Pm̃θ =
∞ for all θ ∈ Θ. Since minimizing Pnm̃θ is the same as minimizing Pnmθ,
where mθ = m̃θ − m̃θ0 , we will use Mn(θ) = Pnmθ as our our criterion
function hereafter (without modifying the estimator θ̂n). By the definition
of Y , mθ(X) = |e − (θ − θ0)′U | − |e|, and we now have that Pmθ ≤
‖θ − θ0‖

(
E‖U‖2

)1/2
<∞ for all θ ∈ Θ. Since

|mθ1(x) −mθ2(x)| ≤ ‖θ1 − θ2‖ × ‖u‖,(2.20)

it is not hard to show that the class of function {mθ : θ ∈ Θ} is P -
Glivenko-Cantelli. It can also be shown that Pmθ ≥ 0 with equality only
when θ = θ0. Hence theorem 2.12, part (ii), yields that θ̂n

as∗→ θ0.
Now we consider M(θ) = Pmθ. By conditioning on U , one can show af-

ter some analysis that M(θ) is two times continuously differentiable, with
second derivative V = 2f(0)P [UU ′] at θ0. Note that (2.20) satisfies condi-
tion (2.18); and with ṁθ(X) = −Usign(e), we also have that

|mθ(X) −mθ0(X) − (θ − θ0)′ṁθ(X)| ≤ 1 {|e| ≤ |(θ − θ0)′U |} [(θ − θ0)′U ]2
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satisfies condition (2.19). Thus all the conditions of theorem 2.13 are satis-
fied. Hence

√
n(θ̂n− θ0) is asymptotically mean zero normal, with variance

V −1P
[
ṁθ0ṁ

′
θ0

]
V −1 = (P [UU ′])−1

/
(
4f2(0)

)
. This variance is not diffi-

cult to estimate from the data, but we postpone presenting the details.
Another technique for obtaining weak convergence of M-estimators which

are
√
n consistent, is to first establish consistency and then take an appro-

priate derivative of the criterion function Mn(θ), Ψn(θ)(h), for h ranging
over some index set H , and apply Z-estimator techniques to Ψn. This works
because the derivative of a smooth criterion function at an approximate
maximizer is approximately zero. This approach facilitates establishing the
validity of the bootstrap since such validity is often easier to obtain for
Z-estimators than for M-estimators. This approach is also applicable to
certain nonparametric maximum likelihood estimators which we will con-
sider in part III.

2.3 Other Topics

In addition to the empirical process topics outlined in the previous sections,
we will cover a few other related topics in part II, including results for
sums of independent but not identically distributed stochastic processes
and, briefly, for dependent but stationary processes. However, there are a
number of interesting empirical process topics we will not pursue in later
chapters, including general results for convergence of nets. In the remainder
of this section, we briefly outline a few additional topics not covered later
which involve sequences of empirical processes based on i.i.d. data. For
simplicity, we will primarily restrict ourselves to the empirical processGn =√
n(Fn − F ), although many of these results have extensions which apply

to more general empirical processes.
The law of the iterated logarithm for Gn states that

lim sup
n→∞

‖Gn‖∞√
2 log logn

≤ 1
2
, a.s.,(2.21)

with equality if 1/2 is in the range of F , where ‖ · ‖∞ is the uniform norm.
This can be generalized to empirical processes on P -Donsker classes F
which have a measurable envelope with bounded second moment (Dudley
and Philipp, 1983):

lim sup
n→∞

[
supf∈F |Gn(f)|

]∗√
(2 log logn) supf∈F |P (f − Pf)2|

≤ 1, a.s.

Result (2.21) can be further strengthened to Strassen’s (1964) theorem,
which states that on a set with probability 1, the set of all limiting paths
of

√
1/(2 log logn)Gn is exactly the set of all functions of the form h(F ),
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where h(0) = h(1) = 0 and h is absolutely continuous with derivative h′

satisfying
∫ 1

0 [h′(s)]2 ds ≤ 1. While the previous results give upper bounds
on ‖Gn‖∞, it is also known that

lim inf
n→∞

√
2 log logn‖Gn‖∞ =

π

2
, a.s.,

implying that the smallest uniform distance between Fn and F is at least
O(1/

√
n log logn).

A topic of interest regarding Donsker theorems is the closeness of the em-
pirical process sample paths to the limiting Brownian bridge sample paths.
The strongest result on this question for the empirical process Gn is the
KMT construction, named after Komlós, Major and Tusnády (1975, 1976).
The KMT construction states that there exists fixed positive constants a,
b, and c, and a sequence of standard Brownian bridges {Bn}, such that

P
(
‖Gn − Bn(F )‖∞ >

a logn+ x√
n

)
≤ be−cx,

for all x > 0 and n ≥ 1. This powerful result can be shown to imply both

lim sup
n→∞

√
n

logn
‖Gn − Bn(F )‖∞ < ∞, a.s., and

lim sup
n→∞

E
[ √

n

logn
‖Gn − Bn(F )‖∞

]m
< ∞,

for all 0 < m <∞. These results are called strong approximations and have
applications in statistics, such as in the construction of confidence bands for
kernel density estimators (see, for example, Bickel and Rosenblatt, 1973).

2.4 Exercises

2.4.1. Let X,Y be a pair of real random numbers with joint distribution
P . Compute upper bounds for N[](ε,F , Lr(P )), for r = 1, 2, where F =
{1{X ≤ s, Y ≤ t} : s, t ∈ R}.

2.4.2. Prove theorem 2.10.

2.4.3. Consider the Z-estimation framework for the Kaplan-Meier estima-
tor discusses in section 2.2.5. Let Ψ(S)(t) be as defined in (2.11). Show that
Ψ is Fréchet-differentiable at S0, with derivative Ψ̇θ0(h)(t) given by (2.16),
for all h ∈ D[0, τ ].

2.4.4. Continuing with the set-up of the previous problem, show that
Ψ̇θ0 is continuously invertible, with inverse Ψ̇−1

θ0
given in (2.17). The fol-

lowing approach may be easiest: First show that for any a ∈ D[0, τ ],
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h(t) = Ψ̇−1
θ0

(a)(t) satisfies Ψ̇θ0(h)(t) = a(t). The following identity may
be helpful:

d

[
a(t)
S0(t)

]
=

da(t)
S0(t−)

+
a(t)dF0(t)
S0(t−)S0(t)

.

Now show that there exists an M < ∞ such that
∥∥∥Ψ̇−1

θ0
(a)

∥∥∥ ≤M‖a‖, where
‖ · ‖ is the uniform norm. This then implies that there exists a c > 0 such
that ‖Ψ̇θ0(h)‖ ≥ c‖h‖.

2.5 Notes

Theorem 2.1 is a composite of theorems 1.5.4 and 1.5.7 of van der Vaart
and Wellner (1996) (hereafter abbreviated VW). Theorems 2.2, 2.3, 2.4
and 2.5 correspond to theorems 19.4, 19.5, 19.13 and 19.14, respectively, of
van der Vaart (1998). The if and only if implications of (2.8) are described
in VW, page 73. The implications (i)⇔(ii) in theorems 2.6 and 2.7 are given
in theorems 3.6.1 and 3.6.2, respectively, of VW. Theorems 2.8 and 2.11
correspond to theorems 3.9.4 and 3.3.1, of VW, while theorem 2.13 comes
from example 3.2.22 of VW.



This is page 33
Printer: Opaque this

3
Overview of Semiparametric Inference

This chapter presents an overview of the main ideas and techniques of
semiparametric inference, with particular emphasis on semiparametric effi-
ciency. The major distinction between this kind of efficiency and the stan-
dard notion of efficiency for parametric maximum likelihood estimators—as
expressed in the Cramér-Rao lower bound—is the presence of an infinite-
dimensional nuisance parameter in semiparametric models. Proofs and other
technical details will generally be postponed until part III.

In the first section, we define and sketch the main features of semipara-
metric models and semiparametric efficiency. The second section discusses
efficient score functions and estimating equations and their connection to
efficient estimation. The third section discussion nonparametric maximum
likelihood estimation, the main tool for constructing efficient estimators.
The fourth and final section briefly discusses several additional related
topics, including variance estimation and confidence band construction for
efficient estimators.

3.1 Semiparametric Models and Efficiency

A statistical model is a collection of probability measures {P ∈ P} on a sam-
ple space X . Such models can be expressed in the form P = {Pθ : θ ∈ Θ},
where Θ is some parameter space. Semiparametric models are statistical
models where Θ has one or more infinite-dimensional component. For ex-
ample, the parameter space for the linear regression model (1.1), where
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Y = β′Z + e, consists of two components, a subset of p-dimensional Eu-
clidean space (for the regression parameter β) and the infinite-dimensional
space of all joint distribution functions of (e, Z) with E[e|Z] = 0 and
E[e2|Z] ≤ K <∞ almost surely.

The goal of semiparametric inference is to construct optimal estimators
and test statistics for evaluating semiparametric model parameters. The pa-
rameter component of interest can be succinctly expressed as a function of
the form ψ : P �→ D, where ψ extracts the component of interest and takes
values in D. For now, we assume D is finite dimensional. As an illustration,
if we are interested in the unconditional variance of the residual errors in
the regression model (1.1), ψ would be the map ψ(P ) =

∫
R
e2dF (e), where

F (t) = P [e ≤ t] is the unconditional residual distribution component of P .
Throughout this book, the statistics of interest will be based on an i.i.d.
sample, X1, . . . , Xn, of realizations from some P ∈ P .

An estimator Tn of the parameter ψ(P ), based on such a sample, is
efficient if the limiting variance V of

√
n(Tn−ψ(P )) is the smallest possible

among all regular estimators of ψ(P ). The inverse of V is the information
for Tn. Regularity will be defined more explicitly later in this section, but
suffice it to say for now that the limiting distribution of

√
n(Tn − ψ(P ))

(as n → ∞), for a regular estimator Tn, is continuous in P . Note that as
we are changing P , the distribution of Tn changes as well as the parameter
ψ(P ). Not all estimators are regular, but most commonly used estimators
in statistics are. Optimality of test statistics is closely related to efficient
estimation, in that the most powerful test statistics for a hypothesis about
a parameter are usually based on efficient estimators for that parameter.

The optimal efficiency for estimators of a parameter ψ(P ) depends in
part on the complexity of the model P . Estimation under the model P is
more taxing than estimation under any parametric submodel P0 = {Pθ :
θ ∈ Θ0} ⊂ P , where Θ0 is finite dimensional. Thus the information for esti-
mation under model P is worse than the information under any parametric
submodel P0. If the information for the regular estimator Tn is equal to
the minimum of the information over all efficient estimators for all para-
metric submodels P0, then Tn is semiparametric efficient. For semipara-
metric models, this minimizer is the best possible, since the only models
with more information are parametric models. A parametric model which
achieves this minimum, if such a model exists, is called a least favorable
or hardest submodel. Note that efficient estimators for parametric mod-
els are trivially semiparametric efficient since such models are their own
parametric submodels.

Fortunately, finding the minimum information over parametric submod-
els usually only requires consideration of one-dimensional parametric sub-
models {Pt : t ∈ Nε} surrounding representative distributions P ∈ P ,
where Nε = [0, ε) for some ε > 0, P0 = P , and Pt ∈ P for all t ∈ Nε. If P
has a dominating measure μ, then each P ∈ P can be expressed as a density
p. In this case, we require the submodels around a representative density p
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to be smooth enough so that the real function g(x) = ∂ log pt(x)/(∂t)|t=0

exists with
∫
X g

2(x)p(x)μ(dx) < ∞. This idea can be restated in sufficient
generality to allow for models which may not be dominated. In this more
general case, we require∫ [

(dPt(x))1/2 − (dP (x))1/2

t
− 1

2
g(x)(dP (x))1/2

]2

→ 0,(3.1)

as t ↓ 0. In this setting, we say that the submodel {Pt : t ∈ Nε} is differen-
tiable in quadratic mean at t = 0, with score function g : X �→ R.

In evaluating efficiency, it is necessary to consider many such one-dimen-
sional submodels surrounding the representative P , each with a different
score function. Such a collection of score functions is called a tangent set
of the model P at P , and is denoted ṖP . Because Pg = 0 and Pg2 < ∞
for any g ∈ ṖP , such tangent sets are subsets of L0

2(P ), the space of all
functions h : X �→ R with Ph = 0 and Ph2 < ∞. Note that, as we
have done here, we will sometimes omit function arguments for simplicity,
provided the context is clear. When the tangent set is closed under linear
combinations, it is called a tangent space. Usually, one can take the closed
linear span (the closure under linear combinations) of a tangent set to make
a tangent space.

Consider P = {Pθ : θ ∈ Θ}, where Θ is an open subset of Rk. Assume
that P is dominated by μ, and that the classical score function �̇θ(x) =
∂ log pθ(x)/(∂θ) exists with Pθ[�̇θ �̇′θ] bounded. Now for each h ∈ Rk, let
ε > 0 be small enough so that {Pt : t ∈ Nε} ⊂ P , where for each t ∈ Nε,
Pt = Pθ+th. One can show that each of these one-dimensional submodels
satisfy (3.1), with g = h′�̇θ, resulting in the tangent space ṖPθ

= {h′�̇θ :
h ∈ Rk}. Thus there is a simple connection between the classical score
function and the more general idea of tangent sets and tangent spaces.

Continuing with the parametric setting, the estimator θ̂ is efficient for es-
timating θ if it is regular with information achieving the Cramér-Rao lower
bound P [�̇θ �̇′θ]. Thus the tangent set for the model contains information
about the optimal efficiency. This is also true for semiparametric models
in general, although the relationship between tangent sets and the optimal
information is more complex.

Consider estimation of the parameter ψ(P ) ∈ Rk for the semiparametric
model P . For any estimator Tn of ψ(P ), if

√
n(Tn − ψ(P )) =

√
nPnψ̌P +

op(1), where op(1) denotes a quantity going to zero in probability, then ψ̌P
is an influence function for ψ(P ) and Tn is asymptotically linear. For a given
tangent set ṖP , assume for each submodel {Pt : t ∈ Nε } satisfying (3.1)
with some g ∈ ṖP and some ε > 0, that dψ(Pt)/(dt)|t=0 = ψ̇P (g) for
some linear map ψ̇P : L0

2(P ) �→ Rk. In this setting, we say that ψ is
differentiable at P relative to ṖP . When ṖP is a linear space, there exists a
measurable function ψ̃P : X �→ Rk such that ψ̇P (g) = P

[
ψ̃P (X)g(X)

]
, for

each g ∈ ṖP . The function ψ̃P ∈ ṖP ⊂ L0
2(P ) is unique and is called the
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efficient influence function for the parameter ψ in the model P (relative to
the tangent space ṖP ). Here, and throughout the book, we abuse notation
slightly by declaring that a random vector is in a given linear space if and
only if each component of the vector is. Note that ψ̃P ∈ ṖP . Frequently,
the efficient influence function can be found by taking a candidate influence
function ψ̌P ∈ L0

2(P ) and projecting it onto ṖP to obtain ψ̃P . If
√
n(Tn −

ψ(P )) is asymptotically equivalent to
√
nPnψ̃P , then Tn can be shown to be

semiparametric efficient (which we refer to hereafter simply as “efficient”).
Consider again the parametric example, with P = {Pθ : θ ∈ Θ}, where

Θ ⊂ Rk. Suppose the parameter of interest is ψ(Pθ) = f(θ), where f : Rk �→
Rd has derivative ḟθ at θ, and that the Fisher information matrix Iθ =
P [�̇θ �̇′θ] is invertible. It is not hard to show that ψ̇P (g) = ḟθI

−1
θ P

[
�̇θ(X)g(X)

]
,

and thus ψ̃P (x) = ḟθI
−1
θ �̇θ(x). Any estimator Tn for which

√
n(Tn − f(θ))

is asymptotically equivalent to
√
nPn

[
ḟθI

−1
θ �̇θ

]
, has asymptotic variance

equal to the Cramér-Rao lower bound ḟθI−1
θ ḟ ′

θ.
Returning to the semiparametric setting, any one-dimensional submodel

{Pt : t ∈ Nε}, satisfying (3.1) for the score function g ∈ ṖP and some
ε > 0, is a parametric model with parameter t. The Fisher information for
t, evaluated at t = 0, is Pg2. Thus the Cramér-Rao lower bound for estimat-

ing a univariate parameter ψ(P ) based on this model is
(
P
[
ψ̃P g

])2

/Pg2,

since dψ(Pt)/(dt)|t=0 = P
[
ψ̃P g

]
. Provided that ψ̃P ∈ ṖP and all necessary

derivatives exist, the maximum Cramér-Rao lower bound over all such sub-
models in ṖP is thus Pψ̃2

P . For more general Euclidean parameters ψ(P ),

this lower bound on the asymptotic variance is P
[
ψ̃P ψ̃

′
P

]
.

Hence, for P
[
ψ̃P ψ̃

′
P

]
to be the upper bound for all parametric submod-

els, the tangent set must be sufficiently large. Obviously, the tangent set
must also be restricted to score functions which reflect valid submodels.
In addition, the larger the tangent set, the fewer the number of regular
estimators. To see this, we will now provide a more precise definition of
regularity. Let Pt,g denote a submodel {Pt : t ∈ Nε} satisfying (3.1) for the
score g and some ε > 0. Tn is regular for ψ(P ) if the limiting distribution
of

√
n(Tn − ψ(P1/

√
n,g)), over the sequence of distributions P1/

√
n,g, exists

and is constant over all g ∈ ṖP . Thus the tangent set must be chosen to
be large enough but not too large. Fortunately, most estimators in com-
mon use for semiparametric inference are regular for large tangent sets,
and thus there is usually quite a lot to be gained by making the effort to
obtain an efficient estimator. Once the tangent set has been identified, the
corresponding efficient estimator Tn of ψ(P ) will always be asymptotically
linear with influence function equal to the efficient influence function ψ̃P .

Consider, for example, the unrestricted model P of all distributions on
X . Suppose we are interested in estimating ψ(P ) = Pf for some f ∈ L2(P ),
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the space of all measurable functions h with Ph2 < ∞. For bounded g ∈
L0

2(P ), the one-dimensional submodel {Pt : dPt = (1 + tg)dP, t ∈ Nε} ⊂ P
for ε small enough. Furthermore, (3.1) is satisfied with ∂ψ(Pt)/(∂t)|t=0 =
P [fg]. It is not hard to show, in fact, that one-dimensional submodels sat-
isfying (3.1) with ∂ψ(Pt)/(∂t)|t=0 = P [fg] exist for all g ∈ L0

2(P ). Thus
ṖP = L0

2(P ) is a tangent set for the unrestricted model and ψ̃P (x) =
f(x)−Pf is the corresponding efficient influence function. Since

√
n(Pnf−

ψ(P )) =
√
nPnψ̃P , Pnf is efficient for estimating Pf . Note that, in this un-

restricted model, ṖP is the maximal possible tangent set, since all tangent
sets must be subsets of L0

2(P ). In general, the size of a tangent set reflects
the amount of restrictions placed on a model, in that larger tangent sets
reflect fewer restrictions.

Efficiency can also be established for infinite dimensional parameters
ψ(P ) when

√
n consistent regular estimators for ψ(P ) exist. There are a

number of ways of expressing efficiency in this context, but we will only
mention the convolution approach here. The convolution theorem states
that for any regular estimator Tn of ψ(P ),

√
n(Tn − ψ(P )) has a weak

limiting distribution which is the convolution of a Gaussian process Z and
an independent process M , where Z has the same limiting distribution as√
nPnψ̃P . In other words, an inefficient estimator always has an asymp-

totically non-negligible independent noise process M added to the efficient
estimator distribution. A regular estimator Tn for which M is zero is ef-
ficient. Occasionally, we will use the term uniformly efficient when it is
helpful to emphasize the fact that ψ(P ) is infinite dimensional. If ψ(P ) is
indexed by {t ∈ T }, and if Tn(t) is efficient for ψ(P )(t) for each t ∈ T , then
it can be shown that weak convergence of

√
n(Tn−ψ(P )) to a tight, mean

zero Gaussian process implies uniform efficiency of Tn. Another important
fact is that if Tn is an efficient estimator for ψ(P ) and φ is a suitable
Hadamard-differentiable function, then φ(Tn) is an efficient estimator for
φ(ψ(P )). We will make these results more explicit in part III.

3.2 Score Functions and Estimating Equations

A parameter ψ(P ) of particular interest is the parametric component θ
of a semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H}, where Θ is an open
subset of Rk and H is an arbitrary subset that may be infinite dimensional.
Tangent sets can be used to develop an efficient estimator for ψ(Pθ,η) = θ
through the formation of an efficient score function. In this setting, we
consider submodels of the form {Pθ+ta,ηt , t ∈ Nε} which are differentiable
in quadratic mean with score function ∂ log dPθ+ta,ηt/(∂t)|t=0 = a′�̇θ,η+ g,
where a ∈ Rk, �̇θ,η : X �→ Rk is the ordinary score for θ when η is fixed,
and where g : X �→ R is an element of a tangent set Ṗ(η)

Pθ,η
for the submodel

Pθ = {Pθ,η : η ∈ H} (holding θ fixed). This tangent set is the tangent set for
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η and should be rich enough to reflect all parametric submodels of Pθ. The
tangent set for the full model is ṖPθ,η

=
{
a′�̇θ,η + g : a ∈ Rk, g ∈ Ṗ(η)

Pθ,η

}
.

While ψ(Pθ+ta,ηt) = θ + ta is clearly differentiable with respect to t,
we also need, as in the previous section, that there there exists a function
ψ̃θ,η : X �→ Rk such that

∂ψ(Pθ+ta,ηt)
∂t

∣∣∣∣
t=0

= a = P
[
ψ̃θ,η

(
�̇′θ,ηa+ g

)]
,(3.2)

for all a ∈ Rk and all g ∈ Ṗ(η)
Pθ,η

. After setting a = 0, we see that such a

function must be uncorrelated with all of the elements of Ṗ(η)
Pθ,η

.
Define Πθ,η to be the orthogonal projection onto the closed linear span

of Ṗ(η)
Pθ,η

in L0
2(Pθ,η). We will describe how to obtain such projections in

detail in part III, but suffice it to say that for any h ∈ L0
2(Pθ,η), h =

h − Πθ,ηh + Πθ,ηh, where Πθ,ηh ∈ Ṗ(η)
Pθ,η

but P [(h− Πθ,ηh) g] = 0 for all

g ∈ Ṗ(η)
Pθ,η

. The efficient score function for θ is �̃θ,η = �̇θ,η − Πθ,η �̇θ,η, while

the efficient information matrix for θ is Ĩθ,η = P
[
�̃θ,η�̃

′
θ,η

]
.

Provided that Ĩθ,η is nonsingular, the function ψ̃θ,η = Ĩ−1
θ,η �̃θ,η satis-

fies (3.2) for all a ∈ Rk and all g ∈ Ṗ(η)
Pθ,η

. Thus the functional (parameter)

ψ(Pθ,η) = θ is differentiable at Pθ,η relative to the tangent set ṖPθ,η
, with

efficient influence function ψ̃θ,η. Hence the search for an efficient estima-
tor of θ is over if one can find an estimator Tn satisfying

√
n(Tn − θ) =

√
nPnψ̃θ,η + oP (1). Note that Ĩθ,η = Iθ,η − P

[
Πθ,η �̇θ,η

(
Πθ,η �̇θ,η

)′
]
, where

Iθ,η = P
[
�̇θ,η �̇

′
θ,η

]
. An intuitive justification for the form of the efficient

score is that some information for estimating θ is lost due to a lack of knowl-
edge about η. The amount subtracted off of the efficient score, Πθ,η �̇θ,η, is
the minimum possible amount for regular estimators when η is unknown.

Consider again the semiparametric regression model (1.1), where Y =
β′Z + e, E[e|Z] = 0 and E[e2|Z] ≤ K < ∞ almost surely, and where we
observe (Y, Z), with the joint density η of (e, Z) satisfying

∫
R
eη(e, Z)de = 0

almost surely. Assume η has partial derivative with respect to the first
argument, η̇1, satisfying η̇1/η ∈ L2(Pβ,η), and hence η̇1/η ∈ L0

2(Pβ,η),
where Pβ,η is the joint distribution of (Y, Z). The Euclidean parameter of
interest in this semiparametric model is θ = β. The score for β, assuming
η is known, is �̇β,η = −Z(η̇1/η)(Y − β′Z,Z), where we use the shorthand
(f/g)(u, v) = f(u, v)/g(u, v) for ratios of functions.

One can show that the tangent set Ṗ(η)
Pβ,η

for η is the subset of L0
2(Pβ,η)

which consists of all functions g(e, Z) ∈ L0
2(Pβ,η) which satisfy

E[eg(e, Z)|Z] =

∫
R
eg(e, Z)η(e, Z)de∫

R
η(e, Z)de

= 0,
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almost surely. One can also show that this set is the orthocomplement in
L0

2(Pβ,η) of all functions of the form ef(Z), where f satisfies Pβ,ηf2(Z) <
∞. This means that �̃β,η = (I − Πβ,η)�̇β,η is the projection in L0

2(Pβ,η) of
−Z(η̇1/η)(e, Z) onto {ef(Z) : Pβ,ηf2(Z) < ∞}, where I is the identity.
Thus

�̃β,η(Y, Z) =
−Ze

∫
R
η̇1(e, Z)ede

Pβ,η[e2|Z]
= − Ze(−1)

Pβ,η[e2|Z]
=
Z(Y − β′Z)
Pβ,η[e2|Z]

,

where the second-to-last step follows from the identity
∫

R
η̇1(e, Z)ede =

∂
∫

R
η(te, Z)de/(∂t)|t=1, and the last step follows since e = Y −β′Z. When

the function z �→ Pβ,η[e2|Z = z] is non-constant in z, �̃β,η(Y, Z) is not
proportional to Z(Y − β′Z), and the estimator β̂ defined in chapter 1 will
not be efficient. We will discuss efficient estimation for this model in greater
detail in chapter 4.

Two very useful tools for computing efficient scores are score and in-
formation operators. Although we will provide more precise definitions in
parts II and III, operators are maps between spaces of functions. Return-
ing to the generic semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H}, sometimes
it is easier to represent an element g in the tangent set for η, Ṗ(η)

Pθ,η
, as

Bθ,ηb, where b is an element of another set Hη and Bθ,η is an operator
satisfying Ṗ(η)

Pθ,η
= {Bθ,ηb : b ∈ Hη}. Such an operator is a score operator.

The adjoint of the score operator Bθ,η : Hη �→ L0
2(Pθ,η) is another oper-

ator B∗
θ,η : L0

2(Pθ,η) �→ lin Hη which is similar in spirit to a transpose for
matrices. Here we use lin A to denote closed linear span (the linear space
consisting of all linear combinations) of A. Additional details on adjoints
and methods for computing them will be described in part III. One can
now define the information operator B∗

θ,ηBθ,η : Hη �→ linHη. If B∗
θ,ηBθ,η

has an inverse, then it can be shown that the efficient score for θ has the

form �̃θ,η =
(
I −Bθ,η

[
B∗
θ,ηBθ,η

]−1

B∗
θ,η

)
�̇θ,η.

To illustrate these methods, consider the Cox model for right-censored
data introduced in chapter 1. In this setting, we observe a sample of n
realizations of X = (V, d, Z), where V = T ∧ C, d = 1{V = T }, Z ∈
Rk is a covariate vector, T is a failure time, and C is a censoring time.
We assume that T and C are independent given Z, that T given Z has
integrated hazard function eβ

′ZΛ(t) for β in an open subsetB ⊂ Rk and Λ is
continuous and monotone increasing with Λ(0) = 0, and that the censoring
distribution does not depend on β or Λ (ie., censoring is uninformative).
Define the counting and at-risk processes N(t) = 1{V ≤ t}d and Y (t) =
1{V ≥ t}, and let M(t) = N(t) −

∫ t
0 Y (s)eβ

′ZdΛ(s). For some 0 < τ < ∞
with P{C ≥ τ} > 0, let H be the set of all Λ’s satisfying our criteria with
Λ(τ) <∞. Now the set of models P is indexed by β ∈ B and Λ ∈ H . We let
Pβ,Λ be the distribution of (V, d, Z) corresponding to the given parameters.
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The likelihood for a single observation is thus proportional to pβ,Λ(X) =[
eβ

′Zλ(V )
]d

exp
[
−eβ′ZΛ(V )

]
, where λ is the derivative of Λ. Now let

L2(Λ) be the set of measurable functions b : [0, τ ] �→ R with
∫ τ
0
b2(s)dΛ(s) <

∞. If b ∈ L2(Λ) is bounded, then Λt(s) =
∫ s
0 e

tb(u)dΛ(u) ∈ H for all t. The
score function ∂ log pβ+ta,Λt(X)/(∂t)|t=0 is thus

∫ τ
0 [a′Z + b(s)] dM(s), for

any a ∈ Rk. The score function for β is therefore �̇β,Λ(X) = ZM(τ), while
the score function for Λ is

∫ τ
0 b(s)dM(s). In fact, one can show that there

exists one-dimensional submodels Λt such that log pβ+ta,Λt is differentiable
with score a′�̇β,Λ(X) +

∫ τ
0 b(s)dM(s), for any b ∈ L2(Λ) and a ∈ Rk.

The operatorBβ,Λ : L2(Λ) �→ L0
2(Pβ,Λ), given byBβ,Λ(b) =

∫ τ
0 b(s)dM(s),

is the score operator which generates the tangent set for Λ, Ṗ(Λ)
Pβ,Λ

≡
{Bβ,Λb : b ∈ L2(Λ)}. It can be shown that this tangent space spans all
square-integrable score functions for Λ generated by parametric submodels.
The adjoint operator can be shown to be B∗

β,Λ : L2(Pβ,Λ) �→ L2(Λ), where
B∗
β,Λ(g)(t) = Pβ,Λ[g(X)dM(t)]/dΛ(t). The information operatorB∗

β,ΛBβ,Λ :
L2(Λ) �→ L2(Λ) is thus

B∗
β,ΛBβ,Λ(b)(t) =

Pβ,Λ
[∫ τ

0 b(s)dM(s)dM(u)
]

dΛ(u)
= Pβ,Λ

[
Y (t)eβ

′Z
]
b(t),

using martingale methods.
Since B∗

β,Λ

(
�̇β,Λ

)
(t) = Pβ,Λ

[
ZY (t)eβ

′Z
]
, we have that the efficient

score for β is

�̃β,Λ =
(
I −Bβ,Λ

[
B∗
β,ΛBβ,Λ

]−1
B∗
β,Λ

)
�̇β,Λ(3.3)

=
∫ τ

0

⎧⎨
⎩Z −

Pβ,Λ

[
ZY (t)eβ

′Z
]

Pβ,Λ [Y (t)eβ′Z ]

⎫⎬
⎭ dM(t).

When Ĩβ,Λ ≡ Pβ,Λ

[
�̃β,Λ�̃

′
β,Λ

]
is positive definite, the resulting efficient in-

fluence function is ψ̃β,Λ ≡ Ĩ−1
β,Λ�̃β,Λ. Since the estimator β̂n obtained from

maximizing the partial likelihood

L̃n(β) =
n∏
i=1

(
eβ

′Zi∑n
j=1 1{Vj ≥ Vi}eβ′Zj

)di

(3.4)

can be shown to satisfy
√
n(β̂n− β) =

√
nPnψ̃β,Λ + op(1), this estimator is

efficient.
Returning to our discussion of score and information operators, these op-

erators are also useful for generating scores for the entire model, not just for
the nuisance component. With semiparametric models having score func-
tions of the form a′�̇θ,η + Bθ,ηb, for a ∈ Rk and b ∈ Hη, we can define
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a new operator Aβ,η : {(a, b) : a ∈ Rk, b ∈ lin Hη} �→ L0
2(Pθ,η) where

Aβ,η(a, b) = a′�̇θ,η + Bθ,ηb. More generally, we can define the score opera-
tor Aη : lin Hη �→ L2(Pη) for the model {Pη : η ∈ H}, where H indexes the
entire model and may include both parametric and nonparametric com-
ponents, and where lin Hη indexes directions in H . Let the parameter of
interest be ψ(Pη) = χ(η) ∈ Rk. We assume there exists a linear opera-
tor χ̇ : lin Hη �→ Rk such that, for every b ∈ lin Hη, there exists a one-
dimensional submodel {Pηt : ηt ∈ H, t ∈ Nε} satisfying

∫ [
(dPηt)1/2 − (dPη)1/2

t
− 1

2
Aηb(dPη)1/2

]2

→ 0,

as t ↓ 0, and ∂χ(ηt)/(∂t)|t=0 = χ̇(b).
We require Hη to have a suitable inner product 〈·, ·〉η, where an inner

product is an operation on elements in Hη with the property that 〈a, b〉η =
〈b, a〉η, 〈a+ b, c〉η = 〈a, c〉η + 〈b, c〉η, 〈a, a〉η ≥ 0, and 〈a, a〉η = 0 if and only
if a = 0, for all a, b, c ∈ Hη. The efficient influence function is the solution
ψ̃Pη ∈ R(Aη) ⊂ L0

2(Pη) of

A∗
ηψ̃Pη = χ̃η,(3.5)

where R denotes range, B denotes closure of the set B, A∗
η is the adjoint

of Aη, and χ̃η ∈ Hη satisfies 〈χ̃η, b〉η = χ̇η(b) for all b ∈ Hη. Methods for
obtaining such a χ̃η will be given in part III. When A∗

ηAη is invertible,

then the solution to (3.5) can be written ψ̃Pη = Aη
(
A∗
ηAη

)−1
χ̃η. In chap-

ter 4, We will illustrate this approach to derive efficient estimators for all
parameters of the Cox model.

Returning to the semiparametric model setting, where P = {Pθ,η : θ ∈
Θ, η ∈ H}, Θ is an open subset of Rk, and H is a set, the efficient score can
be used to derive estimating equations for computing efficient estimators
of θ. An estimating equation is a data dependent function Ψn : Θ �→ Rk

for which an approximate zero yields a Z-estimator for θ. When Ψn(θ̃) has
the form Pn�̂θ̃,n, where �̂β̃,n(X |X1, . . . , Xn) is a function for the generic
observation X which depends on the sample data X1, . . . , Xn, we have the
following estimating equation result (the proof of which will be given in
part III):

Theorem 3.1 Suppose that the model {Pθ,η : θ ∈ Θ}, where Θ ⊂ Rk, is
differentiable in quadratic mean with respect to θ at (θ, η) and let the effi-
cient information matrix Ĩθ,η be nonsingular. Let θ̂n satisfy

√
nPn�̂θ̂n,n

=
op(1) and be consistent for θ. Also assume that the following conditions



42 3. Overview of Semiparametric Inference

hold:
√
n(Pn − Pθ,η)

(
�̂θ̂n,n

− �̃θ,η

)
P→ 0,(3.6)

Pθ̂n,η
�̂θ̂n,n

= op(n−1/2 + ‖θ̂n − θ‖),(3.7)

Pθ,η

∥∥∥�̂θ̂n,n
− �̃θ,η

∥∥∥2 P→ 0, Pθ̂n,η

∥∥∥�̂θ̂n,n

∥∥∥2

= Op(1).(3.8)

Then θ̂n is asymptotically efficient at (θ, η).

Returning to the Cox model example, the profile likelihood score is the
partial likelihood score Ψn(β̃) = Pn�̂β̃,n, where

�̂β̃,n(X = (V, d, Z)|X1, . . . , Xn) =(3.9)

∫ τ

0

⎧⎨
⎩Z −

Pn

[
ZY (t)eβ̃

′Z
]

Pn

[
Y (t)eβ̃′Z

]
⎫⎬
⎭ dMβ̃(t),

and Mβ̃(t) = N(t) −
∫ t
0 Y (u)eβ̃

′ZdΛ(u). We will show in chapter 4 that all
the conditions of theorem 3.1 are satisfied for the root of Ψn(β̃) = 0, β̂n,
and thus the partial likelihood yields efficient estimation of β.

Returning to the general semiparametric setting, even if an estimating
equation Ψn is not close enough to Pn�̃θ,η to result in an efficient estimator,
frequently the estimator will still result in a

√
n-consistent estimator which

is precise enough to be useful. In some cases, the computational effort
needed to obtain an efficient estimator may be too great a cost, and one
must settle for an inefficient estimating equation that works. Even in these
settings, some modifications in the estimating equation can often be made
which improve efficiency while maintaining computability. This issue will
be explored in greater detail in part III.

3.3 Maximum Likelihood Estimation

The most common approach to efficient estimation is based on modifica-
tions of maximum likelihood estimation which lead to efficient estimates.
These modifications, which we will call “likelihoods,” are generally not re-
ally likelihoods (products of densities) because of complications resulting
from the presence of an infinite dimensional nuisance parameter. Consider
estimating an unknown real density f(x) from an i.i.d. sample X1, . . . , Xn.
The likelihood is

∏n
i=1 f(Xi), and the maximizer over all densities has ar-

bitrarily high peaks at the observations, with zero at the other values, and
is therefore not a density. This problem can be fixed by using an empirical
likelihood

∏n
i=1 pi, where p1, . . . , pn are the masses assigned to the obser-

vations indexed by i = 1, . . . , n and are constrained to satisfy
∑n
i=1 pi = 1.
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This leads to the empirical distribution function estimator, which is known
to be fully efficient.

Consider again the Cox model for right-censored data explored in the
previous section. The density for a single observation X = (V, d, Z) is

proportional to
[
eβ

′Zλ(V )
]d

exp
[
−eβ′ZΛ(V )

]
. Maximizing the likelihood

based on this density will result in the same problem raised in the previous
paragraph. A likelihood that works is the following, which assigns mass
only at observed failure times:

Ln(β,Λ) =
n∏
i=1

[
eβ

′ZiΔΛ(Vi)
]di

exp
[
−eβ′ZiΛ(Vi)

]
,(3.10)

where ΔΛ(t) is the jump size of Λ at t. For each value of β, one can
maximize or profile Ln(β,Λ) over the “nuisance” parameter Λ to obtain
the profile likelihood pLn(β), which for the Cox model is exp [−

∑n
i=1 di]

times the partial likelihood (3.4). Let β̂ be the maximizer of pLn(β). Then
the maximizer Λ̂ of Ln(β̂,Λ) is the “Breslow estimator”

Λ̂(t) =
∫ t

0

PndN(s)

Pn

[
Y (s)eβ̂′Z

] .
We will see in chapter 4 that β̂ and Λ̂ are both efficient.

Another useful class of likelihood variants are penalized likelihoods. Pe-
nalized likelihoods add a penalty term in order to maintain an appropri-
ate level of smoothness for one or more of the nuisance parameters. This
method is used in the partly linear logistic regression model described in
chapter 1. Other methods of generating likelihood variants that work are
possible. The basic idea is that using the likelihood principle to guide es-
timation of semiparametric models often leads to efficient estimators for
the model components which are

√
n consistent. Because of the richness

of this approach to estimation, one needs to verify for each new situation
that a likelihood-inspired estimator is consistent, efficient and well-behaved
for moderate sample sizes. Verifying efficiency usually entails demonstrat-
ing that the estimator satisfies the efficient score equation described in the
previous section.

Unfortunately, there is no guarantee that the efficient score is a deriva-
tive of the log likelihood along some submodel. A way around this problem
is to use approximately least-favorable submodels. This is done by finding
a function ηt(θ, η) such that η0(θ, η) = η, for all θ ∈ Θ and η ∈ H , where
ηt(θ, η) ∈ H for all t small enough, and such that κ̃θ0,η0 = �̃θ0,η0 , where
κ̃θ,η(x) = ∂lθ+t,ηt(θ,η)(x)/(∂t)|t=0, lθ,η(x) is the log-likelihood for the ob-
served value x at the parameters (θ, η), and where (θ0, η0) are the true pa-
rameter values. Note that we require κ̃θ,η = �̃θ,η only when (θ, η) = (θ0, η0).
If (θ̂n, η̂n) is the maximum likelihood estimator, ie., the maximizer of Pnlθ,η,
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then the function t �→ Pnlθ̂n+t,ηt(θ̂n,η̂n) is maximal at t = 0, and thus

(θ̂n, η̂n) is a zero of Pnκ̃θ̃,η̃. Now if θ̂n and �̂θ̃,n = κ̃θ̃,η̂n
satisfy the conditions

of theorem 3.1 at (θ, η) = (θ0, η0), then the maximum likelihood estimator
θ̂n is asymptotically efficient at (θ0, η0). We will explore in part III how this
flexibility is helpful for certain models. Note that one should usually check
first whether ηt(θ, η) = η works before trying more complicated functional
forms.

Consider now the special case that both θ and η are
√
n consistent in the

model {Pθ,η : θ ∈ Θ, η ∈ H}, where Θ ⊂ Rk. Let lθ,η be the log-likelihood
for a single observation, and let θ̂n and η̂n be the corresponding maximum
likelihood estimators. Since θ is finite-dimensional, the log-likelihood can
be varied with respect to θ in the usual way so that the maximum likelihood
estimators satisfy Pn�̇θ̂n,η̂n

= 0.
In contrast, varying η in the log-likelihood is more complex. We can

typically use a subset of the submodels t �→ ηt used for defining the tangent
set and information for η in the model. This is easiest when the score for
η is expressed as a score operator Bθ,η working on a set of indices h ∈ H,
as described in section 3.2. The likelihood equation for η is then usually of
the form PnBθ̂n,η̂n

h− Pθ̂n,η̂n
Bθ̂n,η̂n

h = 0 for all h ∈ H. Note that we have
forced the scores to be mean zero by subtracting off the mean rather than
simply assuming Pθ,ηBθ,ηh = 0. The approach is valid if there exists some
path t �→ ηt(θ, η), with η0(θ, η) = η, such that

Bθ,ηh(x) − Pθ,ηBθ,ηh = ∂lθ+t,ηt(θ,η)(x)/(∂t)|t=0(3.11)

for all x in the sample space X . We assume (3.11) is valid for all h ∈ H,
where H is chosen so that Bθ,ηh(x) − Pθ,ηBθ,ηh is uniformly bounded on
H for all x ∈ X , (θ, η) ∈ Rk ×H .

We can now express (θ̂n, η̂n) as a Z-estimator with estimating function
Ψn : Rk × H �→ Rk × �∞(H), where Ψn = (Ψn1,Ψn2), with Ψn1(θ, η) =
Pn�̇θ,η and Ψn2(θ, η) = PnBθ,ηh−Pθ,ηBθ,ηh, for all h ∈ H. The expectation
of these maps under the true parameter (θ0, η0) is the deterministic map
Ψ = (Ψ1,Ψ2), where Ψ1(θ, η) = Pθ0,η0 �̇θ,η and Ψ2(θ, η) = Pθ0,η0Bθ,ηh −
Pθ,ηBθ,ηh, for all h ∈ H. We have constructed these estimating equations
so that the maximum likelihood estimators and true parameters satisfy
Ψn(θ̂n, η̂n) = 0 = Ψ(θ0, η0). Provided H is a subset of a normed space,
we can use the Z-estimator master theorem (theorem 2.11) to obtain weak
convergence of

√
n(θ̂n − θ0, η̂n − η0):

Corollary 3.2 Suppose that �̇θ,η and Bθ,ηh, with h ranging over H and
with (θ, η) ranging over a neighborhood of (θ0, η0), are contained in a Pθ0,η0-

Donsker class, and that both Pθ0,η0
∥∥∥�̇θ,η − �̇θ0,η0

∥∥∥2 P→ 0 and suph∈H Pθ0,η0

|Bθ,ηh−Bθ0,η0h|
2 P→ 0, as (θ, η) → (θ0, η0). Also assume that Ψ is Fréchet-

differentiable at (θ0, η0) with derivative Ψ̇0 : Rk × linH �→ Rk × �∞(H)
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that is continuously-invertible and onto its range, with inverse Ψ̇−1
0 : Rk ×

�∞(H) �→ Rk × linH. Then, provided (θ̂n, η̂n) is consistent for (θ0, η0) and
Ψn(θ̂n, η̂n) = op(n−1/2) (uniformly over Rk × �∞(H)), (θ̂n, η̂n) is efficient
at (θ0, η0) and

√
n(θ̂n − θ0, η̂n − η0) � −Ψ̇−1

0 Z, where Z is the Gaussian
limiting distribution of

√
nΨn(θ0, η0).

The proof of this will be given later in part III. A function f : U �→ V is
onto if, for every v ∈ V , there exists a u ∈ U with v = f(u). Note that while
H can be a subset of the tangent set used for information calculations, it
must be rich enough to ensure that the inverse of Ψ̇0 exists.

The efficiency in corollary 3.2 can be shown to follow from the score
operator calculations given in section 3.2, but we will postpone further
details until part III. As was done at the end of section 3.2, the above
discussion can be completely re-expressed in terms of a single parameter
model {Pη : η ∈ H} with a single score operator Aη : Hη �→ L2(Pη),
where H is a richer parameter set, including, for example, both Θ and H
as defined in the previous paragraphs, and where Hη is similarly enriched
to include the tangent sets for all subcomponents of the model.

3.4 Other Topics

Other topics of importance include frequentist and Bayesian methods for
constructing confidence sets. We will focus primarily on frequentist ap-
proaches in this book and only briefly discuss Bayesian methods. While
the bootstrap is generally valid in the setting of corollary 3.2, it is unclear
that this remains true when the nuisance parameter converges at a rate
slower than

√
n, even if interest is limited to the parametric component.

Even when the bootstrap is valid, it may be excessively cumbersome to
re-estimate the entire model for many bootstrapped data sets. We will ex-
plore this issue in more detail in part III. We now present one approach for
hypothesis testing and variance estimation for the parametric component θ
of the semiparametric model {Pθ,η : θ ∈ Θ, η ∈ H}. This approach is often
valid even when the nuisance parameter is not

√
n consistent.

Murphy and van der Vaart demonstrated that under reasonable regular-
ity conditions, the log-profile likelihood, pln(θ), (profiling over the nuisance
parameter) admits the following expansion about the maximum likelihood
estimator for the parametric component θ̂n:

log pln(θ̃n) = log pln(θ̂n) −
1
2
n(θ̃n − θ̂n)′Ĩθ0,η0(θ̃n − θ̂n)(3.12)

+op(
√
n‖θ̃n − θ0‖ + 1)2,

for any estimator θ̃n
P→ θ0 (Murphy and van der Vaart, 2000). This can be

shown to lead naturally to chi-square tests of full versus reduced models.
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Furthermore, this result demonstrates that the curvature of the log-partial
likelihood can serve as a consistent estimator of the efficient information
for θ at θ0, Ĩθ0,η0 , and thereby permit estimation of the limiting variance of√
n(θ̂n−θ0). We will discuss this method, along with several other methods

of inference, in greater detail toward the end of part III.

3.5 Exercises

3.5.1. Consider the paragraphs leading up to the efficient score for β in
the Cox model, given in expression (3.3). Show that the tangent set for the
nuisance parameter Λ, Ṗ(Λ)

Pβ,Λ
, spans all square-integrable score functions

for Λ generated by parametric submodels (where the parameters for Λ are
independent of β).

3.5.2. Let Ln(β,Λ) be the Cox model likelihood given in (3.10). Show that
the corresponding profile likelihood for β, pLn(β), obtained by maximizing
over Λ, equals exp [−

∑n
i=1 di] times the partial likelihood (3.4).

3.6 Notes

The linear regression example was partially inspired by example 25.28 of
van der Vaart (1998), and theorem 3.1 is a generalization of his theo-
rem 25.57 based on his condition (25.28).



This is page 47
Printer: Opaque this

4
Case Studies I

We now expand upon several examples introduced in chapters 1–3 to more
fully illustrate the methods and theory we have outlined thus far. Certain
technical aspects which involve concepts introduced later in the book will be
glossed over to avoid getting bogged down with details. The main objective
of this chapter is to initiate an appreciation for what empirical processes
and efficiency calculations can accomplish.

The first example is linear regression with either mean zero or median
zero residuals. In addition to efficiency calculations for model parameters,
empirical processes are needed for inference on the distribution of the resid-
uals. The second example is counting process regression for both general
counting processes and the Cox model for right-censored failure time data.
Empirical processes will be needed for parameter inference, and efficiency
will be established under the Cox proportional hazards model for maximum
likelihood estimation of both the regression parameters and the baseline
hazard. The third example is the Kaplan-Meier estimator of the survival
function for right-censored failure time data. Since weak convergence of
the Kaplan-Meier has already been established in chapter 2 using empir-
ical processes, the focus in this chapter will be on efficiency calculations.
The fourth example considers estimating equations for general regression
models when the residual variance may be a function of the covariates.
Estimation of the variance function is needed for efficient estimation. We
also consider optimality of a certain class of estimating equations. The gen-
eral results are illustrated with both simple linear regression and a Poisson
mixture regression model. In the latter case, the mixture distribution is not√
n consistent in the uniform norm, the proof of which fact we omit. The
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fifth, and final, example is partly linear logistic regression. The emphasis
will be on efficient estimation of the parametric regression parameter. For
the last two examples, both empirical processes and efficiency calculations
will be needed.

4.1 Linear Regression

The semiparametric linear regression model is Y = β′Z + e, where we
observe X = (Y, Z) and assume E‖Z‖2 < ∞, E[e|Z] = 0 and E[e2|Z] ≤
K < ∞ almost surely, Z includes the constant 1, and E[ZZ ′] is full rank.
The model for X is {Pβ,η : β ∈ Rk, η ∈ H}, where η is the joint density
of the residual e and covariate Z with partial derivative with respect to
the first argument η̇1 which we assume satisfies η̇/η ∈ L2(Pβ,η) and hence
η̇/η ∈ L0

2(Pβ,η). We consider this model under two assumptions on η: the
first is that the residuals have conditional mean zero, ie.,

∫
R
uη(u, Z)du = 0

almost surely; and the second is that the residuals have median zero, ie.,∫
R

sign(u)η(u, Z)du = 0 almost surely.

4.1.1 Mean Zero Residuals

We have already demonstrated in section 3.2 that the usual least squares
estimator β̂ = [PnZZ ′]−1

PnZY is
√
n consistent but not always effi-

cient for β when the only assumption we are willing to make is that the
residuals have mean zero conditional on the covariates. The basic argu-
ment for this was taken from the form of the efficient score �̃β,η(Y, Z) =
Z(Y − β′Z)/Pβ,η[e2|Z] which yields a distinctly different estimator than
β̂ when z �→ Pβ,η[e2|Z = z] is non-constant in z. In section 4.4 of this
chapter, we will describe a data-driven procedure for efficient estimation in
this context based on approximating the efficient score.

For now, however, we turn our attention to efficient estimation when we
also assume that the covariates are independent of the residual. Accord-
ingly, we denote η to be the density of the residual e and η̇ to be the deriva-
tive of η. We discussed this model in chapter 1 and pointed at that β̂ is still
not efficient in this setting. We also claimed that an empirical estimator F̂
of the residual distribution, based on the residuals Y1−β̂′Z1, . . . , Yn−β̂′Zn,
had the property that

√
n(F̂ −F ) converged in a uniform sense to a certain

Guassian quantity. We now derive the efficient score for estimating β for
this model and sketch a proof of the claimed convergence of

√
n(F̂ − F ).

We assume that η is continuously differentiable with Pβ,η(η̇/η)2 <∞.
Using techniques described in section 3.2, it is not hard to verify that the

tangent set for the full model is the linear span of −(η̇/η)(e)a′Z+b(e), as a
spans Rk and b spans the tangent set Ṗ(η)

Pβ,η
for η, consisting of all functions

in L0
2(e) which are orthogonal to e, where we use L0

2(U) to denote all mean
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zero real functions f of the random variable U for which Pf2(U) <∞. The
structure of the tangent set follows from the constraint that

∫
R
eη(e)de = 0.

The projection of the usual score for β, �̇β,η ≡ −(η̇/η)(e)Z, onto Ṗ(η)
Pβ,η

is a function h ∈ Ṗ(η)
Pβ,η

such that −(η̇/η)(e)Z − h(e) is uncorrelated with

b(e) for all b ∈ Ṗ(η)
Pβ,η

. We will now verify that h(e) = −(η̇/η)(e)μ− eμ/σ2,
where μ ≡ E[Z] and σ2 = E[e2]. It easy to see that h is square integrable.
Moreover, since

∫
R
eη̇(e)de = −1, h has mean zero. Thus h ∈ Ṗ(η)

Pβ,η
. It also

follows that −(η̇/η)(e)Z − h(e) is orthogonal to Ṗ(η)
Pβ,η

, after noting that

−(η̇/η)(e)Z − h(e) = −(η̇/η)(e)(Z − μ) + eμ/σ2 ≡ �̃β,η is orthogonal to all
square-integrable mean zero functions b(e) which satisfy Pβ,ηb(e)e = 0.

Thus the efficient information is

Ĩβ,η ≡ Pβ,η

[
�̃β,η�̃

′
β,η

]
= Pβ,η

[{
η̇

η
(e)

}2

(Z − μ)(Z − μ)′
]

+
μμ′

σ2
.(4.1)

Since

1 =
(∫

R

eη̇(e)de
)2

=
(∫

R

e
η̇

η
(e)η(e)de

)2

≤ σ2Pβη

{
η̇

η
(e)

}2

,

we have that

(4.1) ≥ Pβ,η

[
(Z − μ)(Z − μ)′

σ2

]
+
μμ′

σ2
=
P [ZZ ′]
σ2

,

where, for two k×k symmetric matrices A and B, A ≥ B means that A−B
is positive semidefinite. Thus the efficient estimator can have strictly lower
variance than the least-squares estimator β̂.

Developing a procedure for calculating an asymptotically efficient esti-
mator appears to require nonparametric estimation of η̇/η. We will show
in the empirical process case studies of chapter 15 how to accomplish this
via the residual distribution estimator F̂ defined above. We now turn our
attention to verifying that

√
n(F̂ − F ) converges weakly to a tight, mean

zero Gaussian process. This result can also be used to check normality of
the residuals. Recall that if the residuals are Gaussian, the least-squares
estimator is fully efficient.

Now, using P = Pβ,η,

√
n(F̂ (v) − F (v)) =

√
n
[
Pn1{Y − β̂′Z ≤ v} − P1{Y − β′Z ≤ v}

]
=

√
n(Pn − P )1{Y − β̂′Z ≤ v}

+
√
nP

[
1{Y − β̂′Z ≤ v} − 1{Y − β′Z ≤ v}

]
= Un(v) + Vn(v).
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We will show in part II that
{
1{Y − b′Z ≤ v} : b ∈ Rk, v ∈ R

}
is a VC (and

hence Donsker) class of functions. Thus, since

sup
v∈R

P
[
1{Y − β̂′Z ≤ v} − 1{Y − β′Z ≤ v}

]2 P→ 0,

we have that Un(v) =
√
n(Pn − P )1{Y − β′Z ≤ v} + εn(v), where supv∈R

|εn(v)| P→ 0. It is not difficult to show that

Vn(v) = P

[∫ v+(β̂−β)′Z

v

η(u)du

]
.(4.2)

We leave it as an exercise to show that for any u, v ∈ R,

|η(u) = η(v)| ≤ |F (u) − F (v)|1/2
(
P

{
η̇

η
(e)

}2
)1/2

.(4.3)

Thus η is both bounded and equicontinuous, and thus by (4.2), Vn(v) =
√
n(β̂ − β)′μη(v) + ε′n(v), where supv∈R

|ε′n(v)|
P→ 0. Hence F̂ is asymptot-

ically linear with influence function

ψ̌(v) = 1{e ≤ v} − F (v) + eZ ′ {P [ZZ ′]}−1
μη(v),

and thus, since this influence function is a Donsker class (as the sum of two
obviously Donsker classes),

√
n(F̂ − F ) converges weakly to a tight, mean

zero Gaussian process.

4.1.2 Median Zero Residuals

We have already established in section 2.2.6 that when the residuals have
median zero and are independent of the covariates, then the least-absolute-
deviation estimator β̂ ≡ argminb∈Rk Pn|Y − b′Z| is consistent for β and√
n(β̂ − β) is asymptotically linear with influence function

ψ̌ = {2η(0)P [ZZ ′]}−1
Zsign(e).

Thus
√
n(β̂ − β) is asymptotically mean zero Gaussian with covariance

equal to
{
4η2(0)P [ZZ ′]

}−1. In this section, we will study efficiency for
this model and show that β̂ is not in general fully efficient. Before doing
this, however, we will briefly study efficiency in the the more general model
where we only assume E[sign(e)|Z] = 0 almost surely.

Under this more general model, the joint density of (e, Z), η, must sat-
isfy

∫
R

sign(e)η(e, Z)de = 0 almost surely. As we did when we studied the
conditionally mean zero residual case in section 3.2, assume η has partial
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derivative with respect to the first argument, η̇1, satisfying η̇1/η ∈ L2(Pβ,η).
Clearly, (η̇1/η)(e, Z) also has mean zero. The score for β, assuming η is
known, is �̇β,η = −Z(η̇1/η)(Y − β′Z,Z).

Similar to what was done in section 3.2 for the conditionally mean zero
case, it can be shown that the tangent set Ṗ(η)

Pβ,η
for η is the subset of

L0
2(Pβ,η) which consists of all functions g(e, Z) ∈ L0

2(Pβ,η) which satisfy

E[sign(e)g(e, Z)|Z] =

∫
R

sign(e)g(e, Z)η(e, Z)de∫
R
η(e, Z)de

= 0,

almost surely. It can also be shown that this set is the orthocomplement
in L0

2(Pβ,η) of all functions of the form sign(e)f(Z), where f satisfies
Pβ,ηf

2(Z) < ∞. Hence the efficient score �̃β,η is the projection in L0
2(Pβ,η)

of −Z(η̇1/η)(e, Z) onto {sign(e)f(Z) : Pβ,ηf2(Z) <∞}. Hence

�̃β,η(Y, Z) = −Zsign(e)
∫

R

η̇1(e, Z)sign(e)de = Zsign(e)η(0, Z),

where the second equality follows from the facts that
∫

R
η̇1(e, Z)de = 0 and∫ 0

−∞ η̇1(e, Z)de = η(0, Z). When η(0, z) is non-constant in z, �̃β,η(Y, Z) is
not proportional to sign(Z)(Y −β′Z), and thus the least-absolute-deviation
estimator is not efficient in this instance. Efficient estimation in this situ-
ation appears to require estimation of η(0, Z), but we will not pursue this
further.

We now return our attention to the setting were the median zero residuals
are independent of the covariates. We will also assume that 0 < η(0) < ∞.
Recall that in this setting, the usual score for β is �̇β,η ≡ −Z(η̇/η)(e),
where η̇ is the derivative of the density η of e. If we temporarily make
the fairly strong assumption that the residuals have a Laplace density (ie.,
η(e) = (ν/2) exp(−ν|e|) for a real parameter ν > 0), then the usual score
simplifies to Zsign(e), and thus the least-absolute deviation estimator is
fully efficient for this special case.

Relaxing the assumptions to allow for arbitrary median zero density,
we can follow arguments similar to those we used in the previous section
to obtain that the tangent set for η, Ṗ(η)

Pβ,η
, consists of all functions in

L0
2(e) which are orthogonal to sign(e). The structure of the tangent set

follows from the median zero residual constraint which can be expressed as∫
R

sign(e)η(e)de = 0. The projection of �̇β,η on Ṗ(η)
β,η is a function h ∈ Ṗ(η)

Pβ,η

such that −(η̇/η)(e)Z − h(e) is uncorrelated with b(e) for all b ∈ Ṗ(η)
Pβ,η

.
We will now prove that h(e) = −(η̇/η)(e)μ− 2η(0)sign(e)μ satisfies the

above constraints. First, it is easy to see that h(e) is square-integrable.
Second, since −

∫
R

sign(e)η̇(e)de = 2η(0), we have that sign(e)h(e) has
zero expectation. Thus h ∈ Ṗ(η)

Pβ,η
. Thirdly, it is straightforward to verify

that �̇β,η(Y, Z)− h(e) = −(η̇/η)(e)(Z −μ)+ 2η(0)sign(e)μ is orthogonal to
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all elements of Ṗ(η)
Pβ,η

. Hence the efficient score is �̃β,η = �̇β,η − h. Thus the
efficient information is

Ĩβ,η = Pβ,η

[
�̃β,η �̃

′
β,η

]
= Pβ,η

[{
η̇

η
(e)

}2

(Z − μ)(Z − μ)′
]

+ 4η2(0)μμ′.

Note that

4η2(0) = 4
[∫ 0

−∞
η̇(e)de

]2

= 4
[∫ 0

−∞

η̇

η
(e)η(e)de

]2

≤ 4
∫ 0

−∞

{
η̇

η
(e)

}2

η(e)de
∫ 0

−∞
η(e)de

= 2
∫ 0

−∞

{
η̇

η
(e)

}2

η(e)de.(4.4)

Similar arguments yield that

4η2(0) ≤ 2
∫ ∞

0

{
η̇

η
(e)

}2

η(e)de.

Combining this last inequality with (4.4), we obtain that

4η2(0) ≤
∫

R

{
η̇

η
(e)

}2

η(e)de.

Hence the efficient estimator can have strictly lower variance than the least-
absolute-deviation estimator in this situation.

While the least-absolute-deviation estimator is only guaranteed to be
fully efficient for Laplace distributed residuals, it does have excellent ro-
bustness properties. In particular, the breakdown point of this estimator is
50%. The breakdown point is the maximum proportion of contamination—
from arbitrarily large symmetrically distributed residuals—tolerated by the
estimator without resulting in inconsistency.

4.2 Counting Process Regression

We now examine in detail the counting process regression model considered
in chapter 1. The observed data are X = (N,Y, Z), where for t ∈ [0, τ ],
N(t) is a counting process and Y (t) = 1{V ≥ t} is an at-risk process
based on a random time V ≥ 0 which may depend on N , with PY (0) = 1,
infZ P [Y (τ)|Z] > 0, PN2(τ) < ∞, and where Z ∈ Rk is a regression
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covariate. The regression model (1.3) is assumed, implying E{dN(t)|Z} =
E{Y (t)|Z}eβ′ZdΛ(t), for some β ∈ B ⊂ Rk and continuous nondecreasing
function Λ(t) with Λ(0) = 0 and 0 < Λ(τ) < ∞. We assume Z is restricted
to a bounded set, var(Z) is positive definite, and that B is open, convex
and bounded. We first consider inference for β and Λ in this general model,
and then examine the specialization to the Cox proportional hazards model
for right-censored failure time data.

4.2.1 The General Case

As described in chapter 1, we estimate β with the estimating equation
Un(t, β) = Pn

∫ t
0

[Z − En(s, β)] dN(s), where

En(t, β) =
PnZY (t)eβ

′Z

PnY (t)eβ′Z .

Specifically, the estimator β̂ is a root of Un(τ, β) = 0. The estimator for Λ,

is Λ̂(t) =
∫ t
0

[
PnY (s)eβ̂

′Z
]−1

PndN(s). We first show that β̂ is consistent

for β, and that
√
n(β̂ − β) is asymptotically normal with a consistently

estimable covariance matrix. We then derive consistency and weak conver-
gence results for Λ̂ and suggest a simple method of inference based on the
influence function.

We first argue that certain classes of functions are Donsker, and therefore
also Glivenko-Cantelli. We first present the following lemma:

Lemma 4.1 For −∞ < a < b <∞, Let {X(t), t ∈ [a, b]} be a monotone
cadlag or caglad stochastic process with P [|X(a)| ∨ |X(b)|]2 < ∞. Then X
is P -Donsker.

The proof will be given later in part II. Note that we usually speak of classes
of functions as being Donsker or Glivenko-Cantelli, but in lemma 4.1, we
are saying this about a process. Let X be the sample space for the stochastic
process {X(t) : t ∈ T }. Then

√
n(Pn − P )X converges weakly in �∞(T )

to a tight, mean zero Gaussian process if and only if F = {ft : t ∈ T } is
P -Donsker, where for any x ∈ X and t ∈ T , ft(x) = x(t). Viewed in this
manner, this modified use of the term Donsker is, in fact, not a modification
at all.

Since Y and N both satisfy the conditions of lemma 4.1, they are both
Donsker as processes in �∞([0, τ ]). Trivially, the classes {β ∈ B} and {Z}
are both Donsker classes, and therefore so is {β′Z : β ∈ B} since products
of bounded Donsker classes are Donsker. Now the class {eβ′Z : β ∈ B} is
Donsker since exponentiation is Lipschitz continuous on compacts. Hence
{Y (t)eβ

′Z : t ∈ [0, τ ], β ∈ B}, {ZY (t)eβ
′Z : t ∈ [0, τ ], β ∈ B}, and

{ZZ ′Y (t)eβ
′Z : t ∈ [0, τ ], β ∈ B}, are all Donsker since they are all prod-

ucts of bounded Donsker classes.
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Now the derivative of Un(τ, β) with respect to β can be shown to be
−Vn(β), where

Vn(β) =
∫ τ

0

⎡
⎣PnZZ

′Y (t)eβ
′Z

PnY (t)eβ′Z −
{

PnZY (t)eβ
′Z

PnY (t)eβ′Z

}⊗2
⎤
⎦PndN(t),

and where superscript ⊗2 denotes outer product. Because all of the classes
involved are Glivenko-Cantelli and the limiting values of the denominators
are bounded away from zero, we have the supβ∈B |Vn(β) − V (β)| as∗→ 0,
where

V (β) =
∫ τ

0

⎡
⎣PZZ ′Y (t)eβ

′Z

PY (t)eβ′Z −
{
PZY (t)eβ

′Z

PY (t)eβ′Z

}⊗2
⎤
⎦(4.5)

×P
[
Y (t)eβ

′Z
]
dΛ(t).

After some work, it can be shown that there exists a c > 0 such that
V (β) ≥ c var(Z), where for two symmetric matrices A,B, A ≥ B means
that A −B is positive semidefinite. Thus Un(τ, β) is almost surely convex
for all n ≥ 1 large enough. Thus β̂ is almost surely consistent for the true
parameter β0.

Using algebra, Un(τ, β) = Pn
∫ τ
0

[Z − En(s, β)] dMβ(s), where Mβ(t) =
N(t) −

∫ t
0
Y (s)eβ

′ZdΛ0(s) and Λ0 is the true value of Λ. Let U(t, β) =

P
{∫ t

0 [Z − E(s, β)] dMβ(s)
}
, whereE(t, β) = P

[
ZY (t)eβ

′Z
]
/P

[
Y (t)eβ

′Z
]
.

It is not difficult to verify that
√
n
[
Un(τ, β̂) − U(τ, β̂)

]
−

√
n [Un(τ, β0) − U(τ, β0)]

P→ 0,

since
√
nPn

∫ τ

0

[
En(s, β̂) − E(s, β̂)

]
dMβ̂(s)(4.6)

=
√
nPn

∫ τ

0

[
En(s, β̂) − E(s, β̂)

]
×

{
dMβ0(s) − Y (s)

[
eβ̂

′Z − eβ
′
0Z

]
dΛ0(s)

}
P→ 0.

This follows from the following lemma (which we prove later in part II),
with [a, b] = [0, τ ], An(t) = En(t, β̂), and Bn(t) =

√
nPnMβ0(t):

Lemma 4.2 Let Bn ∈ D[a, b] and An ∈ �∞([a, b]) be either cadlag or
caglad, and assume supt∈(a,b] |An(t)|

P→ 0, An has uniformly bounded to-
tal variation, and Bn converges weakly to a tight, mean zero process with
sample paths in D[a, b]. Then

∫ b
a An(s)dBn(s) P→ 0.
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Thus the conditions of the Z-estimator master theorem, theorem 2.11, are
all satisfied, and

√
n(β̂−β0) converges weakly to a mean zero random vec-

tor with covariance C = V −1(β0)P
[∫ τ

0
[Z − E(s, β0)] dMβ0(s)

]⊗2
V −1(β0).

With a little additional work, it can be verified that C can be consistently

estimated with Ĉ = V −1
n (β̂)Pn

{∫ τ
0

[
Z − En(s, β̂)

]
dM̂(s)

}⊗2

V −1
n (β̂), where

M̂(t) = N(t) −
∫ t
0 Y (s)eβ̂

′ZdΛ̂(s), and where

Λ̂(t) =
∫ t

0

PndN(s)

PnY (s)eβ̂′Z
,

as defined in chapter 1.
Let Λ0 be the true value of Λ. Then

Λ̂(t) − Λ0(t) =
∫ t

0

1{PnY (s) > 0}
{

(Pn − P )dN(s)

PnY (s)eβ̂′Z

}

−
∫ t

0

1{PnY (s) = 0}
{

PdN(s)
PnY (s)eβ̂′Z

}

−
∫ t

0

(Pn − P )Y (s)eβ̂
′Z

PY (s)eβ̂′Z

{
PdN(s)

PnY (s)eβ̂′Z

}

−
∫ t

0

P
[
Y (s)

(
eβ̂

′Z − eβ
′
0Z

)]
PY (s)eβ̂′Z

dΛ0(s)

= An(t) −Bn(t) − Cn(t) −Dn(t).

By the smoothness of these functions of β̂ and the almost sure consis-
tency of β̂, each of the processes An, Bn, Cn and Dn converge uniformly
to zero, and thus supt∈[0,τ ]

∣∣∣Λ̂(t) − Λ0(t)
∣∣∣ as∗→ 0. Since P{PnY (t) = 0} ≤

[P{V < τ}]n, Bn(t) = op(n−1/2), where the op(n−1/2) term is uniform in
t. It is also not hard to verify that An(t) = (Pn − P )Ã(t) + op(n−1/2),

Cn(t) = (Pn−P )C̃(t)+op(n−1/2), where Ã(t) =
∫ t
0

[
PY (s)eβ

′
0Z

]−1

dN(s),

C̃(t) =
∫ t
0

[
PY (s)eβ

′
0Z

]−1

Y (s)eβ
′
0ZdΛ0(s), and both remainder terms are

uniform in t. In addition,

Dn(t) = (β̂ − β0)′
∫ t

0

{
PZY (s)eβ

′
0Z

PY (s)eβ′
0Z

}
dΛ0(t) + op(n−1/2),

where the remainder term is again uniform in t.



56 4. Case Studies I

Taking this all together, we obtain the expansion

√
n
[
Λ̂(t) − Λ0(t)

]
=

√
n(Pn − P )

∫ t

0

dMβ0(s)
PY (s)eβ′

0Z

−
√
n(β̂ − β0)′

∫ t

0

E(s, β0)dΛ0(s) + op(1),

where the remainder term is uniform in t. By previous arguments,
√
n(β̂−

β0) = V −1(β0)Pn
∫ τ
0

[Z − E(s, β0)] dMβ0(s) + op(1), and thus Λ̂ is asymp-
totically linear with influence function

ψ(t) =
∫ t

0

dMβ0(s)
PY (s)eβ′

0Z
(4.7)

−
{∫ τ

0

[Z − E(s, β0)]
′
dMβ0(s)

}
V −1(β0)

∫ t

0

E(s, β0)dΛ0(s).

Since {ψ(t) : t ∈ T } is Donsker,
√
n(Λ̂ − Λ) converges weakly in D[0, τ ] to

a tight, mean zero Gaussian process Z with covariance P [ψ(s)ψ(t)]. Let
ψ̂(t) be ψ(t) with β̂ and Λ̂ substituted for β0 and Λ0, respectively.

After some additional analysis, it can be verified that

sup
t∈[0,τ ]

Pn

[
ψ̂(t) − ψ(t)

]2 P→ 0.

Since ψ has envelope kN(τ), for some fixed k < ∞, the class {ψ(s)ψ(t) :
s, t ∈ [0, τ ]} is Glivenko-Cantelli, and thus Pn

[
ψ̂(s)ψ̂(t)

]
is uniformly con-

sistent (in probability) for P [ψ(s)ψ(t)] by the discussion in the beginning of
section 2.2.3. However, this is not particularly helpful for inference, and the
following approach is better. Let ξ be standard normal and independent of
the data X = (N,Y, Z), and consider the wild bootstrap Δ̃(t) = Pnξψ̂(t).

Although some work is needed, it can be shown that
√
nΔ̃

P�
ξ
Z. This is

computationally quite simple, since it requires saving ψ̂1(tj), . . . , ψ̂n(tj)
only at all of the observed jump points t1, . . . , tmn , drawing a sample of
standard normals ξ1, . . . , ξn, evaluating sup1≤j≤mn

∣∣∣Δ̃(t)
∣∣∣, and repeating

often enough to obtain a reliable estimate of the (1 − α)-level quantile ĉα.
The confidence band {Λ̂(t)± ĉα : t ∈ [0, τ ]} thus has approximate coverage
1 − α. A number of modifications of this are possible, including a modi-
fication where the width of the band at t is roughly proportional to the
variance of

√
n(Λ̂(t) − Λ0(t)).

4.2.2 The Cox Model

For the Cox regression model applied to right-censored failure time data,
we observe X = (W, δ, Z), where W = T ∧ C, δ = 1{W = T }, Z ∈ Rk
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is a regression covariate, T is a right-censored failure time with integrated
hazard eβ

′ZΛ(t) given the covariate, and where C is a censoring time inde-
pendent of T given Z. We also assume that censoring is uninformative of β
or Λ. This is a special case of the general counting process regression model
of the previous section, with N(t) = δ1{W ≤ t} and Y (t) = 1{W ≥ t}.
The consistency of β̂, a zero of Un(τ, β), and Λ̂ both follow from the pre-
vious general results, as does the asymptotic normality and validity of the
multiplier bootstrap based on the estimated influence function. There are,
however, some interesting special features of the Cox model that are of in-
terest, including the martingale structure, the limiting covariance, and the
efficiency of the estimators.

First, it is not difficult to show that Mβ0(t) and Un(t, β0) are both
continuous-time martingales (Fleming and Harrington, 1991; Andersen,
Borgan, Gill and Keiding, 1993). This implies that

P

{∫ τ

0

[Z − E(s, β0)] dMβ0(s)
}⊗2

= V (β0),

and thus the asymptotic limiting variance of
√
n(β̂−β0) is simply V −1(β0).

Thus β̂ is efficient. In addition, the results of this section verify condi-
tions (3.6) and (3.8) of theorem 3.1 for �̂β̃,n defined in (3.9). Verification
of (3.7) is left as an exercise. This provides another proof of the efficiency
of β̂. What remains to be verified is that Λ̂ is also efficient (in the uniform
sense). The influence function for Λ̂ is ψ given in (4.7). We will now use the
methods of section 3.2 to verify that ψ(u) is the efficient influence function
for the parameter Λ(u), for each u ∈ [0, τ ]. This will imply that Λ̂ is uni-
formly efficient for Λ, since

√
n(Λ̂ − Λ) converges weakly to a tight, mean

zero Gaussian process.
The tangent space for the Cox model (for both parameters together) is

{A(a, b) =
∫ τ
0

[Z ′a+ b(s)] dMβ(s) : (a, b) ∈ H}, where H = Rk × L2(Λ).
A : H �→ L0

2(Pβ,Λ) is thus a score operator for the full model. The nat-
ural inner product for pairs of elements in H is 〈(a, b), (c, d)〉H = a′b +∫ τ
0
c(s)d(s)dΛ(s), for (a, b), (c, d) ∈ H ; and the natural inner product for

g, h ∈ L0
2(Pβ,Λ) is 〈g, h〉Pβ,Λ = Pβ,Λ[gh]. Hence the adjoint of A, A∗, satis-

fies 〈A(a, b), g〉Pβ,Λ
= 〈(a, b), A∗g〉H for all (a, b) ∈ H and all g ∈ L0

2(Pβ,Λ).
It can be shown that A∗g =

(
Pβ,Λ

[∫ τ
0
ZdM(s)g

]
, Pβ,Λ[dM(t)g]/dΛ0(t)

)
satisfies these equations and is thus the adjoint of A.

Let the one-dimensional submodel {Pt : t ∈ Nε} be a perturbation in
the direction A(a, b), for some (a, b) ∈ H . In section 3.2, we showed that
Λt(u) =

∫ u
0 (1 + tb(s))dΛ(s) + o(t), and thus, for the parameter χ(Pβ,Λ) =

Λ(u), ∂χ(Pt)/(∂t)|t=0 =
∫ u
0 b(s)dΛ(s). Thus 〈χ̃, (a, b)〉H =

∫ u
0 b(s)dΛ(s),

and therefore χ̃ = (0, 1{s ≤ v}) ∈ H (s is the function argument here).
Our proof will be complete if we can show that A∗ψ = χ̃, since this would
imply that ψ(u) is the efficient influence function for Λ(u). First,
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A∗ψ(u) = Pβ,Λ

{∫ τ

0

ZdM(s)
∫ u

0

dM(s)
Pβ,Λ [Y (s)eβ′Z ]

}

−Pβ,Λ
{∫ τ

0

ZdM(s)
∫ τ

0

[Z − E(s, β)]′ dM(s)
}

×V −1(β)
∫ u

0

E(s, β)dΛ(s)

=
∫ u

0

E(s, β)dΛ(s) − V (β)V −1(β)
∫ u

0

E(s, β)dΛ(s)

= 0.

Second, it is not difficult to verify that Pβ,Λ [dM(s)ψ(u)] = 1{s ≤ u}dΛ(s),
and thus we obtain the desired result. Therefore, both parameter estimators
β̂ and Λ̂ are uniformly efficient for estimating β and Λ in the Cox model.

4.3 The Kaplan-Meier Estimator

In this section, we consider the same right-censored failure time data con-
sidered in section 4.2.2, except that there is no regression covariate. The
precise set-up is described in section 2.2.5. Thus T and C are assumed
to be independent, where T has distribution function F and C has distri-
bution function G. Assume also that F (0) = 0. We denote PF to be the
probability measure for the observed data X = (W, δ), and allow both F
and G to have jumps. Define S = 1 − F , L = 1 − G, and π(t) = PFY (t),
and let τ ∈ (0,∞) satisfy F (τ) > 0 and π(τ) > 0. Also define Λ̂(t) =∫ t
0 [PnY (s)]−1

PndN(s). The Kaplan-Meier estimator Ŝ has the product

integral form Ŝ(t) =
∏

0<s≤t

[
1 − dΛ̂(s)

]
.

We have already established in section 2.2.5, using the self-consistency
representation of Ŝ, that Ŝ is uniformly consistent for S over [0, τ ] and that
√
n
[
Ŝ − S

]
converges weakly in D[0, τ ] to a tight, mean zero Gaussian

process. In this section, we verify that Ŝ is also uniformly efficient. We first
derive the influence function ψ̌ for Ŝ, and then show that this satisfies the
appropriate version of the adjoint formula (3.5) for estimating S(u), for
each u ∈ [0, τ ]. This pointwise efficiency will then imply uniform efficiency
because of the weak convergence of

√
n
[
Ŝ − S

]
.

Standard calculations (Fleming and Harrington, 1991, chapter 3) reveal
that
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Ŝ(u) − S(u) = −Ŝ(u)
∫ u

0

S(v−)
Ŝ(v)

{
dΛ̂(v) − dΛ(v)

}

= −Ŝ(u)
∫ u

0

1 {PnY (v) > 0} S(v−)
Ŝ(v)

{
PndM(v)
PnY (v)

}

+Ŝ(u)
∫ u

0

1 {PnY (v) = 0} S(v−)
Ŝ(v)

dΛ(v)

= An(u) +Bn(u),

where M(v) = N(v) −
∫ v
0
Y (s)dΛ(s) is a martingale. Since π(τ) > 0,

Bn(u) = op(n−1/2). Using martingale methods, it can be shown that An(u)
= Pnψ̌(u) + op(n1/2), where

ψ̌(u) = −S(u)
∫ u

0

1
1 − ΔΛ(v)

{
dM(v)
π(v)

}
.

Since all error terms are uniform for u ∈ [0, τ ], we obtain that Ŝ is asymptot-
ically linear, with influence function ψ̌. As an element of L0

2(PF ), ψ̌(u)(W, δ)
= ǧ(W, δ), where

ǧ(W, 1) = −S(u)
[

1{W ≤ u}
[1 − ΔΛ(W )]π(W )

−
∫ u

0

1{W ≥ s}dΛ(s)
[1 − ΔΛ(s)]π(s)

]
and

ǧ(W, 0) = −
∫ u

0

1{W ≥ s}dΛ(s)
[1 − ΔΛ(s)]π(s)

.

For each h ∈ L0
2(F ), there exists a one-dimensional submodel {Ft : t ∈

Nε}, with Ft(v) =
∫ v
0 (1 + th(s))dF (s) + o(t). This is clearly the maximal

tangent set for F . This collection of submodels can be shown to generate
the tangent set for the observed data model {PF : F ∈ D}, where D is the
collection of all failure time distribution functions with F (0) = 0, via the
score operator A : L0

2(F ) �→ L0
2(PF ) defined by (Ah)(W, δ) = δh(W )+ (1−

δ)
∫∞
W h(v)dF (v)/S(W ). For a, b ∈ L0

2(F ), let 〈a, b〉F =
∫∞
0 a(s)b(s)dF (s);

and for j, k ∈ L0
2(PF ), let 〈j, k〉PF = PF [jk]. Thus the adjoint of A must

satisfy 〈Ah, g〉PF
= 〈h,A∗g〉F . Accordingly,

PF [(Ah)g] = PF

[
δh(W )g(W, 1) + (1 − δ)

∫∞
W h(v)dF (v)

S(W )
g(W, 0)

]

=
∫ ∞

0

g(v, 1)L(v−)h(v)dF (v) +
∫ ∞

0

∫∞
w h(v)dF (v)

S(w)
S(w)dG(w)

=
∫ ∞

0

g(v, 1)L(v−)h(v)dF (v) −
∫ ∞

0

∫
[v,∞]

g(w, 0)dG(w)h(v)dF (v),

by the fact that
∫∞
s h(v)dF (v) = −

∫ s
0 h(v)dF (v) and by changing the

order of integration on the right-hand-side. Thus A∗g(v) = g(v, 1)L(v−)−∫
[v,∞]

g(s, 0)dG(s).
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With St(u) = 1 − Ft(u) based on a submodel perturbed in the di-
rection h ∈ L0

2(F ), we have that ∂St(u)/(∂t)|t=0 =
∫∞
u h(v)dF (v) =

−
∫ u
0 h(v)dF (v) = 〈χ̃, h〉F , where χ̃ = −1{v ≤ u}. We now verify that

A∗ [ψ̌(u)
]

= χ̃, and thereby prove that Ŝ(u) is efficient for estimating the
parameter S(u), since it can be shown that ψ̌ ∈ R(A). We now have

(4.8)(
A∗ [ψ̌(u)

])
(v) = ψ̌(u)(v, 1)L(v−) −

∫
[v,∞]

ψ̌(u)(s, 0)dG(s)

= −S(u)
S(v)

1{v ≤ u} + S(u)L(v−)
∫ u

0

1{v ≥ s}dΛ(s)
[1 − ΔΛ(s)]π(s)

−
∫

[v,∞]

{
S(u)

∫ u

0

1{s ≥ r}dΛ(r)
[1 − ΔΛ(r)] π(r)

}
dG(s).

Since
∫
[v,∞] 1{s ≥ r}dG(s) = L([v ∨ r]−) = 1{v ≥ r}L(v−) + 1{v <

r}L(r−), we now have that

(4.8) = −S(u)
S(v)

1{v ≤ u} − S(u)
∫ u

0

1{v < r}L(r−)dΛ(r)
[1 − ΔΛ(r)] π(r)

= −1{v ≤ u}
[

1
S(v)

+
∫ u

v

dF (r)
S(r)S(r−)

]
S(u)

= −1{v ≤ u}.
Thus (3.5) is satisfied, and we obtain the result that Ŝ is pointwise and,
therefore, uniformly efficient for estimating S.

4.4 Efficient Estimating Equations for Regression

We now consider a generalization of the conditionally mean zero residual
linear regression model considered previously. A typical observation is as-
sumed to be X = (Y, Z), where Y = gθ(Z)+ e, E{e|Z} = 0, Z, θ ∈ Rk, and
gθ(Z) is a known, sufficiently smooth function of θ. In addition to linear
regression, generalized linear models—as well as many nonlinear regression
models—fall into this structure. We assume that (Z, e) has a density η, and,
therefore, that the observation (Y, Z) has density η(y − gθ(z), z) with the
only restriction being that

∫
R
eη(e, z)de = 0. As we observed in section 3.2,

these conditions force the score functions for η to be all square-integrable
functions a(e, z) which satisfy

E{ea(e, Z)|Z} =

∫
R
ea(e, Z)η(e, Z)de∫

R
η(e, Z)de

= 0

almost surely. As also demonstrated in section 3.2, the above equality im-
plies that the tangent space for η is the orthocomplement in L0

2(Pθ,η) of
the set H of all functions of the form eh(Z), where Eh2(Z) <∞.
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Hence, as pointed out previously, the efficient score for θ is obtained by
projecting the ordinary score �̇θ,η(e, z) = − [η̇1(e, z)/η(e, z)] ġθ(z) onto H,
where η̇1 is the derivative with respect to the first argument of η and ġθ
is the derivative of gθ with respect to θ. Of course, we are assuming that
these derivatives exist and are square-integrable. Since the projection of an
arbitrary b(e, z) onto H is eE{eb(e, Z)|Z}/V (Z), where V (z) ≡ E{e2|Z =
z}, the efficient score for θ is

�̃θ,η(Y, Z) = −
ġθ(Z)e

∫
R
η̇1(u, Z)udu

V (Z)
∫

R
ηu, Zdu

=
ġθ(Z)(Y − gθ(Z))

V (Z)
.(4.9)

This, of course, implies the result in section 3.2 for the special case of linear
regression.

In practice, the form of V (Z) is typically not known and needs to be
estimated. Let this estimator be denoted V̂ (Z). It can be shown that, even
if V̂ is not consistent but converges to Ṽ �= V , the estimating equation

Ŝn(θ) ≡ Pn

[
ġθ(Z)(Y − gθ(Z))

V̂ (Z)

]

is approximately equivalent to the estimating equation

S̃n(θ) ≡ Pn

[
ġθ(Z)(Y − gθ(Z))

Ṽ (Z)

]
,

both of which can still yield
√
n consistent estimators of θ. The closer Ṽ is

to V , the more efficient will be the estimator based on solving Ŝn(θ) = 0.
Another variant of the question of optimality is “for what choice of Ṽ will
the estimator obtained by solving S̃n(θ) = 0 yield the smallest possible
variance?” Godambe (1960) showed that, for univariate θ, the answer is
Ṽ = V . This result is not based on semiparametric efficiency analysis, but
is obtained from minimizing the limiting variance of the estimator over all
“reasonable” choices of Ṽ .

For any real, measurable function w of z ∈ Rk (measurable on the prob-
ability space for Z), let

Sn,w(θ) ≡ Pn [ġθ(Z)(Y − gθ(Z))w(Z)/V (Z)] ,

U(z) ≡ ġ(z)ġ′(z)/V (z), and let θ̂n,w be a solution of Sn,w(θ) = 0. Standard
methods can be used to show that if both E[U(Z)] and E[U(Z)w(Z)] are
positive definite, then the limiting variance of

√
n(θ̂n,w − θ) is

{E[U(Z)w(Z)]}−1 {E[U(Z)w2(Z)]
}
{E[U(Z)w(Z)]}−1

.

The following proposition yields Godambe’s (1960) result generalized for
arbitrary k ≥ 1:
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Proposition 4.3 Assume E[U(Z)] is positive definite. Then, for any
real, Z-measurable function w for which E[U(Z)w(Z)] is positive definite,

C0,w ≡ {E[U(Z)w(Z)]}−1 E[U(Z)w2(Z)] {E[U(Z)w(Z)]}−1−{E[U(Z)]}−1

is positive semidefinite.

Proof. Define B(z) ≡ {E[U(Z)w(Z)]}−1
w(z) − {E[U(Z)]}−1, and note

that Cw(Z) ≡ B(Z)E[U(Z)]B′(Z) must therefore be positive semidefinite.
The desired result now follows since E[Cw(Z)] = C0,w.�

Note that when A − B is positive semidefinite, for two k × k variance
matrices A and B, we know that B is the smaller variance. This follows
since, for any v ∈ Rk, v′Av ≥ v′Bv. Thus the choice w = 1 will yield
the minimum variance, or, in other words, the choice Ṽ = V will yield
the lowest possible variance for estimators asymptotically equivalent to the
solution of S̃n(θ) = 0.

We now verify that estimation based on solving Ŝn(θ) = 0 is asymptoti-
cally equivalent to estimation based on solving S̃n(θ) = 0, under reasonable
regularity conditions. Assume that θ̂ satisfies Ŝn(θ̂) = op(n−1/2) and that

θ̂
P→ θ. Assume also that for every ε > 0, there exists a P -Donsker class G

such that the inner probability that V̂ ∈ G is > 1− ε for all n large enough
and all ε > 0, and that for some τ > 0, the class

F1 =
{
ġθ1(Z)(Y − gθ2(Z))

W (Z)
: ‖θ1 − θ‖ ≤ τ, ‖θ2 − θ‖ ≤ τ,W ∈ G

}

is P -Donsker, and the class

F2 =
{
ġθ1(Z)ġ′θ2(Z)

W (Z)
: ‖θ1 − θ‖ ≤ τ, ‖θ2 − θ‖ ≤ τ,W ∈ G

}

is P -Glivenko-Cantelli. We also need that

P

[
ġθ̂(Z)

V̂ (Z)
− ġθ(Z)
Ṽ (Z)

]2

P→ 0,(4.10)

and, for any θ̃ P→ θ,∣∣∣∣∣P ġθ̂(Z)ġ′
θ̃
(Z)

V̂ (Z)
− P

ġθ(Z)ġ′θ(Z)
Ṽ (Z)

∣∣∣∣∣ P→ 0.(4.11)

We have the following lemma:

Lemma 4.4 Assume that E[Y |Z = z] = gθ(z), that

U0 ≡ E
[
ġθ(Z)ġ′θ(Z)
V (Z)

]
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is positive definite, that θ̂ satisfies Ŝn(θ̂) = op(n−1/2), and that θ̂ P→ θ. Sup-
pose also that F1 is P -Donsker, that F2 is P -Glivenko-Cantelli, and that
both (4.10) and (4.11) hold for any θ̃ P→ θ. Then

√
n(θ̂−θ) is asymptotically

normal with variance

U−1
0 E

[
ġθ(Z)ġ′θ(Z)V (Z)

Ṽ 2(Z)

]
U−1

0 .

Moreover, if Ṽ = V , Z-almost surely, then θ̂ is optimal in the sense of
proposition 4.3.

Proof. For any h ∈ Rk,

op(n−1/2) = h′Pn

[
ġθ̂(Z)(Y − gθ̂(Z))

V̂ (Z)

]
= h′Pn

[
ġθ(Z)(Y − gθ(Z))

Ṽ (Z)

]

+h′Pn

[{
ġθ̂(Z)

V̂ (Z)
− ġθ(Z)
Ṽ (Z)

}
(Y − gθ(Z))

]

−h′Pn

[
ġθ̂(Z)ġ′

θ̃
(Z)

V̂ (Z)
(θ̂ − θ)

]
,

where θ̃ is on the line segment between θ and θ̂. Now the conditions of the
theorem can be seen to imply that

√
n(θ̂ − θ) =

√
nU−1

0 Pn

{
ġθ(Z)(Y − gθ(Z))

Ṽ (Z)

}
+ op(1),

and the first conclusion of the lemma follows. The final conclusion now
follows directly from proposition 4.3.�

The conditions of lemma 4.4 are easily satisfied for a variety of regression
models and variance estimators V̂ . For example, if gθ(Z) = (1 + e−θ

′Z)−1

is the conditional expectation of a Bernoulli outcome Y , given Z, and both
θ and Z are assumed to be bounded, then all the conditions are easily sat-
isfied with θ̂ being a zero of Ŝn and V̂ (Z) = gθ̂(Z)

[
1 − gθ̂(Z)

]
, provided

E[ZZ ′] is positive definite. Note that for this example, θ̂ is also semipara-
metric efficient. We now consider two additional examples in some detail.
The first example is a special case of the semiparametric model discussed at
the beginning of this section. The model is simple linear regression but with
an unspecified form for V (Z). Note that for general gθ, if the conditions of
lemma 4.4 are satisfied for Ṽ = V , then the estimator θ̂ is semiparametric
efficient by the form of the efficient score given in (4.9). The second ex-
ample considers estimation of a semiparametric Poisson mixture regression
model, where the mixture induces extra-Poisson variation. We will develop
an optimal estimating equation procedure in the sense of proposition 4.3.
Unfortunately, it is unclear in this instance how to strengthen this result
to obtain semiparametric efficiency.



64 4. Case Studies I

4.4.1 Simple Linear Regression

Consider simple linear regression based on a univariate Z. Let θ = (α, β)′ ∈
R2 and assume gθ(Z) = α + βZ. We also assume that the support of Z
is a known compact interval [a, b]. We will use a modified kernel method
of estimating V (z) ≡ E[e2|Z = z]. Let the kernel L : R �→ [0, 1] satisfy
L(x) = 0 for all |x| > 1 and L(x) = 1− |x| otherwise, and let h ≤ (b− a)/2
be the bandwidth for this kernel. For the sample (Y1, Z1), . . . , (Yn, Zn), let
θ̂ = (α̂, β̂)′ be the usual least-squares estimator of θ, and let êi = Yi −
α̂− β̂Zi be the estimated residuals. Let F̂n(u) be the empirical distribution
of Z1, . . . , Zn, and let Ĥn(u) ≡ n−1

∑n
i=1 ê

2
i 1{Zi ≤ u}. We will denote

F as the true distribution of Z, with density f , and also define H(z) ≡∫ z
a V (u)dF (u). Now define

V̂ (z) ≡
∫

R
h−1L

(
z−u
h

)
Ĥn(du)∫

R
h−1L

(
z−u
h

)
F̂n(du)

,

for z ∈ [a + h, b − h], and let V̂ (z) = V̂ (a + h) for all z ∈ [a, a + h) and
V̂ (z) = V̂ (b− h) for all z ∈ (b − h, b].

We need to assume in addition that both F and V are twice differentiable
with second derivatives uniformly bounded on [a, b], that for some M < ∞
we have M−1 ≤ f(z), V (z) ≤ M for all a ≤ x ≤ b, and that the possibly
data-dependent bandwidth satisfies h = oP (1) and h−1 = oP (n1/4). If we
let Ui ≡ (1, Zi)′, i = 1, . . . , n, then Ĥn(z) =

n−1
n∑
i=1

ê2i 1{Zi ≤ z} = n−1
n∑
i=1

[
ei − (θ̂ − θ)′Ui

]2

1{Zi ≤ z}

= n−1
n∑
i=1

e2i 1{Zi ≤ z}

−2(θ̂ − θ)′n−1
n∑
i=1

Uiei1{Zi ≤ z}

+(θ̂ − θ)′n−1
n∑
i=1

UiU
′
i1{Zi ≤ z}(θ̂ − θ)

= An(z) − Bn(z) + Cn(z).

In chapter 9, we will show in an exercise that G1 ≡ {Ue · 1{Z ≤ z}, z ∈ [a, b]}
is Donsker. Hence ‖Pn − P‖G1 = OP (n−1/2). Since also E[e|Z] = 0 and
‖θ̂ − θ‖ = OP (n−1/2), we now have that supz∈[a,b] |Bn(z)| = OP (n−1).
By noting that ‖U‖ is bounded under our assumptions, we also obtain
that supz∈[a,b] |Cn(z)| = OP (n−1). In another exercise in chapter 9, we
will verify that G2 ≡ {e2 · 1{Z ≤ z}, z ∈ [a, b]} is also Donsker. Hence
supz∈[a,b] |An(z) − H(z)| = OP (n−1/2), and thus also supz∈[a,b] |Ĥn(z) −
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H(z)| = OP (n−1/2). Standard results also verify that supz∈[a,b] |F̂n(z) −
F (z)| = OP (n−1/2).

Let Dn ≡ Ĥn − H , L̇ be the derivative of L, and note that for any
z ∈ [a+h, b−h] we have by integration by parts and by the form of L̇ that∫

R

h−1L

(
z − u

h

)
Dn(du) = −

∫ z+h

z−h
Dn(u)h−2L̇

(
z − u

h

)
du.

Thus ∣∣∣∣
∫

R

h−1L

(
z − u

h

)
Dn(du)

∣∣∣∣ ≤ h−1 sup
z∈[a,b]

∣∣∣Ĥn(z) −H(z)
∣∣∣ .

Since the right-hand-side does not depend on z, and by the result of the
previous paragraph, we obtain that the supremum of the left-hand-side over
z ∈ [a + h, b − h] is OP (h−1n−1/2). Letting Ḣ be the derivative of H , we
save it as an exercise to verify that both

sup
z∈[a+h,b−h]

∣∣∣∣
∫

R

h−1L

(
z − u

h

)
H(du) − Ḣ(z)

∣∣∣∣ = O(h)

and
(
supz∈[a,a+h)

∣∣∣Ḣ(z) − Ḣ(a+ h)
∣∣∣)∨(supz∈(b−h,b]

∣∣∣Ḣ(z) − Ḣ(b− h)
∣∣∣) =

O(h). Hence

R̂n(z) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
R
h−1L

(
z−u
h

)
Ĥn(du) for z ∈ [a+ h, b− h],

R̂n(a+ h) for z ∈ [a, a+ h),

R̂n(b − h) for z ∈ (b− h, b]

is uniformly consistent for Ḣ with uniform errorOP (h+h−1n−1/2) = oP (1).
Similar, but somewhat simpler arguments compared to those in the pre-

vious paragraph, can also be used to verify that

Q̂n(z) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
R
h−1L

(
z−u
h

)
F̂n(du) for z ∈ [a+ h, b− h],

Q̂n(a+ h) for z ∈ [a, a+ h),

Q̂n(b− h) for z ∈ (b − h, b]

is uniformly consistent for f also with uniform error OP (h+ h−1n−1/2) =
oP (1). Since f is bounded below, we now have that supz∈[a,b] |V̂ (z) −
V (z)| = oP (1). Since ġθ(Z) = (1, Z)′, we have established that both (4.10)
and (4.11) hold for this example since V is also bounded below.

We will now show that there exists a k0 < ∞ such that the probability
that “V̂ goes below 1/k0 or the first derivative of V̂ exceeds k0” goes to
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zero as n → ∞. If we let G be the class of all functions q : [a, b] �→ [k−1
0 , k0]

such that the first derivative of q, q̇, satisfies |q̇| ≤ k0, then our result will
imply that the inner probability that V̂ ∈ G is > 1−ε for all n large enough
and all ε > 0. An additional exercise in chapter 9 will then show that, for
this simple linear regression example, the class F1 defined above is Donsker
and F2 defined above is Glivenko-Cantelli. Thus lemma 4.4 applies. This
means that if we first use least-squares estimators of α and β to construct
the estimator V̂ , and then compute the “two-stage” estimator

θ̃ ≡
[

n∑
i=1

UiU
′
i

V̂ (Zi)

]−1 n∑
i=1

UiYi

V̂ (Zi)
,

then this θ̃ will be efficient for θ.
Since V̂ is uniformly consistent, the only thing remaining to show is

that the derivative of V̂ , denoted V̇n, is uniformly bounded. Note that the
derivative of R̂n, which we will denote Ṙn, satisfies the following for all
z ∈ [a+ h, b− h]:

Ṙn(z) = −
∫

R

h−2L̇

(
z − u

h

)
Ĥn(du)

= h−2
[
Ĥn(z) − Ĥn(z − h) − Ĥn(z + h) + Ĥn(z)

]
= OP (h−2n−1/2) + h−2 [H(z) −H(z − h) −H(z + h) +H(z)] ,

where the last equality follows from the previously established fact that
supz∈[a+h,b−h]

∣∣∣Ĥn(z) −H(z)
∣∣∣ = OP (n−1/2). Now the uniform bounded-

ness of the second derivative of H ensures that supz∈[a+h,b−h]

∣∣∣Ḣn(z)
∣∣∣ =

OP (1). Similar arguments can be used to establish that the derivative of
Q̂n, which we will denote Q̇n, satisfies supz∈[a+h,b−h]

∣∣∣Q̇n(z)∣∣∣ = OP (1).

Now we have uniform boundedness in probability of V̇n over [a+ h, b− h].
Since V̂n does not change over either [a, a + h) or (b − h, b], we have also
established that supz∈[a,b]

∣∣∣V̇n(z)
∣∣∣ = OP (1), and the desired results follow.

4.4.2 A Poisson Mixture Regression Model

In this section, we consider a Poisson mixture regression model in which
the nuisance parameter is not

√
n consistent in the uniform norm. Given

a regression vector Z ∈ Rk and a nonnegative random quantity W ∈ R,
the observation Y is Poisson with parameter Weβ

′Z , for some β ∈ Rk. We
only observe the pair (Y, Z). Thus the density of Y given Z is

Qβ,G(y) =
∫ ∞

0

e−we
β′Z

[weβ
′Z ]y

y!
dG(w),
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where G is the unknown distribution function for W . For identifiability,
we assume that one of the components of Z is the constant 1 and that the
expectation of W is also 1. We denote the joint distribution of the observed
data as Pβ,G, and assume that Z is bounded, Pβ,G[ZZ ′] is full rank, and
that Pβ,GY 2 < ∞.

In this situation, it is not hard to verify that

V (z) = E
{[

Y − eβ
′Z
]2
∣∣∣∣Z = z

}

= E
[
E
{[

Y − Ueβ
′Z
]2
∣∣∣∣U,Z = z

}
+ (U − 1)2e2β

′z
]

= eβ
′z + σ2e2β

′z ,

where σ2 ≡ E[U − 1]2. Let β̃ be the estimator obtained by solving

Pn

[
Z(Y − eβ

′Z)
]

= 0.

Standard arguments reveal that
√
n(β̃ − β) is asymptotically mean zero

Gaussian with finite variance matrix. Relatively simple calculations also
reveal that E[Y (Y − 1)|Z = z] =

∫∞
0
u2dG(u)e2β

′Z = (σ2 + 1)e2β
′Z . Hence

σ̂2 ≡ −1 + n−1
∑n

i=1 e
−2β̂′ZiYi(Yi − 1) will satisfy σ̂2 = σ2 + OP (n−1/2).

Now let β̂ be the solution of

Pn

[
Z(Y − eβ

′Z)
V̂ (Z)

]
= 0,

where V̂ (z) ≡ eβ̃
′z+σ̂2e2β̃

′z. It is left as an exercise to verify that β̂ satisfies
the conditions of lemma 4.4 for Ṽ = V , and thus the desired optimality is
achieved.

4.5 Partly Linear Logistic Regression

For the partly linear logistic regression example given in chapter 1, the ob-
served data are n independent realizations of the random triplet (Y, Z, U),
where Z ∈ Rp and U ∈ R are covariates which are not linearly dependent,
Y is a dichotomous outcome with conditional expectation ν[β′Z + η(U)],
β ∈ Rp, Z is restricted to a bounded set, U ∈ [0, 1], ν(t) = 1/(1 + e−t),
and where η is an unknown smooth function. Hereafter, for simplicity, we
will also assume that p = 1. We further assume, for some integer k ≥ 1,
that the first k−1 derivatives of η exist and are absolutely continuous with
J2(η) =

∫ 1

0

[
η(k)(t)

]2
dt < ∞. To estimate β and η based on an i.i.d. sample

Xi = (Yi, Zi, Ui), i = 1, . . . , n, we use the following penalized log-likelihood:
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L̃n(β, η) = n−1
n∑
i=1

log pβ,η(Xi) − λ̂2
nJ

2(η),

where
pβ,η(x) = {ν [βz + η(u)]}y {1 − ν [βz + η(u)]}1−y

and λ̂n is chosen to satisfy λ̂n = op(n−1/4) and λ̂−1
n = Op(nk/(2k+1)).

Denote β̂n and η̂n to be the maximizers of L̃n(β, η), let Pβ,η denote ex-
pectation under the model, and let β0 and η0 to be the true values of the
parameters.

Consistency of β̂n and η̂n and efficiency of β̂n are established for partly
linear generalized linear models in Mammen and van de Geer (1997). We
now derive the efficient score for β and then sketch a verification that
β̂n is asymptotically linear with influence function equal to the efficient
influence function. Let H be the linear space of functions h : [0, 1] �→ R

with J(h) < ∞. For t ∈ [0, ε) and ε sufficiently small, let βt = β + tv and
ηt = η + th for v ∈ R and h ∈ H. If we differentiate the non-penalized
log-likelihood, we deduce that the score for β and η, in the direction (v, h),
is (vZ+h(U))(Y −μβ,η(Z,U)), where μβ,η(Z,U) = ν[βZ+ η(U)]. Now let

h1(u) =
E{ZVβ,η(Z,U)|U = u}
E{Vβ,η(Z,U)|U = u} ,

where Vβ,η = μβ,η(1 − μβ,η), and assume that h1 ∈ H. It can easily be
verified that Z−h1(U) is uncorrelated with any h(U), h ∈ H, and thus the
efficient score for β is �̃β,η(Z,U) = (Z − h1(U))(Y − μ(Z,U)). Hence the
efficient information for β is Ĩβ,η = Pβ,η

[
(Z − h1(U))2Vβ,η(Z,U)

]
and the

efficient influence function is ψ̃β,η = Ĩ−1
β,η �̃β,η, provided Ĩβ,η > 0, which we

assume hereafter to be true for β = β0 and η = η0.
In order to prove asymptotic linearity of β̂n, we need to also assume that

Pβ0,η0

[
Z − h̃1(U)

]2

> 0, where h̃1(u) = E{Z|U = u}. First, Mammen and

van de Geer established that β̂n and η̂n are both uniformly consistent for
β0 and η0, respectively, and that

Pn

[
(β̂n − β0)Z + η̂n(U) − η0(U)

]2

= op(n−1/2).(4.12)

Let β̂ns = β̂n + s and η̂ns(u) = η̂n(u) − sh1(u). If we now differentiate
L̃n(β̂ns, η̂ns) and evaluate at s = 0, we obtain

0 = Pn [(Y − μβ0,η0)(Z − h1(U))]

−Pn

[
(μβ̂n,η̂n

− μβ0,η0)(Z − h1(U))
]
− λ2

n

{
∂J2(η̂ns)/(∂s)|s=0

}
= An −Bn − Cn,

since L̃n(β, η) is maximized at β̂n and η̂n by definition.
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Using (4.12), we obtain

Bn = Pn

[
Vβ0,η0(Z,U)

{
(β̂n − β0)Z + η̂n(U) − η0(U)

}
(Z − h1(U))

]
+op(n−1/2),

since ∂ν(t)/(∂t) = t(1 − t). By definition of h1, we have

Pβ0,η0 [Vβ0,η0(Z,U)(η̂n(U) − η0(U))(Z − h1(U))] = 0,

and we also have that Pβ0,η0 [Vβ0,η0(Z,U)(η̂n(U) − η0(U))(Z − h1(U))]2 P→
0. Thus, if we can establish that for each τ > 0, η̂n(U) − η0(U) lies in a
bounded Pβ0,η0 -Donsker class with probability > (1− τ) for all n ≥ 1 large
enough and all τ > 0, then

Pn [Vβ0,η0(Z,U)(η̂n(U) − η0(U))(Z − h1(U))] = op(n−1/2),

and thus

Bn = (β̂n − β0)Pβ0,η0

[
Vβ0,η0(Z,U)(Z − h1(U))2

]
+ op(n−1/2),(4.13)

since products of bounded Donsker classes are Donsker (and therefore also
Glivenko-Cantelli), and since

Pβ0,η0 [Vβ0,η0(Z,U)Z(Z − h1(U))] = Pβ0,η0

[
Vβ0,η0(Z,U)(Z − h1(U))2

]
by definition of h1. Let Hc be the subset of H with functions h satisfying
J(h) ≤ c. We will show in part II that {h(U) : h ∈ Hc} is indeed Donsker
for each c <∞. Since Mammen and van de Geer verify that J(η̂n) = Op(1),
we have the desired Donsker property, and (4.13) follows.

It is not difficult to verify that Cn ≤ 2λ2
nJ(η̂n)J(h1) = op(n−1/2), since

λn = op(n−1/4) by assumption. Hence
√
n(β̂n − β0) =

√
nPnψ̃β0,η0 +

op(n−1/2), and we have verified that β̂n is efficient for β0.

4.6 Exercises

4.6.1. For the linear regression example, verify the inequality (4.3).

4.6.2. For the general counting process regression model setting, show
that V (β) ≥ c var(Z), for some c > 0, where V (β) is given in (4.5).

4.6.3. Show how to use lemma 4.2 to establish (4.6). Hint: Let An(t) =
En(t, β̂) − E(t, β̂) and Bn(t) =

√
nPnMβ0(t) for part of it, and let

An(t) = Pn

{∫ t

0

Y (s)
[
eβ̂

′Z − eβ
′
0Z

]
dΛ0(s)

}

and Bn(t) =
√
n
[
En(t, β̂) − E(t, β̂)

]
for the other part.
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4.6.4. For the Cox model example (section 4.2.2), verify condition (3.7)
of theorem 3.1 for �̂β̃,n defined in (3.9).

4.6.5. For the Kaplan-Meier example of section 4.3, verify that ψ̌ ∈ R(A).

4.6.6. For the Poisson mixture model example of section 4.4.2, verify that
the conditions of lemma 4.4 are satisfied for the given choice of V̂ :

(a) Show that the class G ≡
{
et

′Z + s2e2t
′Z : ‖t− β‖ ≤ ε1, |s2 − σ2| ≤ ε2

}
is Donsker for some ε1, ε2 > 0. Hint: First show that {t′Z : ‖t− β‖ ≤
ε1} is Donsker from the fact that the product of two (in this case
trivial) bounded Donsker classes is also Donsker. Now complete the
proof by using the facts that Lipschitz functions of Donsker classes
are Donsker, that products of bounded Donsker classes are Donsker
(used earlier), and that sums of Donsker classes are Donsker.

(b) Now complete the verification of lemma 4.4.

4.6.7. For the partly linear logistic regression example of section 4.5, ver-
ify that (Z − h1(U)) (Y −μβ0,η0) is uncorrelated with h(U)(Y −μβ0,η0) for
all h ∈ H, where the quantities are as defined in the example.

4.7 Notes

Least absolute deviation regression was studied using equicontinuity ar-
guments in Bassett and Koenker (1978). More succinct results based on
empirical processes can be found in Pollard (1991). An excellent discussion
of breakdown points and other robustness issues is given in Huber (1981).
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5
Introduction to Empirical Processes

The goal of part II is to provide an in depth coverage of the basics of em-
pirical process techniques which are useful in statistics. Chapter 6 presents
preliminary mathematical background which provides a foundation for later
technical development. The topics covered include metric spaces, outer ex-
pectations, linear operators and functional differentiation. The main topics
overviewed in chapter 2 of part I will then be covered in greater depth, along
with several additional topics, in chapters 7 through 14. Part II finishes in
chapter 15 with several case studies. The main approach is to present the
mathematical and statistical ideas in a logical, linear progression, and then
to illustrate the application and integration of these ideas in the case study
examples. The scaffolding provided by the overview, part I, should enable
the reader to maintain perspective during the sometimes rigorous develop-
ments of this section.

Stochastic convergence is studied in chapter 6. An important aspect of
the modes of convergence explored in this book are the notions of outer
integrals and outer measure which were mentioned briefly in section 2.2.1.
While many of the standard relationships between the modes of stochastic
convergence apply when using outer measure, there are a few important
differences which we will examine. While these differences may, in some
cases, add complexity to an already difficult asymptotic theory, the gain
in breadth of applicability to semiparametric statistical estimators is well
worth the trouble. For example, convergence based on outer measure per-
mits the use of the uniform topology for studying convergence of empirical
processes with complex index sets. This contrasts with more traditional
approaches which require special topologies that can be harder to use in
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applications, such as the Skorohod topology for cadlag processes (see chap-
ter 3 of Billingsley, 1968).

The main techniques for proving empirical process central limit theorems
will be presented in chapter 8. Establishing Glivenko-Cantelli and Donsker
theorems requires bounding expectations involving suprema of stochastic
processes. Maximal inequalities and symmetrization techniques are impor-
tant tools for accomplishing this, and careful measurability arguments are
also sometimes needed. Symmetrization involves replacing inequalities for
the empirical process f �→ (Pn−P )f , f ∈ F , with inequalities for the “sym-
metrized” process n−1

∑n
i=1 εif(Xi), where ε1, . . . , εn are i.i.d. Rademacher

random variables (eg., P{ε1 = −1} = P{ε1 = 1} = 1/2) independent of
X1, . . . , Xn. Several tools for assessing measurability in statistical applica-
tions will also be discussed.

Entropy with bracketing, uniform entropy, and other measures of entropy
are essential aspects in all of these results. This is the topic of chapter 9.
The associated entropy calculations can be quite challenging, but the work
is often greatly simplified by using Donsker preservation results to build
larger Donsker classes from smaller ones. Similar preservation results are
available for Glivenko-Cantelli classes.

Bootstrapping of empirical processes, based on multinomial or other
Monte Carlo weights, is studied in chapter 10. The bootstrap is a valu-
able way to conduct inference for empirical processes because of its broad
applicability. In many semiparametric settings, there are no viable alterna-
tives for inference. A central role in establishing validity of the bootstrap
is played by multiplier central limit theorems which establish weak conver-
gence of processes of the form

√
nPnξ(f(X)−Pf), f ∈ F , where ξ is inde-

pendent of X , has mean zero and variance 1, and
∫∞
0

√
P (|ξ| > x)dx < ∞.

In chapter 11, several extensions of empirical process results are pre-
sented for function classes which either consist of sequences or change with
the sample size n, as well as results for independent but not identically
distributed data. These results are useful in a number of statistical set-
tings, including asymptotic analysis of the Cramér-von Mises statistic and
regression settings where the covariates are assumed fixed or when a biased
coin study design (see Wei, 1978, for example) is used. Extensions of the
bootstrap for conducting inference in these new situations is also discussed.

Many interesting statistical quantities can be expressed as functionals of
empirical processes. The functional delta method, discussed in chapter 12,
can be used to translate weak convergence and bootstrap results for empir-
ical processes to corresponding inference results for these functionals. Most
Z- and M- estimators are functionals of empirical processes. For example,
under reasonable regularity conditions, the functional which extracts the
zero (root) of a Z-estimating equation is sufficiently smooth to permit the
delta method to carry over inference results for the estimating equation
to the corresponding Z-estimator. The results also apply to M-estimators
which can be expressed as approximate Z-estimators.
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Z-estimation is discussed in chapter 13, while M-estimation is discussed
in chapter 14. A key challenge with many important M-estimators is to
establish the rate of convergence, especially in settings where the estima-
tors are not

√
n consistent. This issue was only briefly mentioned in in

section 2.2.6 because of the technical complexity of the problem. There are
a number of tools which can be used to establish these rates, and several
such tools will be studied in chapter 14. These techniques rely significantly
on accurate entropy calculations for the M-estimator empirical process, as
indexed by the parameter set, within a small neighborhood of the true
parameter.

The case studies presented in chapter 15 demonstrate that the technical
power of empirical process methods facilitates valid inference for flexible
models in many interesting and important statistical settings.
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6
Preliminaries for Empirical Processes

In this chapter, we cover several mathematical topics that play a central
role in the empirical process results we present later. Metric spaces are
crucial since they provide the descriptive language by which the most im-
portant results about stochastic processes are derived and expressed. Outer
expectations, or, more correctly, outer integrals are key to defining and uti-
lizing outer modes of convergence for quantities which are not measurable.
Since many statistical quantities of interest are not measurable with re-
spect to the uniform topology, which is often the topology of choice for
applications, outer modes of convergence will be the primary approach for
stochastic convergence throughout this book. Linear operators and func-
tional derivatives also play a major role in empirical process methods and
are key tools for the functional delta method and Z-estimator theory dis-
cussed in chapters 12 and 13.

6.1 Metric Spaces

We now introduce a number of concepts and results for metric spaces.
Before defining metric spaces, we briefly review topological spaces, σ-fields,
and measure spaces. A collection O of subsets of a set X is a topology in
X if:

(i) ∅ ∈ O and X ∈ O, where ∅ is the empty set;

(ii) If Uj ∈ O for j = 1, . . . ,m, then
⋂
j=1,m Uj ∈ O;
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(iii) If {Uα} is an arbitrary collection of members of O (finite, countable
or uncountable), then

⋃
α Uα ∈ O.

When O is a topology in X , then X (or the pair (X,O)) is a topological
space, and the members of O are called the open sets in X . For a subset
A ⊂ X , the relative topology on A consists of the sets {A ∩B : B ∈ O}.

A map f : X �→ Y between topological spaces is continuous if f−1(U) is
open in X whenever U is open in Y . A set B in X is closed if and only if
its complement in X , denoted X −B, is open. The closure of an arbitrary
set E ∈ X , denoted E, is the smallest closed set containing E; while the
interior of an arbitrary set E ∈ X , denoted E◦, is the largest open set
contained in E. A subset A of a topological space X is dense if A = X . A
topological space X is separable if it has a countable dense subset.

A neighborhood of a point x ∈ X is any open set that contains x. A
topological space is Hausdorf if distinct points in X have disjoint neigh-
borhoods. A sequence of points {xn} in a topological space X converges
to a point x ∈ X if every neighborhood of x contains all but finitely many
of the xn. This convergence is denoted xn → x. Suppose xn → x and
xn → y. Then x and y share all neighborhoods, and x = y when X is
Hausdorf. If a map f : X �→ Y between topological spaces is continuous,
then f(xn) → f(x) whenever xn → x in X . To see this, let {xn} ⊂ X be
a sequence with xn → x ∈ X . Then for any open U ⊂ Y containing f(x),
all but finitely many {xn} are in f−1(U), and thus all but finitely many
{f(xn)} are in U . Since U was arbitrary, we have f(xn) → f(x).

We now review the important concept of compactness. A subset K of a
topological space is compact if for every set A ⊃ K, where A is the union
of a collection of open sets S, K is also contained in some finite union
of sets in S. When the topological space involved is also Hausdorf, then
compactness of K is equivalent to the assertion that every sequence in
K has a convergent subsequence (converging to a point in K). We omit
the proof of this equivalence. This result implies that compact subsets of
Hausdorf topological spaces are necessarily closed. Note that a compact
set is sometimes called a compact for short. A σ-compact set is a countable
union of compacts.

A collection A of subsets of a set X is a σ-field in X (sometimes called
a σ-algebra) if:

(i) X ∈ A;

(ii) If U ∈ A, then X − U ∈ A;

(iii) The countable union
⋃∞
j=1 Uj ∈ A whenever Uj ∈ A for all j ≥ 1.

Note that (iii) clearly includes finite unions. When (iii) is only required to
hold for finite unions, then A is called a field. When A is a σ-field in X ,
then X (or the pair (X,A)) is a measurable space, and the members of
A are called the measurable sets in X . If X is a measurable space and Y
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is a topological space, then a map f : X �→ Y is measurable if f−1(U) is
measurable in X whenever U is open in Y .

If O is a collection of subsets of X (not necessary open), then there exists
a smallest σ-field A∗ in X so that O ∈ A∗. This A∗ is called the σ-field
generated by O. To see that such an A∗ exists, let S be the collection of
all σ-fields in X which contain O. Since the collection of all subsets of X
is one such σ-field, S is not empty. Define A∗ to be the intersection of all
A ∈ S. Clearly, O ∈ A∗ and A∗ is in every σ-field containing O. All that
remains is to show that A∗ is itself a σ-field. Assume that Aj ∈ A∗ for all
integers j ≥ 1. If A ∈ S, then

⋃
j≥1 Aj ∈ A. Since

⋃
j≥1 Aj ∈ A for every

A ∈ S, we have
⋃
j≥1Aj ∈ A∗. Also X ∈ A∗ since X ∈ A for all A ∈ S;

and for any A ∈ A∗, both A and X − A are in every A ∈ S. Thus A∗ is
indeed a σ-field.

A σ-field is separable if it is generated by a countable collection of subsets.
Note that we have already defined “separable” as a characteristic of certain
topological spaces. There is a connection between the two definitions which
we will point out in a few paragraphs when we discuss metric spaces. When
X is a topological space, the smallest σ-field B generated by the open sets
is called the Borel σ-field of X . Elements of B are called Borel sets. A
function f : X �→ Y between topological spaces is Borel-measurable if it
is measurable with respect to the Borel σ-field of X . Clearly, a continuous
function between topological spaces is also Borel-measurable.

For a σ-field A in a set X , a map μ : A �→ R̄ is a measure if:

(i) μ(A) ∈ [0,∞] for all A ∈ A;

(ii) μ(∅) = 0;

(iii) For a disjoint sequence {Aj} ∈ A, μ
(⋃∞

j=1 Aj

)
=

∑∞
j=1 μ(Aj) (count-

able additivity).

If X = A1 ∪ A2 ∪ · · · for some finite or countable sequence of sets in A
with μ(Aj) < ∞ for all indices j, then μ is σ-finite. The triple (X,A, μ) is
called a measure space. If μ(X) = 1, then μ is a probability measure. For
a probability measure P on a set Ω with σ-field A, the triple (Ω,A, P ) is
called a probability space. If the set [0,∞] in part (i) is extended to (−∞,∞]
or replaced by [−∞,∞) (but not both), then μ is a signed measure. For a
measure space (X,A, μ), let A∗ be the collection of all E ∈ X for which
there exists A,B ∈ A with A ⊂ E ⊂ B and μ(B − A) = 0, and define
μ(E) = μ(A) in this setting. Then A∗ is a σ-field, μ is still a measure, and
A∗ is called the μ-completion of A.

A metric space is a set D together with a metric. A metric or distance
function is a map d : D × D �→ [0,∞) where:

(i) d(x, y) = d(y, x);

(ii) d(x, z) ≤ d(x, y) + d(y, z) (the triangle inequality);
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(iii) d(x, y) = 0 if and only if x = y.

A semimetric or pseudometric satisfies (i) and (ii) but not necessarily (iii).
Technically, a metric space consists of the pair (D, d), but usually only D is
given and the underlying metric d is implied by the context. This is similar
to topological and measurable spaces, where only the set of all points X
is given while the remaining components are omited except where needed
to clarify the context. A semimetric space is also a topological space with
the open sets generated by applying arbitrary unions to the open r-balls
Br(x) ≡ {y : d(x, y) < r} for r ≥ 0 and x ∈ D (where B0(x) ≡ ∅). A metric
space is also Hausdorf, and, in this case, a sequence {xn} ∈ D converges
to x ∈ D if d(xn, x) → 0. For a semimetric space, d(xn, x) → 0 ensures
only that xn converges to elements in the equivalence class of x, where the
equivalence class of x consists of all {y ∈ D : d(x, y) = 0}. Accordingly, the
closure A of a set A ∈ D is not only the smallest closed set containing A,
as stated earlier, but A also equals the set of all points that are limits of
sequences {xn} ∈ A. Showing this relationship is saved as an exercise. In
addition, two semimetrics d1 and d2 on a set D are considered equivalent
(in a topological sense) if they both generate the same open sets. It is left
as an exercise to show that equivalent metrics yield the same convergent
subsequences.

A map f : D �→ E between two semimetric spaces is continuous at a
point x if and only if f(xn) → f(x) for every sequence xn → x. The map f
is continuous (in the topological sense) if and only if it is continuous at all
points x ∈ D. Verifying this last equivalence is saved as an exercise. The
following lemma helps to define semicontinuity for real valued maps:

Lemma 6.1 Let f : D �→ R be a function on the metric space D. Then
the following are equivalent:

(i) For all c ∈ R, the set {y : f(y) ≥ c} is closed.

(ii) For all y0 ∈ D, lim supy→y0 f(y) ≤ f(y0).

Proof. Assume (i) holds but that (ii) is untrue from some y0 ∈ D.
This implies that for some δ > 0, lim supy→y0 f(y) = f(y0) + δ. Thus
H ∩ {y : d(y, y0) < ε}, where H ≡ {y : f(y) ≥ f(y0) + δ}, is nonempty
for all ε > 0. Since H is closed by (i), we now have that y0 ∈ H . But this
implies that f(y0) = f(y0) + δ, which is impossible. Hence (ii) holds. The
proof that (ii) implies (i) is saved as an exercise.�

A function f : D �→ R satisfying either (i) or (ii) (and hence both) of
the conditions in lemma 6.1 is said to be upper semicontinuous. A function
f : D �→ R is lower semicontinuous if −f is upper semicontinuous. Using
condition (ii), it is easy to see that a function which is both upper and lower
semicontinuous is also continuous. The set of all continuous and bounded
functions f : D �→ R, which we denote Cb(D), plays an important role in
weak convergence on the metric space D which we will explore in chapter 7.
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It is not hard to see that the Borel σ-field on a metric space D is the smallest
σ-field generated by the open balls. It turns out that the Borel σ-field B
of D is also the smallest σ-field A making all of Cb(D) measurable. To see
this, note that any closed A ⊂ D is the preimage of the closed set {0} for
the continuous bounded function x �→ d(x,A)∧1, where for any set B ⊂ D,
d(x,B) ≡ inf{d(x, y) : y ∈ B}. Thus B ⊂ A. Since it is obvious that A ⊂ B,
we now have A = B. A Borel-measurable map X : Ω �→ D defined on a
probability space (Ω,A, P ) is called a random element or random map with
values in D. Borel measurability is, in many ways, the natural concept to
use on metric spaces since it connects nicely with the topological structure.

A Cauchy sequence is a sequence {xn} in a semimetric space (D, d) such
that d(xn, xm) → 0 as n,m → ∞. A semimetric space D is complete if
every Cauchy sequence has a limit x ∈ D. Every metric space D has a
completion D which has a dense subset isometric with D. Two metric spaces
are isometric if there exists a bijection (a one-to-one and onto map) between
them which preserves distances.

When a metric space D is separable, and therefore has a countable dense
subset, the Borel σ-field for D is itself a separable σ-field. To see this, let
A ∈ D be a countable dense subset and consider the collection of open balls
with centers at points in A and with rational radii. Clearly, the set of such
balls is countable and generates all open sets in D. A topological space X is
Polish if it is separable and if there exists a metric makingX into a complete
metric space. Hence any complete and separable metric space is Polish.
Furthermore, any open subset of a Polish space is also Polish. Examples of
Polish spaces include Euclidean spaces and many other interesting spaces
which we will explore shortly. A Suslin set is the continuous image of a
Polish space. If a Suslin set is also a Hausdorf topological space, then it is
a Suslin space. An analytic set is a subset A of a Polish space (X,O) which
is Suslin with respect to the relative topology {A∩B : B ∈ O}. Since there
always exists a continuous and onto map f : X �→ A for any Borel subset
A of a Polish space (X,O), every Borel subset of a Polish space is Suslin
and therefore also analytic.

A subset K is totally bounded if and only if for every r > 0, K can be
covered by finitely many open r-balls. Furthermore, it can be shown that
a subset K of a complete semimetric space is compact if and only if it
is totally bounded and closed. A totally bounded subset K is also called
precompact because every sequence in K has a Cauchy subsequence. To
see this, assume K is totally bounded and choose any sequence {xn} ∈ K.
There exists a nested series of subsequence indices {Nm} and a nested
series of 2−m-balls {Am} ⊂ K, such that for each integer m ≥ 1, Nm is
infinite, Nm+1 ⊂ Nm, Am+1 ⊂ Am, and xj ∈ Am for all j ∈ Nm. This
follows from the total boundedness properties. For each m ≥ 1, choose a
nm ∈ Nm, and note that the subsequence {xnm} is Cauchy. Now assume
every sequence in K has a Cauchy subsequence. It is not difficult to verify
that if K were not totally bounded, then it is possible to come up with



82 6. Preliminaries for Empirical Processes

a sequence which has no Cauchy subsequences (see exercise 6.5.4). This
relationship between compactness and total boundedness implies that a σ-
compact set in a metric space is separable. These definitions of compactness
agree with the previously given compactness properties for Hausdorf spaces.
This happens because a semimetric space D can be made into a metric—
and hence Hausdorf—space DH by equating points in DH with equivalence
classes in D.

A very important example of a metric space is a normed space. A normed
space D is a vector space (also called a linear space) equipped with a norm,
and a norm is a map ‖ · ‖ : D �→ [0,∞) such that, for all x, y ∈ D and
α ∈ R,

(i) ‖x+ y‖ ≤ ‖x| + ‖y‖ (another triangle inequality);

(ii) ‖αx‖ = |α| × ‖x‖;

(iii) ‖x‖ = 0 if and only if x = 0.

A seminorm satisfies (i) and (ii) but not necessarily (iii). A normed space
is a metric space (and a seminormed space is a semimetric space) with
d(x, y) = ‖x − y‖, for all x, y ∈ D. A complete normed space is called a
Banach space. Two seminorms ‖ · ‖1 and ‖ · ‖2 on a set D are equivalent
if the following is true for all x, {xn} ∈ D: ‖xn − x‖1 → 0 if and only if
‖xn − x‖2 → 0.

In our definition of a normed space D, we require the space to also be a
vector space (and therefore it contains all linear combinations of elements in
D). However, it is sometimes of interest to apply norms to subsets K ⊂ D

which may not be linear subspaces. In this setting, let linK denote the
linear span of K (all linear combinations of elements in K), and let linK
the closure of linK. Note that both linK and linK are now vector spaces
and that linK is also a Banach space.

We now present several specific examples of metric spaces. The Euclidean
space Rd is a Banach space with squared norm ‖x‖2 =

∑d
j=1 x

2
j . This space

is equivalent under several other norms, including ‖x‖ = max1≤j≤d |xj | and
‖x‖ =

∑d
j=1 |xj |. A Euclidean space is separable with a countably dense

subset consisting of all vectors with rational coordinates. By the Heine-
Borel theorem, a subset in a Euclidean space is compact if and only if it
is closed and bounded. The Borel σ-field is generated by the intervals of
the type (−∞, x], for rational x, where the interval is defined as as follows:
y ∈ (−∞, x] if and only if yj ∈ (−∞, xj ] for all coordinates j = 1, . . . , d.
For one-dimensional Euclidean space, R, the norm is ‖x‖ = |x| (absolute
value). The extended real line R̄ = [−∞,∞] is a metric space with respect
to the metric d(x, y) = |G(x) − G(y)|, where G : R̄ �→ R is any strictly
monotone increasing, continuous and bounded function, such as the arctan
function. For any sequence {xn} ∈ R̄, |xn − x| → 0 implies d(xn, x) → 0,
while divergence of d(xn, x) implies divergence of |xn − x|. In addition, it
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is possible for a sequence to converge, with respect to d, to either −∞ or
∞. This makes R̄ compact.

Another important example is the set of bounded real functions f : T �→
R, where T is an arbitrary set. This is a vector space if sums z1 + z2 and
products with scalars, αz, are defined pointwise for all z, z1, z2 ∈ �∞(T ).
Specifically, (z1 + z2)(t) = z1(t) + z2(t) and (αz)(t) = αz(t), for all t ∈ T .
This space is denoted �∞(T ). The uniform norm ‖x‖T ≡ supt∈T |x(t)|
makes �∞(T ) into a Banach space consisting exactly of all functions z :
T �→ R satisfying ‖z‖T < ∞. It is not hard to show that �∞(T ) is separable
if and only if T is countable.

Two useful subspaces of �∞([a, b]), where a, b ∈ R̄, are C[a, b] and D[a, b].
The space C[a, b] consists of continuous functions z : [a, b] �→ R, and D[a, b]
is the space of cadlag functions which are right-continuous with left-hand
limits (cadlag is an abbreviation for continue à droite, limites à gauche).
We usually equip these spaces with the uniform norm ‖ · ‖[a,b] inherited
from �∞([a, b]). Note that C[a, b] ⊂ D[a, b] ⊂ �∞([a, b]). Relative to the
uniform norm, C[a, b] is separable, and thus also Polish by the completeness
established in exercise 6.5.5(a), but D[a, b] is not separable. Sometimes,
D[a, b] is called the Skorohod space, although Skorohod equipped D[a, b]
with a special metric—quite different than the uniform metric—resulting
in a separable space.

An important subspace of �∞(T ) is the space UC(T, ρ), where ρ is a
semimetric on T . UC(T, ρ) consists of all bounded function f : T �→ R

which are uniformly ρ-continuous, i.e.,

lim
δ↓0

sup
ρ(s,t)<δ

|f(s) − f(t)| = 0.

When (T, ρ) is totally bounded, the boundedness requirement for functions
in UC(T, ρ) is superfluous since a uniformly continuous function on a totally
bounded set must necessarily be bounded. We denote C(T, ρ) to be the
space of ρ-continuous (not necessarily continuous) function on T . It is left as
an exercise to show that the spaces C[a, b], D[a, b], UC(T, ρ), C(T, ρ), when
(T, ρ) is a totally bounded semimetric space, and UC(T, ρ) and �∞(T ), for
an arbitrary set T , are all complete with respect to the uniform metric.
When (T, ρ) is a compact semimetric space, T is totally bounded, and a
ρ-continuous function in T is automatically uniformly ρ-continuous. Thus,
when T is compact, C(T, ρ) = UC(T, ρ). Actually, every space UC(T, ρ)
is equivalent to a space C(T , ρ), because the completion T of a totally
bounded space T is compact and, furthermore, every uniformly continuous
function on T has a unique continuous extension to T . Showing this is saved
as an exercise.

The forgoing structure makes it clear that UC(T, ρ) is a Polish space
which is made complete by the uniform norm. Hence UC(T, ρ) is also σ-
compact. In fact, any σ-compact set in �∞(T ) is contained in UC(T, ρ),
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for some totally bounded semimetric space (T, ρ), and all compact sets in
�∞(T ) have a specific form:

Theorem 6.2 (Arzelà-Ascoli)

(a) The closure of K ⊂ UC(T, ρ), where (T, ρ) is totally bounded, is
compact if and only if

(i) supx∈K |x(t0)| <∞, for some t0 ∈ T ; and

(ii)
lim
δ↓0

sup
x∈K

sup
s,t∈T :ρ(s,t)<δ

|x(s) − x(t)| = 0.

(b) The closure of K ⊂ �∞(T ) is σ-compact if and only if K ⊂ UC(T, ρ)
for some semimetric ρ making T totally bounded.

The proof is given in section 6.4. Since all compact sets are trivially σ-
compact, theorem 6.2 implies that any compact set in �∞(T ) is actually
contained in UC(T, ρ) for some semimetric ρ making T totally bounded.

Another important class of metric spaces are product spaces. For a pair of
metric spaces (D, d) and (E, e), the Cartesian product D×E is a metric space
with respect to the metric ρ((x1, y1), (x2, y2)) ≡ d(x1, x2) ∨ e(y1, y2), for
x1, x2 ∈ D and y1, y2 ∈ E. This resulting topology is the product topology.
In this setting, convergence of (xn, yn) → (x, y) is equivalent to convergence
of both xn → x and yn → y. There are two natural σ-fields for D×E which
we can consider. The first is the Borel σ-field for D×E generated from the
product topology. The second is the product σ-field generated by all sets
of the form A × B, where A ∈ A, B ∈ B, and A and B are the respective
σ-fields for D and E. These two are equal when D and E are separable, but
they may be unequal otherwise, with the first σ-field larger than the second.
Suppose X : Ω �→ D and Y : Ω �→ E are Borel-measurable maps defined on
a measurable space (Ω,A). Then (X,Y ) : Ω �→ D × E is a measurable map
for the product of the two σ-fields by the definition of a measurable map.
Unfortunately, when the Borel σ-field for D × E is larger than the product
σ-field, then it is possible for (X,Y ) to not be Borel-measurable.

6.2 Outer Expectation

An excellent overview of outer expectations is given in chapter 1.2 of van der
Vaart and Wellner (1996). The concept applies to an arbitrary probability
space (Ω,A, P ) and an arbitrary map T : Ω �→ R̄, where R̄ ≡ [−∞,∞].
As described in chapter 2, the outer expectation of T , denoted E∗T , is the
infimum over all EU , where U : Ω �→ R is measurable, U ≥ T , and EU
exists. For EU to exist, it must not be indeterminate, although it can be
±∞, provided the sign is clear. Since T is not necessarily a random variable,
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the proper term for E∗T is outer integral. However, we will use the term
outer expectation throughout the remainder of this book in deference to
its connection with the classical notion of expectation. We analogously
define inner expectation: E∗T = −E∗[−T ]. The following lemma verifies
the existence of a minimal measurable majorant T ∗ ≥ T :

Lemma 6.3 For any T : Ω �→ R̄, there exists a minimal measurable
majorant T ∗ : Ω �→ R̄ with

(i) T ∗ ≥ T ;

(ii) For every measurable U : Ω �→ R̄ with U ≥ T a.s., T ∗ ≤ U a.s.

For any T ∗ satisfying (i) and (ii), E∗T = ET ∗, provided ET ∗ exists. The
last statement is true if E∗T < ∞.

The proof is given in section 6.4 at the end of this chapter. The following
lemma, the proof of which is left as an exercise, is an immediate consequence
of lemma 6.3 and verifies the existence of a maximal measurable minorant:

Lemma 6.4 For any T : Ω �→ R̄, the maximal measurable minorant
T∗ ≡ −(−T )∗ exists and satisfies

(i) T∗ ≤ T ;

(ii) For every measurable U : Ω �→ R̄ with U ≤ T a.s., T∗ ≥ U a.s.

For any T∗ satisfying (i) and (ii), E∗T = ET∗, provided ET∗ exists. The
last statement is true if E∗T > −∞.

An important special case of outer expectation is outer probability. The
outer probability of an arbitrary B ⊂ Ω, denoted P ∗(B), is the infimum
over all P (A) such that A ⊃ B and A ∈ A. The inner probability of an
arbitrary B ⊂ Ω is defined to be P∗(B) = 1 − P ∗(Ω − B). The following
lemma gives the precise connection between outer/inner expectations and
outer/inner probabilities:

Lemma 6.5 For any B ⊂ Ω,

(i) P ∗(B) = E∗1{B} and P∗(B) = E∗1{B};

(ii) there exists a measurable set B∗ ⊃ B so that P (B∗) = P ∗(B); for
any such B∗, 1{B∗} = (1{B})∗;

(iii) For B∗ ≡ Ω − {Ω −B}∗, P∗(B) = P (B∗);

(iv) (1{B})∗ + (1{Ω −B})∗ = 1.

Proof. From the definitions, P ∗(B) = inf{A∈A:A⊃B} E1{A} ≥ E∗1{B}.
Next, E∗1{B} = E(1{B})∗ ≥ E1 {(1{B})∗ ≥ 1} = P {(1{B})∗ ≥ 1} ≥
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P ∗(B), where the last inequality follows from the definition of P ∗. Com-
bining the two conclusions yields that all inequalities are actually equali-
ties. This gives the first parts of (i) and (ii), with B∗ = {(1{B})∗ ≥ 1}.
The second part of (i) results from P∗(B) = 1 − P ∗(Ω − B) = 1 −
E(1 − 1{B})∗ = 1 − E (1 − (1{B})∗). The second part of (ii) follows from
(1{B})∗ ≤ 1{B∗} = 1 {(1{B})∗ ≥ 1} ≤ (1{B})∗. The definition of P∗ im-
plies (iii) directly. To verify (iv), we have (1{Ω − B})∗ = (1 − 1{B})∗ =
−(1{B} − 1)∗ = 1 − (1{B})∗.�

The following three lemmas, lemmas 6.6–6.8, provide several relations
which will prove useful later on but which might be skipped on a first
reading. The proofs are given in section 6.4 and in the exercises.

Lemma 6.6 Let S, T : Ω �→ R be arbitrary maps. The following state-
ments are true almost surely, provided the statements are well-defined:

(i) S∗ +T ∗ ≤ (S + T )∗ ≤ S∗ + T ∗, with all equalities if S is measurable;

(ii) S∗ + T∗ ≤ (S + T )∗ ≤ S∗ + T ∗, with all equalities if T is measurable;

(iii) (S − T )∗ ≥ S∗ − T ∗;

(iv) |S∗ − T ∗| ≤ |S − T |∗;

(v) (1{T > c})∗ = 1{T ∗ > c}, for any c ∈ R;

(vi) (1{T ≥ c})∗ = 1{T∗ ≥ c}, for any c ∈ R;

(vii) (S ∨ T )∗ = S∗ ∨ T ∗;

(viii) (S ∧ T )∗ ≤ S∗ ∧ T ∗, with equality if S is measurable.

Lemma 6.7 For any sets A,B ⊂ Ω,

(i) (A ∪B)∗ = A∗ ∪B∗ and (A ∩B)∗ = A∗ ∩B∗;

(ii) (A ∩ B)∗ ⊂ A∗ ∩ B∗ and (A ∪ B)∗ ⊃ A∗ ∪ B∗, with the inclusions
replaced by equalities if either A or B is measurable;

(iii) If A ∩ B = 0, then P∗(A) + P∗(B) ≤ P∗(A ∪ B) ≤ P ∗(A ∪ B) ≤
P ∗(A) + P ∗(B).

Lemma 6.8 Let T : Ω �→ R be an arbitrary map and let φ : R �→ R

be monotone, with an extension to R̄. The following statements are true
almost surely, provided the statements are well-defined:

A. If φ is nondecreasing, then

(i) φ(T ∗) ≥ [φ(T )]∗, with equality if φ is left-continuous on [−∞,∞);

(ii) φ(T∗) ≤ [φ(T )]∗, with equality if φ is right-continuous on (−∞,∞].

B. If φ is nonincreasing, then
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(i) φ(T ∗) ≤ [φ(T )]∗, with equality if φ is left-continuous on [−∞,∞);

(ii) φ(T∗) ≥ [φ(T )]∗, with equality if φ is right-continuous on (−∞,∞].

We next present an outer-expectation version of the unconditional Jensen’s
inequality:

Lemma 6.9 (Jensen’s inequality) Let T : Ω �→ R be an arbitrary map,
with E∗|T | < ∞, and assume φ : R �→ R is convex. Then

(i) E∗φ(T ) ≥ φ(E∗T ) ∨ φ(E∗T );

(ii) if φ is also monotone, E∗φ(T ) ≥ φ(E∗T ) ∧ φ(E∗T ).

Proof. Assume first that φ is monotone increasing. Since φ is also con-
tinuous (by convexity), E∗φ(T ) = Eφ(T ∗) ≥ φ(E∗T ), where the equality
follows from A(i) of lemma 6.8 and the inequality from the usual Jensen’s
inequality. Similar arguments verify that E∗φ(T ) ≥ φ(E∗T ) based on A(ii)
of the same lemma. Note also that φ(E∗T ) ≥ φ(E∗T ). Now assume that φ is
monotone decreasing. Using B(i) and B(ii) of lemma 6.8 and arguments sim-
ilar to those used for increasing φ, we obtain that both E∗φ(T ) ≥ φ(E∗T )
and E∗φ(T ) ≥ φ(E∗T ). Note in this case that φ(E∗T ) ≥ φ(E∗T ). Thus
when φ is monotone (either increasing or decreasing), we have that both
E∗φ(T ) ≥ φ(E∗T ) ∨ φ(E∗T ) and E∗φ(T ) ≥ φ(E∗T ) ∧ φ(E∗T ). Hence (ii)
follows.

We have also proved (i) in the case where φ is monotone. Suppose now
that φ is not monotone. Then there exists a c ∈ R so that φ is nonincreasing
over (−∞, c] and nondecreasing over (c,∞). Let g1(t) ≡ φ(t)1{t ≤ c} +
φ(c)1{t > c} and g2(t) ≡ φ(c)1{t ≤ c} + φ(t)1{t > c}, and note that
φ(t) = g1(t)+g2(t)−φ(c) and that both g1 and g2 are convex and monotone.
Now [φ(T )]∗ = [g1(T ) + g2(T ) − φ(c)]∗ ≥ [g1(T )]∗ + [g2(T )]∗ by part (i) of
lemma 6.6. Now, using the results in the previous paragraph, we have that
E∗φ(T ) ≥ g1(E∗T )+g2(E∗T )−φ(c) = φ(E∗T ). However, we also have that
[g1(T ) + g2(T ) − φ(c)]∗ ≥ [g1(T )]∗ + [g2(T )]∗. Thus, again using results
from the previous paragraph, we have E∗φ(T ) ≥ g1(E∗T )+g2(E∗T )−φ(c) =
φ(E∗T ). Hence (i) follows.�

The following outer-expectation version of Chebyshev’s inequality is also
useful:

Lemma 6.10 (Chebyshev’s inequality) Let T : Ω �→ R be an arbi-
trary map, with φ : [0,∞) �→ [0,∞) nondecreasing and strictly positive on
(0,∞). Then, for every u > 0,

P ∗ (|T | ≥ u) ≤ E∗φ(|T |)
φ(u)

.

Proof. The result follows from the standard Chebyshev inequality as a
result of the following chain of inequalities:
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(1{|T | ≥ u})∗ ≤ (1{φ(|T |) ≥ φ(u)})∗ ≤ 1
{
[φ(|T |)]∗ ≥ φ(u)

}
.

The first inequality follows from the fact that |T | ≥ u implies φ(|T |) ≥ φ(u),
and the second inequality follows from A(i) of lemma 6.8.�

There are many other analogies between outer and standard versions of
expectation and probability, but we only present a few more in this chap-
ter. We next present versions of the monotone and dominated convergence
theorems. The proofs are given in section 6.4. Some additional results are
given in the exercises.

Lemma 6.11 (Monotone convergence) Let Tn, T : Ω �→ R be arbi-
trary maps on a probability space, with Tn ↑ T pointwise on a set of inner
probability one. Then T ∗

n ↑ T ∗ almost surely. Provided E∗Tn > −∞ for
some n, then E∗Tn ↑ E∗T .

Lemma 6.12 (Dominated convergence) Let Tn, T, S : Ω �→ R be
maps on a probability space, with |Tn − T |∗ as→ 0, |Tn| ≤ S for all n, and
E∗S < ∞. Then E∗Tn → E∗T .

Let (Ω, Ã, P̃ ) be the P -completion of the probability space (Ω,A, P ), as
defined in the previous section (for general measure spaces). Recall that
a completion of a measure space is itself a measure space. One can also
show that Ã is the σ-field of all sets of the form A ∪ N , with A ∈ A
and N ⊂ Ω so that P ∗(N) = 0, and P̃ is the probability measure satisfying
P̃ (A∪N) = P (A). A nice property of

(
Ω, Ã, P̃

)
is that for every measurable

map S̃ : (Ω, Ã) �→ R, there is a measurable map S : (Ω, A) �→ R such that
P ∗(S �= S̃) = 0. Furthermore, a minimal measurable cover T ∗ of a map
T : (Ω,A, P ) �→ R̄ is a version of a minimal measurable cover T̃ ∗ for T as
a map on the P -completion of (Ω,A, P ), i.e., P ∗(T ∗ �= T̃ ∗) = 0. While it
is not difficult to show this, we do not prove it.

We close this section with two results which have application to product
probability spaces. The first result involves perfect maps, and the second
result is a special formulation of Fubini’s theorem. Consider composing a
map T : Ω �→ R with a measurable map φ : Ω̃ �→ Ω, defined on some
probability space, to form T ◦ φ :

(
Ω̃, Ã, P̃

)
�→ R, where φ :

(
Ω̃, Ã, P̃

)
�→

(Ω,A, P ). Denote T ∗ as the minimal measurable cover of T for P̃ ◦ φ−1. It
is easy to see that since T ∗ ◦ φ ≥ T ◦ φ, we have (T ◦ φ)∗ ≤ T ∗ ◦ R. The
map φ is perfect if (T ◦ φ)∗ = T ∗ ◦ φ, for every bounded T : Ω �→ R. This

property ensures that P ∗(φ ∈ A) =
(
P̃ ◦ φ−1

)∗
(A) for every set A ⊂ Ω.

An important example of a perfect map is a coordinate projection in a
product probability space. Specifically, let T be a real valued map defined
on (Ω1 ×Ω2,A1 ×A2, P1 ×P2) which only depends on the first coordinate
of ω = (ω1, ω2). T ∗ can then be computed by just ignoring Ω2 and thinking
of T as a map on Ω1. More precisely, suppose T = T1 ◦ π1, where π1 is
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the projection on the first coordinate. The following lemma shows that
T ∗ = T ∗

1 ◦ π1, and thus coordinate projections such as π1 are perfect. We
will see other examples of perfect maps later on in chapter 7.

Lemma 6.13 A coordinate projection on a product probability space with
product measure is perfect.

Proof. Let π1 : (Ω1 × Ω2,A1 × A2, P1 × P2) �→ Ω1 be the projection
onto the first coordinate, and let T : Ω1 �→ R by bounded, but otherwise
arbitrary. Let T ∗ be the minimal measurable cover of T for P1 = (P1×P2)◦
π−1

1 . By definition, (T ◦ π1)∗ ≤ T ∗ ◦ π1. Now suppose U ≥ T ◦ π1, P1 ×P2-
a.s., and is measurable, where U : Ω1 × Ω2 �→ R. Fubini’s theorem yields
that for P2-almost all Ω2, we have U(ω1, ω2) ≥ T (ω1) for P2-almost all ω2.
But for fixed ω2, U is a measurable function of ω1. Thus for P2-almost all
ω2, U(ω1, ω2) ≥ T ∗(ω1) for P1-almost all ω1. Applying Fubinin’s theorem
again, the jointly measurable set {(ω1, ω2) : U < T ∗ ◦ π1} is P1 × P2-null.
Hence (T ◦ π1)∗ = T ∗ ◦ π1 almost surely.�

Now we consider Fubini’s theorem for maps on product spaces which may
not be measurable. There is no generally satisfactory version of Fubini’s
theorem that will work in all nonmeasurable settings of interest, and it
is frequently necessary to establish at least some kind of measurability to
obtain certain key empirical process results. The version of Fubini’s theorem
we now present basically states that repeated outer expectations are always
less than joint outer expectations. Let T be an arbitrary real map defined
on the product space (Ω1 × Ω2,A1 × A2, P1 × P2). We write E∗

1E
∗
2T to

mean outer expectations taken in turn. For fixed ω1, let (E∗
2T )(ω1) be the

infimum of
∫
Ω2
U(ω2)dP2(ω2) taken over all measurable U : Ω2 �→ R̄ with

U(ω2) ≥ T (ω1, ω2) for every ω2 for which
∫
Ω2
U(ω2)dP2(ω2) exists. Next,

E∗
1E

∗
2T is the outer integral of E∗

2T : Ω1 �→ R. Repeated inner expectations
are analogously defined. The following version of Fubini’s theorem gives
bounds for this repeated expectation process. We omit the proof.

Lemma 6.14 (Fubini’s theorem) Let T be an arbitrary real valued
map on a product probability space. Then E∗T ≤ E1∗E2∗T ≤ E∗

1E
∗
2T ≤

E∗T .

6.3 Linear Operators and Functional
Differentiation

A linear operator is a map T : D �→ E between normed spaces with the
property that T (ax + by) = aT (x) + bT (y) for all scalars a, b and any
x, y ∈ D. When the range space E is R, then T is a linear functional.
When T is linear, we will often use Tx instead of T (x). A linear operator
T : D �→ E is a bounded linear operator if
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‖T ‖ ≡ sup
x∈D :‖x‖≤1

‖Tx‖ < ∞.(6.1)

Here, the norms ‖ · ‖ are defined by the context. We have the following
proposition:

Proposition 6.15 For a linear operator T : D �→ E between normed
spaces, the following are equivalent:

(i) T is continuous at a point x0 ∈ D;

(ii) T is continuous on all of D;

(iii) T is bounded.

Proof. We save the implication (i) ⇒ (ii) as an exercise. Note that by
linearity, boundedness of T is equivalent to there existing some 0 < c < ∞
for which

‖Tx‖ ≤ c‖x‖ for all x ∈ D.(6.2)

Assume T is continuous but that there exists no 0 < c <∞ satisfying (6.2).
Then there exists a sequence {xn} ∈ D so that ‖xn‖ = 1 and ‖Txn‖ ≥ n for
all n ≥ 1. Define yn = ‖Txn‖−1xn and note that ‖Tyn‖ = 1 by linearity.
Now yn → 0 and thus Tyn → 0, but this is a contradiction. Thus there
exists some 0 < c < ∞ satisfying (6.2), and (iii) follows. Now assume
(iii) and let {xn} ∈ X be any sequence satisfying xn → 0. Then by (6.2),
‖Txn‖ → 0, and thus (i) is satisfied at x0 = 0.�

For normed spaces D and E, let B(D,E) be the space of all bounded linear
operators T : D �→ E. This structure makes the spaceB(D,E) into a normed
space with norm ‖ · ‖ defined in (6.1). When E is a Banach space, then any
convergent sequence Tnxn will be contained in E, and thus B(D,E) is also
a Banach space. When D is not a Banach space, T has a unique continuous
extension to D. To see this, fix x ∈ D and let {xn} ∈ D be a sequence
converging to x. Then, since ‖Txn−Txm‖ ≤ c‖xn−xm‖, Txn converges to
some point in E. Next, note that if both sequences {xn}, {yn} ∈ D converge
to x, then ‖Txn−Tyn‖ ≤ c‖xn−yn‖ → 0. Thus we can define an extension
T : D �→ E to be the unique linear operator with Tx = limn→∞ Txn, where
x is any point in D and {xn} is any sequence in D converging to x.

For normed spaces D and E, and for any T ∈ B(D,E), N(T ) ≡ {x ∈ D :
Tx = 0} is the null space of T andR(T ) ≡ {y ∈ E : Tx = y for some x ∈ D}
is the range space of T . It is clear that T is one-to-one if and only if
N(T ) = {0}. We have the following two results for inverses, which we
give without proof:

Lemma 6.16 Assume D and E are normed spaces and that T ∈ B(D,E).
Then

(i) T has a continuous inverse T−1 : R(T ) �→ D if and only if there exists
a c > 0 so that ‖Tx‖ ≥ c‖x‖ for all x ∈ D;
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(ii) (Banach’s theorem) If D and E are complete and T is continuous
with N(T ) = {0}, then T−1 is continuous if and only if R(T ) is
closed.

A linear operator T : D �→ E between normed spaces is a compact op-
erator if T (U) is compact in E, where U = {x ∈ D : ‖x‖ ≤ 1} is the unit
ball in D and, for a set A ∈ D, T (A) ≡ {Tx : x ∈ A}. The operator T is
onto if for every y ∈ E, there exists an x ∈ D so that Tx = y. Later on in
the book, we will encounter linear operators of the form T + K, where T
is continuously invertible and onto and K is compact. The following result
will be useful:

Lemma 6.17 Let A = T + K : D �→ E be a linear operator between
Banach spaces, where T is both continuously invertible and onto and K is
compact. Then if N(A) = {0}, A is also continuously invertible and onto.

Proof. We only sketch the proof. Since T−1 is continuous, the operator
T−1K : E �→ D is compact. Hence I + T−1K is one-to-one and therefore
also onto by a result of Riesz for compact operators (see, for example,
theorem 3.4 of Kress, 1999). Thus T +K is also onto. We will be done if we
can show that I +T−1K is continuously invertible, since that would imply
that (T +K)−1 = (I + T−1K)−1T−1 is bounded. Assume L ≡ I + T−1K
is not bounded. Then there exists a sequence {xn} ∈ D with ‖xn‖ = 1
and ‖L−1xn‖ ≥ n for all integers n ≥ 1. Let yn =

(
‖L−1xn‖

)−1
xn and

φn =
(
‖L−1xn‖

)−1
L−1xn, and note that yn → 0 while ‖φn‖ = 1 for all

n ≥ 1. Since T−1K is compact, there exists a subsequence {n′} so that
T−1Kφn′ → φ ∈ D. Since φn + T−1Kφn = yn for all n ≥ 1, we have
φn′ → −φ. Hence φ ∈ N(L), which implies φ = 0 since L is one-to-one.
But this contradicts ‖φn‖ = 1 for all n ≥ 1. Thus L−1 is bounded.�

The following simple inversion result for contraction operators is also
useful. An operator A is a contraction operator if ‖A‖ < 1.

Proposition 6.18 Let A : D �→ D be a linear operator with ‖A‖ < 1.
Then I − A, where I is the identity, is continuously invertible and onto
with inverse (I −A)−1 =

∑∞
j=0 A

j.

Proof. Let B ≡
∑∞

j=0 A
j , and note that ‖B‖ ≤

∑∞
j=0 ‖A‖j = (1 −

‖A‖)−1 <∞. Thus B is a bounded linear operator on D. Since (I−A)B = I
by simple algebra, we have that B = (I −A)−1, and the result follows.�

We now shift our attention to differentiation. Let D and E be two normed
spaces, and let φ : Dφ ⊂ D �→ E be a function. We allow the domain Dφ of
the function to be an arbitrary subset of D. The function φ : Dφ ⊂ D �→ E

is Gateaux-differentiable at θ ∈ Dφ, in the direction h, if there exists a
quantity φ′θ(h) ∈ E so that

φ(θ + tnh) − φ(θ)
tn

→ φ′θ(h),
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as n → ∞, for any scalar sequence tn → 0. Gateaux differentiability is
usually not strong enough for the applications of functional derivatives
needed for Z-estimators and the delta method. The stronger differentiability
we need is Hadamard and Fréchet differentiability.

A map φ : Dφ ⊂ D �→ E is Hadamard differentiable at θ ∈ Dφ if there
exists a continuous linear operator φ′θ : D �→ E such that

φ(θ + tnhn) − φ(θ)
tn

→ φ′θ(h),(6.3)

as n → ∞, for any scalar sequence tn → 0 and any h, {hn} ∈ D, with
hn → h, and so that θ+ tnhn ∈ Dφ for all n. It is left as an exercise to show
that Hadamard differentiability is equivalent to compact differentiability,
where compact differentiability satisfies

sup
h∈K,θ+th∈Dφ

∥∥∥∥φ(θ + th) − φ(θ)
t

− φ′θ(h)
∥∥∥∥ → 0, as t → 0,(6.4)

for every compact K ⊂ D. Hadamard differentiability can be refined by
restricting the h values to be in a set D0 ⊂ D. More precisely, if in (6.3)
it is required that hn → h only for h ∈ D0 ⊂ D, we say φ is Hadamard-
differentiable tangentially to the set D0. There appears to be no easy way
to refine compact differentiability in an equivalent manner.

A map φ : Dφ ⊂ D �→ E is Fréchet-differentiable if there exists a con-
tinuous linear operator φ′θ : D �→ E so that (6.4) holds uniformly in h on
bounded subsets of D. This is equivalent to ‖φ(θ + h) − φ(θ) − φ′θ(h)‖ =
o(‖h‖), as ‖h‖ → 0. Since compact sets are bounded, Fréchet differentia-
bility implies Hadamard differentiability. Fréchet differentiability will be
needed for Z-estimator theory, while Hadamard differentiability is useful in
the delta method. The following chain rule for Hadamard differentiability
will also prove useful:

Lemma 6.19 (Chain rule) Assume φ : Dφ ⊂ D �→ Eψ ⊂ E is Hadamard
differentiable at θ ∈ Dφ tangentially to D0 ⊂ D, and ψ : Eψ ⊂ E �→ F is
Hadamard differentiable at φ(θ) tangentially to φ′θ(D0). Then ψ◦φ : Dφ �→ F

is Hadamard differentiable at θ tangentially to D0 with derivative ψ′
φ(θ)◦φ′θ.

Proof. First, ψ ◦ φ(θ + tht) − ψ ◦ φ(θ) = ψ(φ(θ) + tkt) − ψ(φ(θ)),
where kt = [φ(θ + tht) − φ(θ)] /t. Note that if h ∈ D0, then kt → k ≡
φ′θ(h) ∈ φ′θ(D0), as t → 0, by the Hadamard differentiability of φ. Now,
[ψ(φ(θ) + tkt) − ψ(φ(θ))] /t → ψ′

φ(θ)(k) by the Hadamard differentiability
of ψ.�

6.4 Proofs

Proof of theorem 6.2. First assume K ⊂ �∞(T ) is compact. Let ρ(s, t) =
supx∈K |x(s) − x(t)|. We will now establish that (T, ρ) is totally bounded.
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Fix η > 0 and cover K with finitely many open balls of radius η, cen-
tered at x1, . . . , xk. Partition Rk into cubes with edges of length η. For
every such cube for which it is possible, choose at most one t ∈ T so that
(x1(t), . . . , xk(t)) is in the cube. This results in a finite set Tη ≡ {t1, . . . , tm}
in T because z1, . . . , zk are uniformly bounded. For each s ∈ Tη, we have
for all values of t ∈ T for which (z1(t), . . . , zk(t)) and (z1(s), . . . , zk(s)) are
in the same cube, that

ρ(s, t) = sup
z∈K

|z(s) − z(t)|

≤ sup
1≤j≤k

|zj(s) − zj(t)| + 2 sup
z∈K

inf
1≤j≤k

sup
u∈T

|zj(u) − z(u)|

< 3η.

Thus the balls {t : ρ(t, t1) < 3η}, . . . , {t : ρ(t, tm) < 3η} completely cover T .
Hence (T, ρ) is totally bounded since η was arbitrary. Also, by construction,
the condition in part (a.ii) of the theorem is satisfied. Combining this with
the total boundedness of (T, ρ) yields condition (a.i). We have now obtained
the fairly strong result that compactness of the closure of K ⊂ �∞(T )
implies that there exists a semimetric ρ which makes (T, ρ) totally bounded
and which enables conditions (a.i) and (a.ii) to be satisfied for K.

Now assume that the closure of K ⊂ �∞(T ) is σ-compact. This implies
that there exists a sequence of compact sets K1 ⊂ K2 ⊂ · · · for which
K = ∪i≥1Ki. The previous result yields for each i ≥ 1, that there exists
a semimetric ρi making T totally bounded and for which conditions (a.i)
and (a.ii) are satisfied for each Ki. Now let ρ(s, t) =

∑∞
i=1 2−i (ρi(s, t) ∧ 1).

Fix η > 0, and select a finite integer m so that 2−m < η. Cover T with
finitely many open ρm balls of radius η, and let Tη = {t1, . . . , tk} be their
centers. Because ρ1 ≤ ρ2 ≤ · · · , there is for very every t ∈ T an s ∈ Tη
with ρ(s, t) ≤

∑m
i=1 2−iρi(s, t) + 2−m ≤ 2η. Thus (T, ρ) is totally bounded

by ρ since η was arbitrary. Now, for any x ∈ K, x ∈ Km for some finite
m ≥ 1, and thus x is both bounded and uniformly ρ-continuous since ρm ≤
2mρ. Hence σ-compactness of K ⊂ �∞(T ) implies K ⊂ UC(T, ρ) for some
semimetric ρ making T totally bounded. In the discussion preceding the
statement of theorem 6.2, we argued that UC(T, ρ) is σ-compact whenever
(T, ρ) is totally bounded. Hence we have proven part (b).

The only part of the proof which remains is to show that ifK ⊂ UC(T, ρ)
satisfies conditions (a.i) and (a.ii), then the closure ofK is compact. Assume
conditions (a.i) and (a.ii) hold for K. Define

mδ(x) ≡ sup
s,t∈T :ρ(s,t)<δ

|x(s) − x(t)|

and mδ ≡ supx∈K mδ(x), and note that mδ(x) is continuous in x and that
m1/n(x) is nonincreasing in n, with limn→∞m1/n(x) = 0. Choose k < ∞
large enough so thatm1/k <∞. For every δ > 0, let Tδ ⊂ T be a finite mesh
satisfying supt∈T infs∈Tδ

ρ(s, t) < δ, and let Nδ be the number of points in
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Tδ. Now, for any t ∈ T , |x(t)| ≤ |x(t0)|+ |x(t)−x(t0)| ≤ |x(t0)|+N1/km1/k,
and thus α ≡ supx∈K supt∈T |x(t)| < ∞. For each ε > 0, pick a δ > 0 so
that mδ < ε and an integer n < ∞ so that α/n ≤ ε. Let U ≡ T1/(2δ)

and define a “bracket” to be a finite collection h = {ht : t ∈ U} so that
ht = −α+ jα/n, for some integer 1 ≤ j ≤ 2n− 1, for each t ∈ U . Say that
x ∈ �∞(T ) is “in” the bracket h, denoted x ∈ h, if x(t) ∈ [ht, ht + α/n] for
all t ∈ U . Let B(K) be the set of all brackets h for which x ∈ h for some
x ∈ K. For each h ∈ B(K), choose one and only one x ∈ K with x ∈ h,
discard duplicates, and denote the resulting set X(K). It is not hard to
verify that supx∈K infy∈X(K) ‖x− y‖T < 2ε, and thus the union of 2ε-balls
with centers in X(K) is a finite cover of K. Since ε is arbitrary, K is totally
bounded.�

Proof of lemma 6.3. Begin by selecting a measurable sequence Um ≥ T
such that E arctanUm ↓ E∗ arctanT , and set T ∗(ω) = limm→∞ inf1≤k≤m
Uk(ω). This gives a measurable function T ∗ taking values in R̄, with T ∗ ≥
T , and EarctanT ∗ = E∗ arctanT by monotone convergence. For any mea-
surable U ≥ T , arctanU ∧ T ∗ ≥ arctanT , and thus E arctanU ∧ T ∗ ≥
E∗ arctanT = EarctanT ∗. However, U∧T ∗ is trivially smaller than T ∗, and
since both quantities therefore have the same expectation, arctanU ∧T ∗ =
arctanT ∗ a.s. Hence T ∗ ≤ U a.s., and (i) and (ii) follow. When ET ∗ exists,
it is larger than E∗T by (i) yet smaller by (ii), and thus ET ∗ = E∗T . When
E∗T < ∞, there exists a measurable U ≥ T with EU+ < ∞, where z+ is
the positive part of z. Hence E(T ∗)+ ≤ EU+ and ET ∗ exists.�

Proof of lemma 6.6. The second inequality in (i) is obvious. If S and
U ≥ S + T are both measurable, then U − S ≥ T and U − S ≥ T ∗

since U − S is also measurable. Hence U = (S + T )∗ ≥ S + T ∗ and the
second inequality is an equality. Now (S + T )∗ ≥ (S∗ + T )∗ = S∗ + T ∗,
and we obtain the first inequality. If S is measurable, then S∗ = S∗ and
thus S∗ + T ∗ = S∗ + T ∗. Part (ii) is left as an exercise. Part (iii) follows
from the second inequality in (i) after relabeling and rearranging. Part (iv)
follows from S∗ − T ∗ ≤ (S − T )∗ ≤ |S − T |∗ and then exchanging the
roles of S and T . For part (v), it is clear that (1{T > c})∗ ≥ 1{T ∗ > c}. If
U ≥ 1{T > c} is measurable, then S = T ∗1{U ≥ 1}+(T ∗∧c)1{U < 1} ≥ T
and is measurable. Hence S ≥ T ∗, and thus T ∗ ≤ c whenever U < 1. This
trivially implies 1{T ∗ > c} = 0 when U < 1, and thus 1{T ∗ > c} ≤ U .
Part (vi) is left as an exercise.

For part (vii), (S ∨ T )∗ ≤ S∗ ∨ T ∗ trivially. Let U = (S ∨ T )∗ and note
that U is measurable and both U ≥ T and U ≥ S. Hence both U ≥ T ∗ and
U ≥ S∗, and thus (S ∨ T )∗ ≥ S∗ ∨ T ∗, yielding the desired inequality. The
inequality in (viii) is obvious. Assume S is measurable and let U = (S∧T )∗.
Clearly, U ≤ S∗∧T ∗. Define T̃ ≡ U1{U < S}+T ∗1{U ≥ S}; and note that
T̃ ≥ T ∗, since if U < S, then T < S and thus U ≥ T . Fix ω ∈ Ω. If U < S,
then S ∧ T̃ = U . If U ≥ S, then U = S since U ≤ S, and, furthermore,
we will now show that T ∗ ≥ S. If it were not true, then T ∗ < S and
U ≤ S ∧ T ∗ < S, which is clearly a contradiction. Thus when U ≥ S,
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U = S = S ∧ T̃ ≥ S ∧ T ∗. Hence U = S ∧ T̃ ≥ S ∧ T ∗ a.s., and the desired
equality in (viii) follows.�

Proof of lemma 6.7. The first part of (i) is a consequence of the follow-
ing chain of equalities: 1{(A ∪ B)∗} = (1{A ∪B})∗ = (1{A} ∨ 1{B})∗ =
(1{A})∗ ∨ (1{B})∗ = 1{A∗} ∨ 1{B∗} = 1{A∗ ∪ B∗}. The first and fourth
equalities follow from (ii) of lemma 6.5, the second and fifth equalities fol-
low directly, and the third equality follows from (vii) of lemma 6.6. For
the second part of (i), we have (A ∩ B)∗ = Ω − [(Ω −A) ∪ (Ω −B)]∗ =
Ω− (Ω−A)∗ ∪ (Ω−B)∗ = Ω− (Ω−A∗)∪ (Ω−B∗) = A∗ ∩B∗, where the
second equality follows from the first part of (i).

The inclusions in part (ii) are obvious. Assume A is measurable. Then (viii)
of lemma 6.6 can be used to validate the following string of equalities:
1{(A ∩ B)∗} = (1{A ∩B})∗ = (1{A} ∧ 1{B})∗ = (1{A})∗ ∧ (1{B})∗ =
1{A∗} ∧ 1{B∗} = 1{A∗ ∩ B∗}. Thus (A ∩ B)∗ = A∗ ∩ B∗. By symmetry,
this works whether A or B is measurable. The proof that (A∪B)∗ = A∗∪B∗
when either A orB is measurable is left as an exercise. The proof of part (iii)
is also left as an exercise.�

Proof of lemma 6.8. All of the inequalities follow from the definitions.
For the equality in A(i), assume that φ is nondecreasing and left-continuous.
Define φ−1(u) = inf{t : φ(t) ≥ u}, and note that φ(t) > u if and only if
t > φ−1(u). Thus, for any c ∈ R, 1{φ(T ∗) > c} = 1{T ∗ > φ−1(c)} =(
1{T > φ−1(c)}

)∗ = (1{φ(T ) > c})∗ = 1
{
[φ(T )]∗ > c

}
. The second and

fourth equalities follow from (v) of lemma 6.6. Hence φ(T ∗) = [φ(T )]∗. For
the equality in A(ii), assume that φ is nondecreasing and left-continuous;
and define φ−1(u) = sup{t : φ(t) ≤ u}. Note that φ(t) ≥ u if and only
if t ≥ φ−1(u). The proof proceeds in the same manor as for A(i), only
part (vi) in lemma 6.6 is used in place of part (v). We leave the proof of
part B as an exercise.�

Proof of lemma 6.11. Clearly, lim inf T ∗
n ≤ lim supT ∗

n ≤ T ∗. Con-
versely, lim inf T ∗

n ≥ lim inf Tn = T and is measurable, and thus lim inf T ∗
n ≥

T ∗. Hence T ∗
n ↑ T ∗. Now E∗T ∗

n = ET ∗
n ↑ ET ∗ by monotone convergence for

measurable maps. Note we are allowing +∞ as a possible value for E∗Tn,
for some n, or E∗T . �

Proof of lemma 6.12. Since |T | ≤ |Tn| + |T − Tn| for all n, we have
|T −Tn|∗ ≤ 2S∗ a.s. Fix ε > 0. Since E∗S <∞, there exists a 0 < k < ∞ so
that E[S∗1{S∗ > k}] ≤ ε/2. Thus E∗|T−Tn| ≤ Ek∧|T−Tn|∗+2E[S∗1{S∗ >
k}] → ε. The result now follows since ε was arbitrary.�

6.5 Exercises

6.5.1. Show that part (iii) in the definition of σ-field can be replaced,
without really changing the definition, by the following: The countable
intersection

⋂∞
j=1 Uj ∈ A whenever Uj ∈ A for all j ≥ 1.
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6.5.2. Show the following:

(a) For a metric space D and set A ∈ D, the closure A consists of all
limits of sequences {xn} ∈ A.

(b) Two metrics d1 and d2 on a set D are equivalent if and only if we have
the following for any sequence {xj} ∈ D, as n,m → ∞: d1(xn, xm) →
0 if and only if d2(xn, xm) → 0.

(c) A function f : D �→ E between two metric spaces is continuous (in
the topological sense) if and only if, for all x ∈ D and all sequences
{xn} ∈ D, f(xn) → f(x) whenever xn → x.

6.5.3. Verify the implication (ii) ⇒ (i) in lemma 6.1.

6.5.4. Show that if a subset K of a metric space is not totally bounded,
then it is possible to construct a sequence {xn} ∈ K which has no Cauchy
subsequences.

6.5.5. Show that the following spaces are complete with respect to the
uniform metric:

(a) C[a, b] and D[a, b];

(b) UC(T, ρ) and C(T , ρ), where (T, ρ) is a totally bounded semimetric
space;

(c) UC(T, ρ) and �∞(T ), where T is an arbitrary set.

6.5.6. Show that a uniformly continuous function f : T �→ R, where T is
totally bounded, has a unique continuous extension to T .

6.5.7. Let CL[0, 1] ⊂ C[0, 1] be the space of all Lipschitz-continuous func-
tions on [0, 1], and endow it with the uniform metric:

(a) Show that CL[0, 1] is dense in C[0, 1].

(b) Show that no open ball in C[0, 1] is contained in CL[0, 1].

(c) Show that CL[0, 1] is not complete.

(d) Show that for 0 < c <∞, the set

{f ∈ CL[0, 1] : |f(x)| ≤ c and |f(x) − f(y)| ≤ c|x− y|, ∀x, y ∈ [0, 1]}

is compact.

6.5.8. A collection F of maps f : D �→ E between metric spaces, with
respective Borel σ-fields D and E , can generate a (possibly) new σ-field for
D by considering all inverse images f−1(A), for f ∈ F and A ∈ E . Show
that the σ-field σp generated by the coordinate projections x �→ x(t) on
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C[a, b] is equal to the Borel σ-field σc generated by the uniform norm. Hint:
Show first that continuity of the projection maps implies σp ⊂ σc. Second,
show that the open balls in σc can be created from countable set operations
on sets in σp.

6.5.9. Show that the following metrics generate the product topology on
D × E, where d and e are the respective metrics for D and E:

(i) ρ1((x1, y1), (x2, y2)) ≡ d(x1, x2) + e(y1, y2).

(ii) ρ2((x1, y1), (x2, y2)) ≡
√
d2(x1, x2) + e2(y1, y2).

6.5.10. For any map T : Ω �→ R̄, show that E∗T is the supremum of all
EU , where U ≤ T , U : Ω �→ R̄ measurable and EU exists. Show also that
for any set B ∈ Ω, P∗(B) is the supremum of all P (A), where A ⊂ B and
A ∈ A.

6.5.11. Use lemma 6.3 to prove lemma 6.4.

6.5.12. Prove parts (ii) and (vi) of lemma 6.6 using parts (i) and (v),
respectively.

6.5.13. Let S, T : Ω �→ R̄ be arbitrary. Show the following:

(a) |S∗ − T∗| ≤ |S − T |∗ + (S∗ − S∗) ∧ (T ∗ − T∗);

(b) |S − T |∗ ≤ (S∗ − T∗)∨ (T ∗ − S∗) ≤ |S − T |∗ + (S∗ − S∗)∧ (T ∗ − T∗).

6.5.14. Finish the proof of lemma 6.7:

(a) Show that (A ∪B)∗ = A∗ ∪B∗ if either A or B is measurable.

(b) Prove part (iii) of the lemma.

6.5.15. Prove part B of lemma 6.8 using the approach outlined in the
proof of part A.

6.5.16. Prove the following “converse” to Jensen’s inequality:

Lemma 6.20 (converse to Jensen’s inequality) Let T : Ω �→ R be
an arbitrary map, with E∗|T | < ∞, and assume φ : R �→ R is concave.
Then

(a) E∗φ(T ) ≤ φ(E∗T ) ∧ φ(E∗T );

(b) if φ is also monotone, E∗φ(T ) ≤ φ(E∗T ) ∨ φ(E∗T ).

6.5.17. In the proof of proposition 6.15, show that (i) implies (ii).

6.5.18. Show that Hadamard and compact differentiability are equiva-
lent.
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6.6 Notes

Much of the material in section 6.2 is an amalgamation of several concepts
and presentation styles found in chapter 2 of Billingsley (1986), sections 1.3
and 1.7 of van der Vaart and Wellner (1996), section 18.1 of van der Vaart
(1998), and in chapter 1 of both Rudin (1987) and Rudin (1991). A nice
proof of the equivalence of the several definitions of compactness can by
found in appendix I of Billingsley (1968).

Many of the ideas in section 6.3 come from chapter 1.2 of van der Vaart
and Wellner (1996), abbreviated VW hereafter. Lemma 6.3 corresponds
to lemma 1.2.1 of VW, lemma 6.4 is given in exercise 1.2.1 of VW, and
parts (i), (ii) and (iii) correspond to lemma 1.2.3 of VW. Most of lemma 6.6
is given in lemma 1.2.2 of VW, although the first inequalities in parts (i)
and (ii), as well as part (vi), are new. Lemma 6.7 is given in exercise 1.2.15
in VW. Lemmas 6.11 and 6.12 correspond to exercises 1.2.3 and 1.2.4 of
VW, respectively, after some modification. Also, lemmas 6.13 and 6.14
correspond to lemmas 1.2.5 and 1.2.6 of VW, respectively.

Much of the material on linear operators can be found in appendix A.1
of Bickel, Klaassen, Ritov and Wellner (1997), and in chapter 2 of Kress
(1999). Lemma 6.16 is proposition 7, parts A and B, in appendix A.1 of
Bickel, et al (1997). The presentation on functional differentiation is mo-
tivated by the first few pages in chapter 3.9 of VW, and the chain rule
(lemma 6.19) is lemma 3.9.3 of VW.
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7
Stochastic Convergence

In this chapter, we study concepts and theory useful in understanding the
limiting behavior of stochastic processes. We begin with a general discussion
of stochastic processes in metric spaces. The focus of this discussion is on
measurable stochastic processes since most limits of empirical processes in
statistical applications are measurable. We next discuss weak convergence
both in general and in the specific case of bounded stochastic processes.
One of the interesting aspects of the approach we take to weak convergence
is that the processes studied need not be measurable except in the limit.
This is useful in applications since many empirical processes in statistics
are not measurable with respect to the uniform metric. The final section of
this chapter considers other modes of convergence, such as in probability
and outer almost surely, and their relationships to weak convergence.

7.1 Stochastic Processes in Metric Spaces

In this section, we introduce several important concepts about stochastic
processes in metric spaces. Recall that for a stochastic process {X(t), t ∈
T }, X(t) is a measurable real random variable for each t ∈ T on a probabil-
ity space (Ω,A, P ). The sample paths of such a process typically reside in
the metric space D = �∞(T ) with the uniform metric. Often, however, when
X is viewed as a map from Ω to D, it is no longer Borel measurable. A classic
example of this duality comes from Billingsley (1968, pages 152–153). The
example hinges on the fact that there exists a set H ⊂ [0, 1] which is not a
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Borel set. Define the stochastic process X(t) = 1{U ≤ t}, where t ∈ [0, 1]
and U is uniformly distributed on [0, 1]. The probability space is (Ω,B, P ),
where Ω = [0, 1], B are the Borel sets on [0, 1], and P is the uniform proba-
bility measure on [0, 1]. A natural metric space for the sample paths of X is
�∞([0, 1]). Define the set A = ∪s∈HBs(1/2), where Bs(1/2) is the uniform
open ball of radius 1/2 around the function t �→ fs(t) ≡ 1{t ≤ s}. Since
A is an open set in �∞([0, 1]), and since the uniform distance between fs1
and fs2 is 1 whenever s1 �= s2, the set {ω ∈ Ω : X(ω) ∈ A} equals H . Since
H is not a Borel set, X is not Borel measurable.

This lack of measurability is actually the usual state for most of the
empirical processes we are interested in studying, especially since most of
the time the uniform metric is the natural choice of metric. Much of the
associated technical difficulties can be resolved through the use of outer
measure and outer expectation as defined in the previous chapter and which
we will utilize in our study of weak convergence. In contrast, most of the
limiting processes we will be studying are, in fact, Borel measurable. For
this reason, a brief study of Borel measurable processes is valuable. The
following lemma, for example, provides two ways of establishing equivalence
between Borel probability measures. Recall from section 2.2.3 that BL1(D)
is the set of all functions f : D �→ R bounded by 1 and with Lipschitz norm
bounded by 1, i.e., with |f(x) − f(y)| ≤ d(x, y) for all x, y ∈ D. When the
choice of metric space is clear by the context, we will sometimes use the
abbreviated notation BL1 as was done in chapter 2 . Define also a vector
lattice F ⊂ Cb(D) to be a vector space for which if f ∈ F then f ∨ 0 ∈ F .
We also say that a set F of real functions on D separates points of D if, for
any x, y ∈ D with x �= y, there exists f ∈ F such that f(x) �= f(y). We are
now ready for the lemma:

Lemma 7.1 Let L1 and L2 be Borel probability measures on a metric
space D. The following are equivalent:

(i) L1 = L2.

(ii)
∫
fdL1 =

∫
fdL2 for all f ∈ Cb(D).

If L1 and L2 are also separable, then (i) and (ii) are both equivalent to

(iii)
∫
fdL1 =

∫
fdL2 for all f ∈ BL1.

Moreover, if L1 and L2 are also tight, then (i)–(iii) are all equivalent to

(iv)
∫
fdL1 =

∫
fdL2 for all f in a vector lattice F ⊂ Cb(D) that both

contains the constant functions and separates points in D.

The proof is given in section 7.4. We say that two Borel random maps X
and X ′, with respective laws L and L′, are versions of each other if L = L′.

In addition to being Borel measurable, most of the limiting stochastic
processes of interest are tight. A Borel probability measure L on a metric
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space D is tight if for every ε > 0, there exists a compact K ⊂ D so that
L(K) ≥ 1− ε. A Borel random map X : Ω �→ D is tight if its law L is tight.
Tightness is equivalent to there being a σ-compact set that has probability
1 under L or X . L or X is separable if there is a measurable and separable
set which has probability 1. L or X is Polish if there is a measurable Polish
set having probability 1. Note that tightness, separability and Polishness
are all topological properties and do not depend on the metric. Since both
σ-compact and Polish sets are also separable, separability is the weakest
of the three properties. Whenever we say X has any one of these three
properties, we tacetly imply that X is also Borel measurable.

On a complete metric space, tightness, separability and Polishness are
equivalent. This equivalence for Polishness and separability follows from
the definitions. To see the remaining equivalence, assume L is separable.
By completeness, there is a D0 ⊂ D having probability 1 which is both
separable and closed. Fix any ε ∈ (0, 1). By separability, there exists a
sequence {xk} ∈ D0 which is dense in D0. For every δ > 0, the union of the
balls of radius δ centered on the {xk} covers D0. Hence for every integer
j ≥ 1, there exists a finite collection of balls of radius 1/j whose union Dj

has probability ≥ 1 − ε/2j. Thus the closure of the intersection ∩j≥1Dj is
totally bounded and has probability ≥ 1− ε. Since ε is arbitrary, L is tight.

For a stochastic process {X(t), t ∈ T }, where (T, ρ) is a separable, semi-
metric space, there is another meaning for separable. X is separable (as a
stochastic process) if there exists a countable subset S ⊂ T and a null set
N so that, for each ω �∈ N and t ∈ T , there exists a sequence {sm} ∈ S
with ρ(sm, t) → 0 and |X(sm, ω) − X(t, ω)| → 0. It turns out that many
of the empirical processes we will be studying are separable in this sense,
even though they are not Borel measurable and therefore cannot satisfy
the other meaning for separable. Throughout the remainder of the book,
the distinction between these two definitions will either be explicitly stated
or made clear by the context.

Most limiting processes X of interest will reside in �∞(T ), where the
index set T is often a class of real functions F with domain equal to the
sample space. When such limiting processes are tight, the following lemma
demands that X resides on UC(T, ρ), where ρ is some semimetric making
T totally bounded, with probability 1:

Lemma 7.2 Let X be a Borel measurable random element in �∞(T ).
Then the following are equivalent:

(i) X is tight.

(ii) There exists a semimetric ρ making T totally bounded and for which
X ∈ UC(T, ρ) with probability 1.

Furthermore, if (ii) holds for any ρ, then it also holds for the semimetric
ρ0(s, t) ≡ Earctan |X(s) −X(t)|.
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The proof is given in section 7.4. A nice feature of tight processes in �∞(T )
is that the laws of such processes are completely defined by their finite-
dimensional marginal distributions (X(t1), . . . , X(tk)), where t1, . . . , tk ∈ T
and k ≥ 1 is an integer:

Lemma 7.3 Let X and Y be tight, Borel measurable stochastic processes
in �∞(T ). Then the Borel laws of X and Y are equal if and only if all
corresponding finite-dimensional marginal distributions are equal.

Proof. Consider the collection F ⊂ Cb(D) of all functions f : �∞(T ) �→ R

of the form f(x) = g(x(t1), . . . , x(tk)), where g ∈ Cb(Rk) and k ≥ 1 is
an integer. We leave it as an exercise to show that F is a vector lattice,
an algebra, and separates points of �∞(T ). The desired result now follows
from lemma 7.1.�

While the semimetric ρ0 defined in lemma 7.2 is always applicable when
X is tight, it is frequently not the most convenient semimetric to work
with. The family of semimetrics ρp(s, t) ≡ (E|X(s) −X(t)|p)1/(p∨1), for
some choice of p ∈ (0,∞), is sometimes more useful. There is an interesting
link between ρp and other semimetrics for which lemma 7.2 holds. For a
process X in �∞(T ) and a semimetric ρ on T , we say that X is uniformly ρ-
continuous in pth mean if E|X(sn) −X(tn)|p → 0 whenever ρ(sn, tn) → 0.
The following lemma is a conclusion from lemma 1.5.9 of van der Vaart
and Wellner (1996) (abbreviated VW hereafter), and we omit the proof:

Lemma 7.4 Let X be a tight Borel measurable random element in �∞(T ),
and let ρ be any semimetric for which (ii) of lemma 7.2 holds. If X is ρ-
continuous in pth mean for some p ∈ (0,∞), then (ii) of lemma 7.2 also
holds for the semimetric ρp.

Perhaps the most frequently occurring limiting process in �∞(T ) is a
Gaussian process. A stochastic process {X(t), t ∈ T } is Gaussian if all
finite-dimensional marginals {X(t1), . . . , X(tk)} are multivariate normal.
If a Gaussian process X is tight, then by lemma 7.2, there is a semimetric
ρ making T totally bounded and for which the sample paths t �→ X(t)
are uniformly ρ-continuous. An interesting feature of Gaussian processes is
that this result implies that the map t �→ X(t) is uniformly ρ-continuous in
pth mean for all p ∈ (0,∞). To see this, take p = 2, and note that |X(sn)−
X(tn)| → 0 in probability if and only if E|X(sn) − X(tn)|2 → 0. Thus
whenever ρ(sn, tn) → 0, E|X(sn)−X(tn)|2 → 0 and hence also E|X(sn)−
X(tn)|p → 0 for any p ∈ (0,∞) since X(sn)−X(tn) is normally distributed
for all n ≥ 1. Lemma 7.4 now implies that tightness of a Gaussian process
is equivalent to T being totally bounded by ρp with almost all sample paths
of X being uniformly ρp-continuous for all p ∈ (0,∞).

For a general Banach space D, a Borel measurable random element X
on D is Guassian if and only if f(X) is Gaussian for every continuous,
linear map f : D �→ R. When D = �∞(T ) for some set T , this definition
appears to contradict the definition of Gaussianity given in the preceding
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paragraph, since now we are using all continuous linear functionals instead
of just linear combinations of coordinate projections. These two definitions
are not really reconcilable in general, and so some care must be taking
in reading the literature to determine the appropriate context. However,
when the process in question is tight, the two definitions are equivalent, as
verified in the following proposition:

Proposition 7.5 Let X be a tight, Borel measurable map into �∞(T ).
Then the following are equivalent:

(i) The vector (Xt1 , . . . , Xtk) is multivariate normal for every finite set
{t1, . . . , tk} ⊂ T .

(ii) φ(X) is Gaussian for every continuous, linear map φ : �∞(T ) �→ R.

(iii) φ(X) is Gaussian for every continuous, linear map φ : �∞(T ) �→ D

into any Banach space D.

Proof. The proof that (i)⇒(ii) is given in the proof of lemma 3.9.8 of
VW, and we omit the details here. Now assume (ii), and fix any Banach
space D and any continuous, linear map φ : �∞(T ) �→ D. Now for any con-
tinuous, linear map ψ : D �→ R, the composition map ψ ◦ φ : �∞(T ) �→ R

is continuous and linear, and thus by (ii) we have that ψ(φ(X)) is Guas-
sian. Since ψ is arbitrary, we have by the definition of a Guassian process
on a Banach space that φ(X) is Gaussian. Since both D and φ were also
arbitrary, conclusion (iii) follows. Finally, (iii)⇒(i) since multivariate co-
ordinate projections are special examples of continuous, linear maps into
Banach spaces.�

7.2 Weak Convergence

We first discus the general theory of weak convergence in metric spaces
and then discuss results for the special metric space of uniformly bounded
functions, �∞(T ), for an arbitrary index set T . This last space is where
most—if not all—of the action occurs for statistical applications of empir-
ical processes.

7.2.1 General Theory

The extremely important concept of weak convergence of sequences arises
in many areas of statistics. To be as flexible as possible, we allow the
probability spaces associated with the sequences to change with n. Let
(Ωn,An, Pn) be a sequence of probability spaces and Xn : Ωn �→ D a
sequence of maps. We say that Xn converges weakly to a Borel measurable
X : Ω �→ D if
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E∗f(Xn) → Ef(X), for every f ∈ Cb(D).(7.1)

If L is the law of X , (7.1) can be reexpressed as

E∗f(Xn) →
∫

Ω

f(x)dL(x), for every f ∈ Cb(D).

This weak convergence is denoted Xn � X or, equivalently, Xn � L.
Weak convergence is equivalent to “convergence in distribution” and “con-
vergence in law.” By lemma 7.1, this definition of weak convergence ensures
that the limiting distributions are unique. Note that the choice of proba-
bility spaces (Ωn,An, Pn) is important since these dictate the outer expec-
tation used in the definition of weak convergence. In most of the settings
discussed in this book, Ωn = Ω for all n ≥ 1. Some important exceptions to
this rule will be discussed in chapter 11. Fortunately, even in those settings
where Ωn does change with n, one can frequently readjust the probability
spaces so that the sample spaces are all the same. It is also possible to
generalize the concept of weak convergence of sequences to weak conver-
gence of nets as done in VW, but we will restrict ourselves to sequences
throughout this book.

The forgoing definition of weak convergence does not obviously appear
to be related to convergence of probabilities, but this is in fact true for the
probabilities of sets B ⊂ Ω which have boundaries δB satisfying L(δB) = 0.
Here and elsewhere, we define the boundary δB of a set B in a topological
space to be the closure of B minus the interior of B. Several interesting
equivalent formulations of weak convergence on a metric space D are given
in the following portmanteau theorem:

Theorem 7.6 (Portmanteau) The following are equivalent:

(i) Xn � L;

(ii) lim inf P∗(Xn ∈ G) ≥ L(G) for every open G;

(iii) lim sup P∗(Xn ∈ F ) ≤ L(F ) for every closed F ;

(iv) lim inf E∗f(Xn) ≥
∫
Ω
f(x)dL(x) for every lower semicontinuous f

bounded below;

(v) lim sup E∗f(Xn) ≤
∫
Ω f(x)dL(x) for every upper semicontinuous f

bounded above;

(vi) lim P∗(Xn ∈ B) = lim P∗(Xn ∈ B) = L(B) for every Borel B with
L(δB) = 0;

(vii) lim inf E∗f(Xn) ≥
∫
Ω
f(x)dL(x) for every bounded, Lipschitz contin-

uous, nonnegative f .

Furthermore, if L is separable, then (i)–(vii) are also equivalent to
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(viii) supf∈BL1
|E∗f(Xn) − Ef(X)| → 0.

The proof is given in section 7.4. Depending on the setting, one or more of
these alternative definitions will prove more useful than the others. For ex-
ample, definition (vi) is probably the most intuitive from a statistical point
of view, while definition (viii) is convenient for studying certain properties
of the bootstrap.

Another very useful result is the continuous mapping theorem:

Theorem 7.7 (Continuous mapping) Let g : D �→ E be continuous at
all points in D0 ⊂ D, where D and E are metric spaces. Then if Xn � X
in D, with P∗(X ∈ D0) = 1, then g(Xn)� g(X).

The proof is given in section 7.4. As mentioned in chapter 2, a common
application of this theorem is in the construction of confidence bands based
on the supremum distance.

A potential issue is that there may sometimes be more than one choice
of metric space D to work with in a given weak convergence setting. For
example, if we are studying weak convergence of the usual empirical process√
n(F̂n(t)−F (t)) based on data in [0, 1], we could let D be either �∞([0, 1])

or D[0, 1]. The following lemma tells us that the choice of metric space
is generally not a problem. Recall from chapter 6 that for a topological
space (X,O), the relative topology on A ⊂ X consists of the open sets
{A ∩B : B ∈ O}.

Lemma 7.8 Let the metric spaces D0 ⊂ D have the same metric, and
assume X and Xn reside in D0. Then Xn � X in D0 if and only if Xn � X
in D.

Proof. Since any set B0 ∈ D0 is open if and only if it is of the form B∩D0

for some open B in D, the result follows from part (ii) of the portmanteau
theorem.�

Recall from chapter 2 that a sequence Xn is asymptotically measurable
if and only if

E∗f(Xn) − E∗f(Xn) → 0,(7.2)

for all f ∈ Cb(D). An important, related concept is that of asymptotic
tightness. A sequence Xn is asymptotically tight if for every ε > 0, there is
a compactK so that lim inf P∗(Xn ∈ Kδ) ≥ 1−ε, for every δ > 0, where for
a set A ⊂ D, Aδ = {x ∈ D : d(x,A) < δ} is the “δ-enlargement” around A.
The following lemma tells us that when Xn is asymptotically tight, we can
determine asymptotic measurability by verifying (7.2) only for a subset of
functions in Cb(D). For the purposes of this lemma, an algebra F ⊂ Cb(D)
is a vector space for which if f, g ∈ F then fg ∈ F .

Lemma 7.9 Assume the sequence Xn is asymptotically tight and that (7.2)
holds for all f in a subalgebra F ⊂ Cb(D) that separates points of D. Then
Xn is asymptotically measurable.
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We omit the proof of this lemma, but it can be found in chapter 1.3 of VW.
When D is a Polish space and Xn and X are both Borel measurable,

tightness of Xn for each n ≥ 1 plus asymptotic tightness is equivalent to
the concept of uniform tightness used in the classical theory of weak con-
vergence (see p. 37, Billingsley, 1968). More precisely, a Borel measurable
sequence {Xn} is uniformly tight if for every ε > 0, there is a compact K
so that P(Xn ∈ K) ≥ 1 − ε for all n ≥ 1. The following is a more formal
statement of the equivalence we are describing:

Lemma 7.10 Assume D is a Polish space and that the maps Xn and X
are Borel measurable. Then {Xn} is uniformly tight if and only if Xn is
tight for each n ≥ 1 and {Xn} is asymptotically tight.

The proof is given in section 7.4. Because Xn will typically not be mea-
surable in many of the applications of interest to us, uniform tightness will
not prove as useful a concept as asymptotic tightness.

Two good properties of asymptotic tightness are that it does not depend
on the metric chosen—only on the topology—and that weak convergence
often implies asymptotic tightness. The first of these two properties are
verified in the following lemma:

Lemma 7.11 Xn is asymptotically tight if and only if for every ε > 0
there exists a compact K so that lim inf P∗(Xn ∈ G) ≥ 1− ε for every open
G ⊃ K.

Proof. Assume first that Xn is asymptotically tight. Fix ε > 0, and let
the compact set K satisfy lim inf P∗(Xn ∈ Kδ) ≥ 1 − ε for every δ > 0. If
G ⊃ K is open, then there exists a δ0 > 0 so that G ⊃ Kδ0 . If this were not
true, then there would exist a sequence {xn} �∈ G so that d(xn,K) → 0.
This implies the existence of a sequence {yn} ∈ K so that d(xn, yn) → 0.
Thus, since K is compact and the complement of G is closed, there is
a subsequence n′ and a point y �∈ G so that d(yn′ , y) → 0, but this is
impossible. Hence lim inf P∗(Xn ∈ G) ≥ 1−ε. Now assume thatXn satisfies
the alternative definition. Fix ε > 0, and let the compact set K satisfy
lim inf P∗(Xn ∈ G) ≥ 1 − ε for every open G ⊃ K. For every δ > 0, Kδ is
an open set. Thus lim inf P∗(Xn ∈ Kδ) ≥ 1 − ε for every δ > 0.�

The second good property of asymptotic tightness is given in the second
part of the following lemma, the first part of which gives the necessity of
asymptotic measurability for weakly convergent sequences:

Lemma 7.12 Assume Xn � X. Then

(i) Xn is asymptotically measurable.

(ii) Xn is asymptotically tight if and only if X is tight.

Proof. For part (i), fix f ∈ Cb(D). Note that weak convergence implies
both E∗f(Xn) → Ef(X) and E∗f(Xn) = −E∗[−f(Xn)] → −E[−f(X)] =
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Ef(X), and the desired result follows since f is arbitrary. For part (ii),
fix ε > 0. Assume X is tight, and choose a compact K so that P(X ∈
K) ≥ 1 − ε. By part (ii) of the portmanteau theorem, lim inf P∗(Xn ∈
Kδ) ≥ P(X ∈ Kδ) ≥ 1 − ε for every δ > 0. Hence Xn is asymptotically
tight. Now assume that Xn is asymptotically tight, fix ε > 0, and choose
a compact K so that lim inf P∗(Xn ∈ Kδ) ≥ 1 − ε for every δ > 0. By
part (iii) of the portmanteau theorem, P(X ∈ Kδ) ≥ lim sup P∗(Xn ∈
Kδ) ≥ lim inf P∗(Xn ∈ Kδ) ≥ 1 − ε. By letting δ ↓ 0, we obtain that X is
tight.�

Prohorov’s theorem (given below) tells us that asymptotic measurability
and asymptotic tightness together almost gives us weak convergence. This
“almost-weak-convergence” is relative compactness. A sequence Xn is rel-
atively compact if every subsequence Xn′ has a further subsequence Xn′′

which converges weakly to a tight Borel law. Weak convergence happens
when all of the limiting Borel laws are the same. Note that when all of
the limiting laws assign probability one to a fixed Polish space, there is a
converse of Prohorov’s theorem, that relative compactness of Xn implies
asymptotic tightness of Xn (and hence also uniform tightness). Details of
this result are discussed in chapter 1.12 of VW, but we do not pursue it
further here.

Theorem 7.13 (Prohorov’s theorem) If the sequence Xn is asymptoti-
cally measurable and asymptotically tight, then it has a subsequence Xn′

that converges weakly to a tight Borel law.

The proof, which we omit, is given in chapter 1.3 of VW. Note that the con-
clusion of Prohorov’s theorem does not state that Xn is relatively compact,
and thus it appears as if we have broken our earlier promise. However, if
Xn is asymptotically measurable and asymptotically tight, then every sub-
sequence Xn′ is also asymptotically measurable and asymptotically tight.
Thus repeated application of Prohorov’s theorem does indeed imply relative
compactness of Xn.

A natural question to ask at this juncture is: under what circumstances
does asymptotic measurability and/or tightness of the marginal sequences
Xn and Yn imply asymptotic measurability and/or tightness of the joint
sequence (Xn, Yn)? This question is answered in the following lemma:

Lemma 7.14 Let Xn : Ωn �→ D and Yn : Ωn �→ E be sequences of maps.
Then the following are true:

(i) Xn and Yn are both asymptotically tight if and only if the same is
true for the joint sequence (Xn, Yn) : Ωn �→ D × E.

(ii) Asymptotically tight sequences Xn and Yn are both asymptotically
measurable if and only if (Xn, Yn) : Ωn �→ D × E is asymptotically
measurable.
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Proof. Let d and e be the metrics for D and E, respectively, and let
D × E be endowed with the product topology. Now note that a set in
D × E of the form K1 × K2 is compact if and only if K1 and K2 are
both compact. Let πjK, j = 1, 2, be the projections of K onto D and E,
respectively. To be precise, the projection π1K consists of all x ∈ D such
that (x, y) ∈ K for some y ∈ E, and π2K is analogously defined for E.
We leave it as an exercise to show that π1K and π2K are both compact.
It is easy to see that K is contained in π1K × π2K. Using the product
space metric ρ(x1, y1), (x2, y2)) = d(x1, x2)∨e(y1, y2) (one of several metrics
generating the product topology), we now have for K1 ∈ D and K2 ∈ E

that (K1 × K2)δ = Kδ
1 × Kδ

2 . Part (i) now follows from the definition of
asymptotic tightness.

Let π1 : D × E �→ D be the projection onto the first coordinate, and
note that π1 is continuous. Thus for any f ∈ Cb(D), f ◦ π1 ∈ Cb(D × E).
Hence joint asymptotic measurability of (Xn, Yn) implies asymptotic mea-
surability of Xn by the definition of asymptotic measurability. The same
argument holds for Yn. The difficult part of proving part (ii) is the im-
plication that asymptotic tightness plus asymptotic measurability of both
marginal sequences yields asymptotic measurability of the joint sequence.
We omit this part of the proof, but it can be found in chapter 1.4 of VW.�

A very useful consequence of lemma 7.14 is Slutsky’s theorem. Note that
the proof of Slutsky’s theorem (given below) also utilizes both Prohorov’s
theorem and the continuous mapping theorem.

Theorem 7.15 (Slutsky’s theorem) Suppose Xn � X and Yn � c,
where X is separable and c is a fixed constant. Then the following are
true:

(i) (Xn, Yn)� (X, c).

(ii) If Xn and Yn are in the same metric space, then Xn + Yn � X + c.

(iii) Assume in addition that the Yn are scalars. Then whenever c ∈ R,
YnXn � cX. Also, whenever c �= 0, Xn/Yn � Z/c.

Proof. By completing the metric space forX , we can without loss of gen-
erality assume that X is tight. Thus by lemma 7.14, (Xn, Yn) is asymptot-
ically tight and asymptotically measurable. Thus by Prohorov’s theorem,
all subsequences of (Xn, Yn) have further subsequences which converge to
tight limits. Since these limit points have marginals X and c, and since
the marginals in this case completely determine the joint distribution, we
have that all limiting distributions are uniquely determined as (X, c). This
proves part (i). Parts (ii) and (iii) now follow from the continuous mapping
theorem.�
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7.2.2 Spaces of Bounded Functions

Now we consider the setting where the Xn are stochastic processes with
index set T . The natural metric space for weak convergence in this setting
is �∞(T ). A nice feature of this setting is the fact that asymptotic mea-
surability of Xn follows from asymptotic measurability of Xn(t) for each
t ∈ T :

Lemma 7.16 Let the sequence of maps Xn in �∞(T ) be asymptotically
tight. Then Xn is asymptotically measurable if and only if Xn(t) is asymp-
totically measurable for each t ∈ T .

Proof. Let ft : �∞(T ) �→ R be the marginal projection at t ∈ T , i.e.,
ft(x) = x(t) for any x ∈ �∞(T ). Since each ft is continuous, asymp-
totic measurability of Xn implies asymptotic measurability of Xn(t) for
each t ∈ T . Now assume that Xn(t) is asymptotically measurable for
each t ∈ T . Then lemma 7.14 implies asymptotic measurability for all
finite-dimensional marginals (Xn(t1), . . . , Xn(tk)). Consequently, f(Xn) is
asymptotically measurable for all f ∈ F , for the subset of Cb(D) defined in
the proof of lemma 7.3 given above in section 7.2, where D = �∞(T ). Since
F is an algebra that separates points in �∞(T ), asymptotic measurability
of Xn follows from lemma 7.9.�

We now verify that convergence of finite dimensional distributions plus
asymptotic tightness is equivalent to weak convergence in �∞(T ):

Theorem 7.17 The sequence Xn converges to a tight limit in �∞(T ) if
and only if Xn is asymptotically tight and all finite-dimensional marginals
converge weakly to limits. Moreover, if Xn is asymptotically tight and all
of its finite-dimensional marginals (Xn(t1), . . . , Xn(tk)) converge weakly to
the marginals (X(t1), . . . , X(tk)) of a stochastic process X, then there is
a version of X such that Xn � X and X resides in UC(T, ρ) for some
semimetric ρ making T totally bounded.

Proof. The result that “asymptotic tightness plus convergence of finite-
dimensional distributions implies weak convergence” follows from Prohorov’s
theorem and lemmas 7.9 and 7.1, using the vector lattice and subalgebra
F ⊂ Cb(D) defined above in the proof of lemma 7.3. The implication in
the opposite direction follows easily from lemma 7.12 and the continu-
ous mapping theorem. Now assume Xn is asymptotically tight and that all
finite-dimensional distributions of Xn converge to those of a stochastic pro-
cess X . By asymptotic tightness of Xn, the probability that a version of X
lies in some σ-compact K ⊂ �∞(T ) is one. By theorem 6.2, K ⊂ UC(T, ρ)
for some semimetric ρ making T totally bounded.�

Recall theorem 2.1 and the condition (2.6) from chapter 2. When condi-
tion (2.6) holds for every ε > 0, then we say that the sequence Xn is asymp-
totically uniformly ρ-equicontinuous in probability. We are now in a position
to prove theorem 2.1. Note that the statement of this theorem is slightly in-
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formal: conditions (i) and (ii) of the theorem actually imply that Xn � X ′

in �∞(T ) for some tight version X ′ of X . Recall that ‖x‖T ≡ supt∈T |x(t)|.
Proof of theorem 2.1. First assume Xn � X in �∞(T ), where X is

tight. Convergence of all finite-dimensional distributions follows from the
continuous mapping theorem. Now by theorem 6.2, P(X ∈ UC(T, ρ)) for
some semimetric ρ making T totally bounded. Hence for every η > 0, there
exists some compact K ⊂ UC(T, ρ) so that

lim inf
n→∞

P∗(Xn ∈ Kδ) ≥ 1 − η, for all δ > 0.(7.3)

Fix ε, η > 0, and let the compact set K satisfy (7.3). By theorem 6.2, there
exists a δ0 > 0 so that supx∈K sups,t:ρ(s,t)<δ0 |x(s) − x(t)| ≤ ε/3. Now

P∗

[
sup

s,t∈T :ρ(s,t)<δ0

|Xn(s) −Xn(t)| > ε

]

≤ P∗

[
sup

s,t∈T :ρ(s,t)<δ0

|Xn(s) −Xt(t)| > ε, Xn ∈ Kε/3

]
+ P∗(Xn �∈ Kε/3)

≡ En

satisfies lim supn→∞ En ≤ η, since if x ∈ Kε/3 then sups,t∈T :ρ(s,t)<δ0 |x(s)−
x(t)| < ε. Thus Xn is asymptotically uniformly ρ-continuous in probability
since ε and η were arbitrary.

Now assume that conditions (i) and (ii) of the theorem hold. Lemma 7.18
below, the proof of which is given in section 7.4, yields thatXn is asymptoti-
cally tight. Thus the desired weak converge ofXn follows from theorem 7.17
above.�

Lemma 7.18 Assume conditions (i) and (ii) of theorem 2.1 hold. Then
Xn is asymptotically tight.

The proof of theorem 2.1 verifies that whenever Xn � X and X is tight,
any semimetric ρ defining a σ-compact set UC(T, ρ) such that P(X ∈
UC(Tρ)) = 1 will also result in Xn being uniformly ρ-equicontinuous in
probability. What is not clear at this point is the converse, that any semi-
metric ρ∗ which enables uniform asymptotic equicontinuity of Xn will also
define a σ-compact set UC(T, ρ∗) wherein X resides with probability 1.
The following theorem shows that, in fact, any semimetric which works for
one of these implications will work for the other:

Theorem 7.19 Assume Xn � X in �∞(T ), and let ρ be a semimetric
making (T, ρ) totally bounded. Then the following are equivalent:

(i) Xn is asymptotically uniformly ρ-equicontinuous in probability.

(ii) P(X ∈ UC(T, ρ)) = 1.
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Proof. If we assume (ii), then (i) will follow by arguments given in
the proof of theorem 2.1 above. Now assume (i). For x ∈ �∞(T ), define
Mδ(x) ≡ sups,t∈T :ρ(s,t)<δ |x(s) − x(t)|. Note that if we restrict δ to (0, 1)
then x �→ M(·)(x), as a map from �∞(T ) to �∞((0, 1)), is continuous since
|Mδ(x)−Mδ(y)| ≤ 2‖x−y‖T for all δ ∈ (0, 1). Hence M(·)(Xn)�M(·)(X)
in �∞((0, 1)). Condition (i) now implies that there exists a positive sequence
δn ↓ 0 so that P∗(Mδn(Xn) > ε) → 0 for every ε > 0. Hence Mδn(X)� 0.
This implies (ii) since X is tight by theorem 2.1.�

An interesting consequence of theorems 2.1 and 7.19, in conjunction with
lemma 7.4, happens when Xn � X in �∞(T ) and X is a tight Gaus-
sian process. Recall from section 7.1 the semimetric ρp(s, t) ≡ (E|X(s) −
X(t)|p)1/(p∨1), for any p ∈ (0,∞). Then for any p ∈ (0,∞), (T, ρp) is to-
tally bounded, the sample paths of X are ρp-continuous, and, furthermore,
Xn is asymptotically uniformly ρp-equicontinuous in probability. While any
value of p ∈ (0,∞) will work, the choice p = 2 (the “standard deviation”
metric) is often the most convenient to work with.

We now point out an equivalent condition for Xn to be asymptotically
uniformly ρ-equicontinuous in probability. This new condition, which is
expressed in the following lemma, is sometimes easier to verify for certain
settings (one of which occurs in the next chapter):

Lemma 7.20 Let Xn be a sequence of stochastic processes indexed by T .
Then the following are equivalent:

(i) There exists a semimetric ρ making T totally bounded and for which
Xn is uniformly ρ-equicontinuous in probability.

(ii) For every ε, η > 0, there exists a finite partition T = ∪ki=1Ti such that

lim sup
n→∞

P∗
(

sup
1≤i≤k

sup
s,t∈Ti

|Xn(s) −Xn(t)| > ε

)
< η.(7.4)

The proof is given in section 4 below.

7.3 Other Modes of Convergence

Recall the definitions of convergence in probability and outer almost surely,
for arbitrary maps Xn : Ω �→ D, as defined in chapter 2. We now introduce
two additional modes of convergence which can be useful in some settings.
Xn converges almost uniformly to X if, for every ε > 0, there exists a mea-
surable set A such that P(A) ≥ 1 − ε and d(Xn, X) → 0 uniformly on A.
Xn converges almost surely to X if P∗(limn→∞ d(Xn, X) = 0) = 1. Note
that an important distinction between almost sure and outer almost sure
convergence is that, in the latter mode, there must exist a measurable ma-
jorant of d(Xn, X) which goes to zero. This distinction is quite important



112 7. Stochastic Convergence

because it can be shown that almost sure convergence does not in gen-
eral imply convergence in probability when d(Xn, X) is not measurable.
For this reason, we do not use the almost sure convergence mode in this
book except rarely. One of those rare times is in exercise 7.5.7, another is
in proposition 7.22 below which will be used in chapter 10. The following
lemma characterizes the relationships among the three remaining modes:

Lemma 7.21 Let Xn, X : Ω �→ D be maps with X Borel measurable.
Then

(i) Xn
as∗→ X implies Xn

P→ X.

(ii) Xn
P→ X if and only if every subsequence Xn′ has a further subse-

quence Xn′′ such that Xn′′
as∗→ X.

(iii) Xn
as∗→ X if and only if Xn converges almost uniformly to X if and

only if supm≥n d(Xm, X) P→ 0.

The proof is given section 7.4. Since almost uniform convergence and outer
almost sure convergence are equivalent for sequences, we will not use the
almost uniform mode very much.

The following proposition gives a connection between almost sure con-
vergence and convergence in probability. We need this proposition for a
continuous mapping result for bootstrapped processes presented in chap-
ter 10:

Proposition 7.22 Let Xn, Yn : Ω �→ D be maps with Yn measurable.
Suppose every subsequence n′ has a further subsequence n′′ such that Xn′′ →
0 almost surely. Suppose also that d(Xn, Yn) P→ 0. Then Xn

P→ 0.

Proof. For every subsequence n′ there exists a further subsequence n′′

such that both Xn′′ → 0 and d(Xn′′ , Yn′′)∗ → 0 almost surely for some
versions d(Xn′′ , Yn′′)∗. Since d(Yn, 0) ≤ d(Xn, 0) + d(Xn, Yn)∗, we have
that Yn′′ → 0 almost surely. But this implies Yn′′

as∗→ 0 since the Yn are
measurable. Since the subsequence n′ was arbitrary, we now have that
Yn

P→ 0. Thus Xn
P→ 0 since d(Xn, 0) ≤ d(Yn, 0) + d(Xn, Yn).�

The next lemma describes several important relationships between weak
convergence and convergence in probability. Before presenting it, we need
to extend the definition of convergence in probability, in the setting where
the limit is a constant, to allow the probability spaces involved to change
with n as is already permitted for weak convergence. We denote this mod-
ified convergence Xn

P→ c, and distinguish it from the previous form of
convergence in probability only by context.

Lemma 7.23 Let Xn, Yn : Ωn �→ D be maps, X : Ω �→ D be Borel
measurable, and c ∈ D be a constant. Then

(i) If Xn � X and d(Xn, Yn) P→ 0, then Yn � X.
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(ii) Xn
P→ X implies Xn � X.

(iii) Xn
P→ c if and only if Xn � c.

Proof. We first prove (i). Let F ⊂ D be closed, and fix ε > 0. Then
lim supn→∞ P∗(Yn ∈ F ) = lim supn→∞ P∗(Yn ∈ F, d(Xn, Yn)∗ ≤ ε) ≤
lim supn→∞ P∗(Xn ∈ F ε) ≤ P (X ∈ F ε). The result follows by letting
ε ↓ 0. Now assume Xn

P→ X . Since X � X , d(X,Xn)
P→ 0 implies Xn � X

by (i), thus (ii) follows. We now prove (iii). Xn
P→ c implies Xn � c by (ii).

Now assume Xn � c, and fix ε > 0. Note that P∗(d(Xn, c) ≥ ε) = P∗(Xn �∈
B(c, ε)), where B(c, ε) is the open ε-ball around c ∈ D. By the portmanteau
theorem, lim supn→∞ P∗(Xn �∈ B(c, ε)) ≤ P(X �∈ B(c, ε)) = 0. Thus Xn

P→
c since ε is arbitrary, and (iii) follows.�

We now present a generalized continuous mapping theorem that allows
for sequences of maps gn which converge to g in a fairly general sense. In the
exercises below, we consider an instance of this where one is interested in
maximizing a stochastic process {Xn(t), t ∈ T } over an “approximation” Tn
of a subset T0 ⊂ T . As a specific motivation, suppose T is high dimensional.
The computational burden of computing the supremum of Xn(t) over T
may be reduced by choosing a finite mesh Tn which closely approximates
T .

Theorem 7.24 (Extended continuous mapping). Let Dn ⊂ D and gn :
Dn �→ E satisfy the following: if xn → x with xn ∈ Dn for all n ≥ 1 and
x ∈ D0, then gn(xn) → g(x), where D0 ⊂ D and g : D0 �→ E. Let Xn be
maps taking values in Dn, and let X be Borel measurable and separable.
Then

(i) Xn � X implies gn(Xn)� g(X).

(ii) Xn
P→ X implies gn(Xn)

P→ g(X).

(iii) Xn
as∗→ X implies gn(Xn)

as∗→ g(X).

The proof can be found in chapter 1.11 of VW, and we omit it here. It is
easy to see that if g : D �→ E is continuous at all points in D0, and if we set
gn = g and Dn = D for all n ≥ 1, then the standard continuous mapping
theorem (theorem 7.7), specialized to the setting where X is separable, is
a corollary of part (i) of the above theorem.

The following theorem gives another kind of continuous mapping result
for sequences which converge in probability and outer almost surely. When
X is separable, the conclusions of this theorem are a simple corollary of
theorem 7.24.

Theorem 7.25 Let g : D �→ E be continuous at all points in D0 ⊂ D,
and let X be Borel measurable with P∗(X ∈ D0) = 1. Then
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(i) Xn
P→ X implies g(Xn)

P→ g(X).

(ii) Xn
as∗→ X implies g(Xn)

as∗→ g(X).

Proof. Assume Xn
P→ X , and fix ε > 0. Define Bk to be all x ∈ D such that

the 1/k-ball around x contains points y and z with e(g(y), g(z)) > ε. Part
of the proof of theorem 7.7 in section 7.4 verifies that Bk is open. It is clear
that Bk decreases as k increases. Furthermore, P(X ∈ Bk) ↓ 0, since every
point in ∩∞

k=1Bk is a point of discontinuity of g. Now the outer probability
that e(g(Xn), g(X)) > ε is bounded above by the outer probability that
either X ∈ Bk or d(Xn, X) ≥ 1/k. But this last outer probability converges
to P∗(X ∈ Bk) since d(Xn, X) P→ 0. Part (i) now follows by letting k ↓ 0
and noting that ε was arbitrary. Assume that Xn

as∗→ X . Note that a minor
modification of the proof of part (i) verifies that supm≥n d(Xm, X) P→ 0

implies supm≥n e(g(Xn), g(X)) P→ 0. Now part (iii) of lemma 7.21 yields
that Xn

as∗→ X implies g(Xn)
as∗→ g(X).�

We now present a useful outer almost sure representation result for weak
convergence. Such representations allow the conversion of certain weak con-
vergence problems into problems about convergence of fixed sequences. We
give an illustration of this approach in the proof of proposition 7.27 below.

Theorem 7.26 Let Xn : Ωn �→ D be a sequence of maps, and let X∞ be
Borel measurable and separable. If Xn � X∞, then there exists a probability
space (Ω̃, Ã, P̃ ) and maps X̃n : Ω̃ �→ D with

(i) X̃n
as∗→ X̃∞;

(i) E∗f(X̃n) = E∗f(Xn), for every bounded f : D �→ R and all 1 ≤ n ≤
∞.

Moreover, X̃n can be chosen to be equal to Xn ◦ φn, for all 1 ≤ n ≤ ∞,
where the φn : Ω̃ �→ Ωn are measurable and perfect maps and Pn = P̃ ◦ φn.
The proof can be found in chapter 1.10 of VW, and we omit it here. Re-
call the definition of perfect maps from chapter 6. In the setting of the
above theorem, if the X̃n are constructed from the perfect maps φn, then[
f(X̃n)

]∗
= [f(Xn)]

∗ ◦φn for all bounded f : D �→ R. Thus the equivalence

between X̃n and Xn can be made much stronger than simply equivalence
in law.

The following proposition can be useful in studying weak convergence
of certain statistics which can be expressed as stochastic integrals. For
example, the Wilcoxon statistic can be expressed in this way. The proof of
the proposition provides the illustration of theorem 7.26 promised above.

Proposition 7.27 Let Xn, Gn ∈ D[a, b] be stochastic processes with
Xn � X and Gn

P→ G in D[a, b], where X is bounded with continuous
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sample paths, G is fixed, and Gn and G have total variation bounded by
K < ∞. Then

∫ (·)
a
Xn(s)dGn(s)�

∫ (·)
a
X(s)dG(s) in D[a, b].

Proof. First, Slutsky’s theorem and lemma 7.23 establish that (Xn, Gn)�
(X,G). Next, theorem 7.26 tells us that there exists a new probability space
and processes X̃n, X̃, G̃n and G̃ which have the same outer integrals for
bounded functions as Xn, X , Gn and G, respectively, but which also satisfy
(X̃n, G̃n)

as∗→ (X̃, G̃). For each integer m ≥ 1, define tj = a + (b − a)j/m,
j = 0, . . . ,m; let

Mm ≡ max
1≤j≤m

sup
s,t∈(tj−1,tj ]

|X̃(s) − X̃(t)|;

and define X̃m ∈ D[a, b] such that X̃m(a) = X̃(a) and X̃m(t) ≡
∑m

j=1 1{
tj−1 < t ≤ tj}X̃(tj), for t ∈ (a, b]. Note that for integrals over the range
(a, t], for t ∈ [a, b], we define the value of the integral to be zero when t = a
since (a, a] is the null set. We now have, for any t ∈ [a, b], that

∣∣∣∣
∫ t

a

X̃n(s)dG̃n(s) −
∫ t

a

X̃(s)dG̃(s)
∣∣∣∣

≤
∫ b

a

∣∣∣X̃n(s) − X̃(s)
∣∣∣ × |dG̃n(s)| +

∫ b

a

∣∣∣X̃m(s) − X̃(s)
∣∣∣× |dG̃n(s)|

+
∣∣∣∣
∫ t

a

X̃m(s)
{
dG̃n(s) − dG̃(s)

}∣∣∣∣
≤ K

(
‖X̃n − X̃‖[a,b] +Mm

)

+

∣∣∣∣∣∣
m∑
j=1

X̃(tj)
∫

(tj−1,tj ]∩(a,t]

{
dG̃n(s) − dG̃(s)

}∣∣∣∣∣∣
≤ K

(
‖X̃n − X̃‖∗[a,b] +Mm

)
+m

(
‖X̃‖[a,b] × ‖G̃n − G̃‖∗[a,b]

)
≡ En(m).

Note that En(m) is measurable and → 0 almost surely. Define Dn to
be the infimum of En(m) over all integers m ≥ 1. Since Dn

as∗→ 0 and Dn

is measurable, we have that
∫ (·)
a X̃n(s)dG̃n(s) as∗→

∫ (·)
a X̃(s)dG̃(s). Choose

any f ∈ Cb(D[a, b]), and note that the map (x, y) �→ f
(∫ (·)

a
x(s)dy(s)

)
, for

x, y ∈ D[a, b] with the total variation of y bounded, is bounded. Thus
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E∗f

(∫ (·)

a

Xn(s)dGn(s)

)
= E∗f

(∫ (·)

a

X̃n(s)dG̃n(s)

)

→ Ef

(∫ (·)

a

X̃(s)dG̃(s)

)

= Ef

(∫ (·)

a

X(s)dG(s)

)
.

Since this convergence holds for all f ∈ Cb(D[a, b]), the desired result now
follows.�

We give one more result before closing this chapter. The result applies
to certain weak convergence settings involving questions that are easier to
answer for measurable maps. The following lemma shows that a nonmeasur-
able, weakly convergent sequence Xn is usually quite close to a measurable
sequence Yn:

Lemma 7.28 Let Xn : Ωn �→ D be a sequence of maps. If Xn � X, where
X is Borel measurable and separable, then there exists a Borel measurable
sequence Yn : Ωn �→ D with d(Xn, Yn) P→ 0.

The proof can be found in chapter 1.10 of VW, and we omit it here.

7.4 Proofs

Proof of lemma 7.1. Clearly (i) implies (ii). Now assume (ii). For every
open G ⊂ D, define the sequence of functions fm(x) = [md(x,D−G)]∧1, for
integersm ≥ 1, and note that each fm is bounded and Lipschitz continuous
and fm ↑ 1{G} as m → ∞. By monotone convergence, L1(G) = L2(G).
Since this is true for every open G ⊂ D, including G = D, the collection
of Borel sets for which L1(B) = L2(B) is a σ-field and is at least as large
as the Borel σ-field. Hence (ii) implies (i). The equivalence of (i) and (iii)
under separability follows from theorem 1.12.2 of VW and we omit the
details here.

The fact that (i) implies (iv) is obvious. Now assume L1 and L2 are tight
and that (iv) holds. Fix ε > 0, and choose a compact K ⊂ D such that
L1(K) ∧ L2(K) ≥ 1 − ε. According to a version of the Stone-Weierstrass
theorem given in Jameson (1974, p. 263), a vector lattice F ⊂ Cb(K) that
includes the constants and separates points of K is uniformly dense in
Cb(K). Choose a g ∈ Cb(D) for which 0 ≤ g ≤ 1, and select an f ∈ F
such that supx∈K |g(x) − f(x)| ≤ ε. Now we have

∣∣∫ gdL1 −
∫
gdL2

∣∣ ≤∣∣∫
K gdL1 −

∫
K gdL2

∣∣ + 2ε ≤
∣∣∫
K(f ∧ 1)+dL1 −

∫
K(f ∧ 1)+dL2

∣∣ + 4ε = 4ε.
The last equality follows since (f ∧ 1)+ ∈ F . Thus

∫
gdL1 =

∫
gdL2 since

ε is arbitrary. By adding and subtracting scalars, we can verify that the
same result holds for all g ∈ Cb(D). Hence (i) holds.�
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Proof of lemma 7.2. The equivalence of (i) and (ii) is an imme-
diate consequence of theorem 6.2. Now assume (ii) holds. Then |X | is
bounded almost surely. Hence for any pair of sequences sn, tn ∈ T such
that ρ0(sn, tn) → 0, X(sn) −X(tn)

P→ 0. Thus X ∈ UC(T, ρ0) with prob-
ability 1. It remains to show that (T, ρ0) is totally bounded. Let the pair
of sequences sn, tn ∈ T satisfy ρ(sn, tn) → 0. Then X(sn) − X(tn)

P→ 0
and thus ρ0(sn, tn) → 0. This means that since (T, ρ) is totally bounded,
we have for every ε > 0 that there exists a finite Tε ⊂ T such that
supt∈T infs∈Tε ρ0(s, t) < ε. Thus (T, ρ0) is also totally bounded, and the
desired result follows.�

Proof of theorem 7.6. Assume (i), and note that (i) implies (vii)
trivially. Now assume (vii), and fix an open G ⊂ D. As in the proof of
lemma 7.1 above, there exists a sequence of nonnegative, Lipschitz con-
tinuous functions fm with 0 ≤ fm ↑ 1{G}. Now for each integer m ≥ 1,
lim inf P∗(Xn ∈ G) ≥ lim inf E∗fm(Xn) = Efm(X). Taking the limit as
m → ∞ yields (ii). Thus (vii)⇒(ii). The equivalence of (ii) and (iii) follows
by taking complements.

Assume (ii) and let f be lower semicontinuous with f ≥ 0. Define the
sequence of functions fm =

∑m2

i=1(1/m)1{Gi}, where Gi = {x : f(x) >
i/m}, i = 1, . . . ,m2. Thus fm “rounds” f down to i/m if f(x) ∈ (i/m, (i+
1)/m] for any i = 0, . . . ,m2 − 1 and fm = m when f(x) > m. Hence
0 ≤ fm ≤ f ∧m and |fm − f |(x) ≤ 1/m whenever f(x) ≤ m. Fix m. Note
that each Gi is open by the definition of lower semicontinuity. Thus

lim inf
n→∞

E∗f(Xn) ≥ lim inf
n→∞

E∗fm(Xn)

≥
m2∑
i=1

(1/m)
[
lim inf
n→∞

P∗(Xn ∈ Gi)
]

≥
m2∑
i=1

(1/m)P(X ∈ Gi)

= Efm(X).

Thus (ii) implies (iv) after letting m → ∞ and adding then subtracting
a constant as needed to compensate for the lower bound of f . The equiv-
alence of (iv) and (v) follows by replacing f with −f . Assume (v) (and
thus also (iv)). Since a continuous function is both upper and lower semi-
continuous, we have for any f ∈ Cb(D) that Ef(X) ≥ lim sup E∗f(Xn) ≥
lim inf E∗f(Xn) ≥ Ef(X). Hence (v) implies (i).

Assume (ii) (and hence also (iii)). For any Borel set B ⊂ D, L(B◦) ≤
lim infn→∞ P∗(Xn ∈ B◦) ≤ lim supn→∞ P∗(Xn ∈ B) ≤ L(B); however,
the forgoing inequalities all become equalities when L(δB) = 0. Thus (ii)
implies (vi). Assume (vi), and let F be closed. For each ε > 0 define
F ε = {x : d(x, F ) < ε}. Since the sets δF ε are disjoint, L(δF ε) > 0
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for at most countably many ε. Hence we can choose a sequence εm ↓ 0
so that L(δF εn) = 0 for each integer m ≥ 1. Note that for fixed m,
lim supn→∞ P∗(Xn ∈ F ) ≤ lim supn→∞ P∗(Xn ∈ F εm) = L(F εm). By
letting m → ∞, we obtain that (vi) implies (ii). Thus conditions (i)–(vii)
are all equivalent.

The equivalence of (i)–(vii) to (viii) when L is separable follows from
theorem 1.12.2 of VW, and we omit the details.�

Proof of theorem 7.7. The set of all points at which g is not continuous
can be expressed as Dg ≡

⋃∞
m=1

⋂∞
k=1G

m
k , where Gmk consists of all x ∈ D

so that e(g(y), g(z)) > 1/m for some y, z ∈ B1/k(x), where e is the metric
for E. Note that the complement of Gmk , (Gmk )c, consists of all x for which
e(g(y), g(z)) ≤ 1/m for all y, z ∈ B1/k(x). Now if xn → x, then for any
y, z ∈ B1/k(x), we have that y, z ∈ B1/k(xn) for all n large enough. Hence
(Gmk )c is closed and thus Gmk is open. This means that Dg is a Borel set. Let
F ⊂ E be closed, and let {xn} ∈ g−1(F ) be a sequence for which xn → x.
If x is a continuity point of g, then x ∈ g−1(F ). Otherwise x ∈ Dg. Hence
g−1(F ) ⊂ g−1(F ) ∪Dg. Since g is continuous on the range of X , there is
a version of g(X) that is Borel Measurable. By the portmanteau theorem,
lim sup P∗(g(Xn) ∈ F ) ≤ lim sup P∗(Xn ∈ g−1(F )) ≤ P(X ∈ g−1(F )).
Since Dg has probability zero under the law of X , P(X ∈ g−1(F )) =
P(g(X) ∈ F ). Reapplying the portmanteau theorem, we obtain the desired
result.�

Proof of lemma 7.10. It is easy to see that uniform tightness implies
asymptotic tightness. To verify equivalence going the other direction, as-
sume thatXn is tight for each n ≥ 1 and that the sequence is asymptotically
tight. Fix ε > 0, and choose a compact K0 for which lim inf P(Xn ∈ Kδ

0) ≥
1 − ε for all δ > 0. For each integer m ≥ 1, choose an nm < ∞ so that
P(Xn ∈ K

1/m
0 ) ≥ 1 − 2ε for all n ≥ nm. For each integer n ∈ (nm, nm+1],

choose a compact K̃n so that P(Xn ∈ K̃n) ≥ 1 − ε/2 and an ηn ∈ (0, 1/m)
so that P

(
Xn ∈ K

1/m
0 −Kηn

0

)
< ε/2. Let Kn = (K̃n∪K0)∩Kηn

0 , and note

that K0 ⊂ Kn ⊂ K
1/m
0 and that Kn is compact. We leave it as an exercise

to show that K ≡
⋃∞
n=1Kn is also compact. Now P(Xn ∈ Kn) ≥ 1−3ε for

all n ≥ 1, and thus P(Xn ∈ K) ≥ 1 − 3ε for all n ≥ 1. Uniform tightness
follows since ε was arbitrary.�

Proof of lemma 7.18. Fix ζ > 0. The conditions imply that P∗(‖Xn‖∗T >
M) < ζ for someM <∞. Let εm be a positive sequence converging down to
zero and let ηm ≡ 2−mζ. By condition (ii), there exists a positive sequence
δm ↓ 0 so that

lim sup
n→∞

P∗

(
sup

s,t∈T :ρ(s,t)<δm

|Xn(s) −Xn(t)| > εm

)
< ηm.

Now fixm. By the total boundedness of T , there exists a finite set of disjoint
partions T1, . . . , Tk so that T = ∪ki=1Ti and so that
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P∗
(

max
1≤i≤k

sup
s,t∈Ti

|Xn(s) −Xn(t)| > εm

)
< ηm.

Let z1, . . . , zp be the set of all functions on �∞(T ) which are constant on
each Ti and which take only the values ±iεm, for i = 0, . . . ,K, where K is
the largest integer ≤ M/εm. Now let Km be the union of the closed balls
of radius εm around the zi, i = 1, . . . , p. This construction ensures that if
‖x‖T ≤ M and max1≤i≤k sups,t∈Ti

|x(s) − x(t)| ≤ εm, then x ∈ Km. This
construction can be repeated for each m ≥ 1.

Let K = ∩∞
m=1Km, and note that K is totally bounded and closed. Total

boundedness follows since each Km is a union of finite εm balls which cover
K and εm ↓ 0. We leave the proof that K is closed as an exercise. Now we
show that for every δ > 0, there is an m < ∞ so that Kδ ⊃ ∩mi=1Ki. If
this were not true, then there would be a sequence {zm} �∈ Kδ with zm ∈
∩mi=1Ki for every m ≥ 1. This sequence has a subsequence {zm1(k), k ≥ 1}
contained in one of the open balls making up K1. This subsequence has
a further subsequence {zm2(k), k ≥ 1} contained in one of the open balls
making up K2. We can continue with this process to generate, for each
integer j ≥ 1, a subsequence {zmj(k), k ≥ 1} contained in the intersection
∩ji=1Bi, where each Bi is one of the open balls making up Ki. Define a new
subsequence z̃k = zmk(k), and note that z̃k is Cauchy with limit in K since
K is closed. However, this contradicts d(zm,K) ≥ δ for all m. Hence the
complement of Kδ is contained in the complement of ∩mi=1Ki for some m <
∞. Thus lim supn→∞ P∗(Xn �∈ Kδ) ≤ lim supn→∞ P∗ (Xn �∈ ∩mi=1Ki) ≤
ζ +

∑m
i=1 ηm ≤ 2ζ. Since this result holds for all δ > 0, we now have that

lim infn→∞ P∗(Xn ∈ Kδ) ≥ 1 − 2ζ for all δ > 0. Asymptotic tightness
follows since ζ is arbitrary.�

Proof of lemma 7.20. The fact that (i) implies (ii) we leave as an exer-
cise. Assume (ii). Then there exists a sequence of finite partitions T1, T2, . . .
such that

lim sup
n→∞

P∗
(

sup
U∈Tk

sup
s,t∈U

|Xn(s) −Xn(t)| > 2−k
)
< 2−k,

for all integers k ≥ 1. Here, each partition Tk is a collection of disjoint sets
U1, . . . , Umk

with T = ∪mk
i=1Ui. Without loss of generality, we can insist that

the Tk are nested in the sense that any U ∈ Tk is a union of sets in Tk+1.
Such a nested sequence of partitions is easy to construct from any other
sequence of partitions T ∗

k by letting Tk consist of all nontrivial intersections
of all sets in T ∗

1 up through and including T ∗
k . Let T0 denote the partition

consisting of the single set T .
For any s, t ∈ T , define K(s, t) ≡ sup{k : s, t ∈ U for some U ∈ Tk} and

ρ(s, t) ≡ 2−K(s,t). Also, for any δ > 0, let J(δ) ≡ inf{k : 2−k < δ}. It is
not hard to verify that for any s, t ∈ T and δ > 0, ρ(s, t) < δ if and only if
s, t ∈ U for some U ∈ TJ(δ). Thus



120 7. Stochastic Convergence

sup
s,t∈T :ρ(s,t)<δ

|Xn(s) −Xn(t)| = sup
U∈TJ(δ)

sup
s,t∈U

|Xn(s) −Xn(t)|

for all 0 < δ ≤ 1. Since J(δ) → ∞ as δ ↓ 0, we now have that Xn is asymp-
totically ρ-equicontinuous in probability, as long as ρ is a pseudometric.
The only difficulty here is to verify that the triangle inequality holds for ρ,
which we leave as an exercise. It is easy to see that T is totally bounded
with respect to ρ, and (i) follows.�

Proof of lemma 7.21. We first prove (iii). Assume that Xn
as∗→ X ,

and define Akn ≡ {supm≥n d(Xm, X)∗ > 1/k}. For each integer k ≥ 1, we
have P (Akn) ↓ 0 as n → ∞. Now fix ε > 0, and note that for each k ≥ 1
we can choose an nk so that P (Akn) ≤ ε/2k. Let A = Ω − ∪∞

k=1A
k
nk

, and
observe that, by this construction, P (A) ≥ 1− ε and d(Xn, X)∗ ≤ 1/k, for
all n ≥ nk and all ω ∈ A. Thus Xn converges to X almost uniformly since
ε is arbitrary. Assume now that Xn converges to X almost uniformly. Fix
ε > 0, and let A be measurable with P (A) ≥ 1 − ε and d(Xn, X) → 0 uni-
formly over ω ∈ A. Fix η > 0, and note that η ≥ (d(Xn, X)1{A})∗ for all
sufficiently large n, since η is measurable and satisfies η ≥ d(Xn, X)1{A}
for sufficiently large n. Now let S, T : Ω �→ [0,∞) be maps with S mea-
surable and T ∗ bounded. The for any c > 0, [(S + c)T ]∗ ≤ (S + c)T ∗,
and (S + c)T ∗ ≤ [(S + c)T ]∗ since T ∗ ≤ [(S + c)T ]∗/(S + c). Hence
[(S + c)T ]∗ = (S + c)T ∗. By letting c ↓ 0, we obtain that (ST )∗ = ST ∗.
Hence d(Xn, X)∗1{A} = (d(Xn, X) inf{A})∗ ≤ η for all n large enough,
and thus d(Xn, X)∗ → 0 for almost all ω ∈ A. Since ε is arbitrary,Xn

as∗→ X .
Now assume thatXn

as∗→ X . This clearly implies that supm≥n d(Xm, X) P→
0. Fix ε > 0. Generate a subsequence nk, by finding, for each integer k ≥ 1,
an integer nk ≥ nk−1 ≥ 1 which satisfies P∗(supm≥nk

d(Xm, X) > 1/k) ≤
ε/2k. Call the set inside this outer probability statement Ak, and define
A = Ω − ∩∞

k=1A
∗
k. Now P(A) ≥ 1 − ε, and for each ω ∈ A and all m ≥ nk,

d(Xm, X) ≤ 1/k for all k ≥ 1. Hence supω∈A d(Xn, X)(ω) → 0, as n→ ∞.
Thus Xn converges almost uniformly to X , since ε is arbitrary, and there-
fore Xn

as∗→ X . Thus we have proven (iii).
We now prove (i). It is easy to see that Xn converging to X almost uni-

formly will imply Xn
P→ X . Thus (i) follows from (iii). We next prove (ii).

Assume Xn
P→ X . Construct a subsequence 1 ≤ n1 < n2 < · · · so that

P(d(Xnj , X)∗ > 1/j) < 2−j for all integers j ≥ 1. Then

P(d(Xnj , X)∗ > 1/j, for infinitely many j) = 0

by the Borel-Cantelli lemma. Hence Xnj

as∗→ X as a sequence in j. This now
implies that every sequence has an outer almost surely convergent subse-
quence. Assume now that every subsequence has an outer almost surely
convergent subsequence. By (i), the almost surely convergent subsequences
also converge in probability. Hence Xn

P→ X .�
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7.5 Exercises

7.5.1. Show that F defined in the proof of lemma 7.3 is a vector lattice,
an algebra, and separates points in D.

7.5.2. Show that the set K defined in the proof of lemma 7.10 in sec-
tion 7.2 is compact.

7.5.3. In the setting of the proof of lemma 7.14, show that π1K and π2K
are both compact whenever K ∈ D × E is compact.

7.5.4. In the proof of lemma 7.18 (given in section 7.4), show that the set
K = ∩∞

m=1Km is closed.

7.5.5. Suppose that Tn and T0 are subsets of a semimetric space (T, ρ)
such that Tn → T0 in the sense that

(i) Every t ∈ T0 is the limit of a sequence tn ∈ Tn;

(ii) For every closed S ⊂ T − T0, S ∩ Tn = ∅ for all n large enough.

Suppose that Xn and X are stochastic processes indexed by T for which
Xn � X in �∞(T ) and X is Borel measurable with P(X ∈ UC(T, ρ)) = 1,
where (T, ρ) is not necessarily totally bounded. Show that supt∈Tn

Xn(t)�
supt∈T0

X(t). Hint: show first that for any xn → x, where {xn} ∈ �∞(T )
and x ∈ UC(T, ρ), we have limn→∞ supt∈Tn

xn(t) = supt∈T0
x(t).

7.5.6. Complete the proof of lemma 7.20:

1. Show that (i) implies (ii).

2. Show that for any s, t ∈ T and δ > 0, ρ(s, t) < δ if and only if s, t ∈ U
for some U ∈ TJ(δ), where ρ(s, t) ≡ 2−K(s,t) and K is as defined in
the proof.

3. Verify that the triangle inequality holds for ρ.

7.5.7. Let Xn and X be maps into R with X Borel measurable. Show the
following:

(i) Xn
as∗→ X if and only if both X∗

n and Xn∗ ≡ (Xn)∗ converge almost
surely to X .

(ii) Xn � X if and only if X∗
n � X and Xn∗ � X .

Hints: For (i), first show |Xn−X |∗ = |X∗
n−X |∨|Xn∗−X |. For (ii), assume

Xn � X and apply the extended almost sure representation theorem to
find a new probability space and a perfect sequence of maps φn such that
X̃n = Xn ◦ φn as∗→ X̃. By (i), X̃∗

n → X̃ almost surely, and thus X̃∗
n � X̃ .

Since φn is perfect, X̃∗
n = X∗

n ◦ φn; and thus Ef(X̃∗
n) = Ef(X∗

n) for every
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measurable f . Hence X∗
n � X . Now show Xn∗ � X . For the converse,

use the facts that P (X∗
n ≤ x) ≤ P∗ (Xn ≤ x) ≤ P (Xn∗ ≤ x) and that

distributions for real random variable are completely determined by their
cumulative distribution functions.

7.5.8. Using the ideas in the proof of proposition 7.27, prove lemma 4.2.

7.6 Notes

Many of the ideas and results of this chapter come from chapters 1.3–1.5
and 1.9–1.12 of VW specialized to sequences (rather than nets). Lemma 7.1
is a composite of lemmas 1.3.12 and theorem 1.12.2 of VW, while Lemma 7.4
is lemma 1.5.3 of VW. Components (i)–(vii) of the portmanteau theorem
are a specialization to sequences of the portmanteau theorem in chapter 1.3
of VW. Theorem 7.7, lemmas 7.8, 7.9, and 7.12, and theorem 7.13 corre-
spond to VW theorems 1.3.6 and 1.3.10, lemmas 1.3.13 and 1.3.8, and theo-
rem 1.3.9, respectively. Lemma 7.14 is a composite of lemmas 1.4.3 and 1.4.4
of VW. Lemma 7.16 and theorem 7.17 are essentially VW lemma 1.5.2 and
theorem 1.5.4. Lemmas 7.21 and 7.23 and theorem 7.24 are specializations
to sequences of VW lemmas 1.9.2 and 1.10.2 and theorem 1.11.1. Theo-
rem 7.26 is a composition of VW theorem 1.10.4 and addendum 1.10.5
applied to sequences, while lemma 7.28 is essentially proposition 1.10.12 of
VW.

Proposition 7.5 on Guassian processes is essentially a variation of lemma
3.9.8 of VW. Proposition 7.27 is a modification of lemma A.3 of Bilias,
Gu and Ying (1997) who use this result to obtain weak convergence of
the proportional hazards regression parameter in a continuously monitored
sequential clinical trial.
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8
Empirical Process Methods

Recall from section 2.2.2 the concepts of bracketing and uniform entropy
along with the corresponding Glivenko-Cantelli and Donsker theorems. We
now briefly review the set-up. Given a probability space (Ω,A, P ), the data
of interest consist of n independent copiesX1, . . . , Xn of a map X : Ω �→ X ,
where X is the sample space. We are interested in studying the limiting
behavior of empirical processes indexed by classes F of functions f : X �→ R

which are measurable in the sense that each composite map f(X) : Ω �→
X �→ R is A-measurable. With Pn denoting the empirical measure based
on the data X1, . . . , Xn, the empirical process of interest is Pnf viewed as
a stochastic process indexed by f ∈ F .

A class F is P -Glivenko-Cantelli if ‖Pn − P‖F as∗→ 0, where for any
u ∈ �∞(T ), ‖u‖T ≡ supt∈T |u(t)|. We say F is weak P -Glivenko-Cantelli, if
the outer almost sure convergence is replaced by convergence in probability.
Sometimes, for clarification, we will call a P -Glivenko-Cantelli class a strong
P -Glivenko-Cantelli class to remind ourselves that the convergence is outer
almost sure. A class F is P -Donsker if Gn � G weakly in �∞(F), where G

is a tight Brownian bridge. Of course, the P prefix can be dropped if the
context is clear.

As mentioned in section 4.2.1, these ideas also apply directly to i.i.d.
samples of stochastic processes. In this setting, X has the form {X(t), t ∈
T }, where X(t) is measurable for each t ∈ T , and X is typically �∞(T ).
We say that X is P -Glivenko-Cantelli if supt∈T |(Pn − P )X(t)| as∗→ 0 and
that X is P -Donsker if GnX converges weakly to a tight Gaussian process.
This is exactly equivalent to considering whether the class FT ≡ {ft, t ∈
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T }, where ft(x) ≡ x(t) for all x ∈ X and t ∈ T , is Glivenko-Cantelli or
Donsker. The limiting Brownian bridge G for the class FT has covariance
P [(Gfs)(Gft)] = P [(X(s)−PX(s))(X(t)−PX(t))]. This duality between
the function class and stochastic process viewpoint will prove useful from
time to time, and which approach we take will depend on the setting.

The main goal of this chapter is to present the empirical process tech-
niques needed to prove the Glivenko-Cantelli and Donsker theorems of
section 2.2.2. The approach we take is guided by chapters 2.2–2.5 of VW,
although we leave out many technical details. The most difficult step in
these proofs is going from point-wise convergence to uniform convergence.
Maximal inequalities are very useful tools for accomplishing this step. For
uniform entropy results, an additional tool, symmetrization, is also needed.
To use symmetrization, several measurability conditions are required on
the class of function F beyond the usual requirement that each f ∈ F be
measurable. In the sections presenting the Glivenko-Cantelli and Donsker
theorem proofs, results for bracketing entropy are presented before the uni-
form entropy results.

8.1 Maximal Inequalities

We first present several results about Orlicz norms which are useful for
controlling the size of the maximum of a finite collection of random vari-
ables. Several maximal inequalities for stochastic processes will be given
next. These inequalities include a general maximal inequality for separable
stochastic processes and a maximal inequality for sub-Gaussian processes.
The results will utilize Orlicz norms combined with a method known as
chaining. The results of this section will play a key role in the proofs of the
Donsker theorems developed later on in this chapter.

8.1.1 Orlicz Norms and Maxima

A very useful class of norms for random variables used in maximal inequal-
ities are the Orlicz norms. For a nondecreasing, nonzero convex function
ψ : [0,∞] �→ [0,∞], with ψ(0) = 0, the Orlicz norm ‖X‖ψ of a real random
variable X is defined as

‖X‖ψ ≡ inf
{
c > 0 : Eψ

(
|X |
c

)
≤ 1

}
,

where the norm takes the value ∞ if no finite c exists for which Eψ(|X |/c) ≤
1. Exercise 8.5.1 below verifies that ‖ · ‖ψ is indeed a norm on the space
of random variables with ‖X‖ψ < ∞. The Orlicz norm ‖ · ‖ψ is also called
the ψ-norm, in order to specify the choice of ψ. When ψ is of the form
x �→ xp, where p ≥ 1, the corresponding Orlicz norm is just the Lp-norm
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‖X‖p ≡ (E|X |p)1/p. For maximal inequalities, Orlicz norms defined with
ψp(x) ≡ ex

p−1, for p ≥ 1, are of greater interest because of their sensativity
to behavior in the tails. Clearly, since xp ≤ ψp(x), we have ‖X‖p ≤ ‖X‖ψp .
Also, by the series representation for exponentiation, ‖X‖p ≤ p!‖X‖ψ1 for
all p ≥ 1. The following result shows how Orlicz norms based on ψp relate
fairly precisely to the tail probabilities:

Lemma 8.1 For a real random variable X and any p ∈ [1,∞), the fol-
lowing are equivalent:

(i) ‖X‖ψp <∞.

(ii) There exist constants 0 < C,K <∞ such that

P(|X | > x) ≤ Ke−Cx
p

, for all x > 0.(8.1)

Moreover, if either condition holds, then K = 2 and C = ‖X‖−pψp
satis-

fies (8.1), and, for any C,K ∈ (0,∞) satisfying (8.1), ‖X‖ψp ≤ ((1 +
K)/C)1/p.

Proof. Assume (i). Then P(|X | > x) equals

P
{
ψp(|X |/‖X‖ψp) ≥ ψp(x/‖X‖ψp)

}
≤ 1 ∧

(
1

ψp(x/‖X‖ψp)

)
,(8.2)

by Markov’s inequality. By exercise 8.5.2 below, 1 ∧ (eu − 1)−1 ≤ 2e−u for
all u > 0. Thus the right-hand-side of (8.2) is bounded above by (8.1) with
K = 2 and C = ‖X‖−pψp

. Hence (ii) and the first half of the last sentence
of the lemma follow. Now assume (ii). For any c ∈ (0, C), Fubini’s theorem
gives us

E
(
ec|X|p − 1

)
= E

∫ |X|p

0

cecsds

=
∫ ∞

0

P(|X | > s1/p)cecsds

≤
∫ ∞

0

Ke−Cscecsds

= Kc/(C − c),

where the inequality follows from the assumption. Now Kc/(C − c) ≤
1 whenever c ≤ C/(1 + K) or, in otherwords, whenever c−1/p ≥ ((1 +
K)/C)1/p. This implies (i) and the rest of the lemma.�

An important use for Orlicz norms is to control the behavior of maxima.
This control is somewhat of an extension of the following simple result for
Lp-norms: For any random variables X1, . . . , Xm, ‖max1≤i≤mXi‖p
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≤
(

E max
1≤i≤m

|Xi|p
)1/p

≤
(

E
m∑
i=1

|Xi|p
)1/p

≤ m1/p max
1≤i≤m

‖Xi‖p.

The following lemma shows that a similar result holds for certain Orlicz
norms but with the m1/p replaced with a constant times ψ−1(m):

Lemma 8.2 Let ψ : [0,∞) �→ [0,∞) be convex, nondecreasing and nonzero,
with ψ(0) = 0 and lim supx,y→∞ ψ(x)ψ(y)/ψ(cxy) < ∞ for some constant
c <∞. Then, for any random variables X1, . . . , Xm,∥∥∥∥ max

1≤i≤m
Xi

∥∥∥∥
ψ

≤ Kψ−1(m) max
1≤i≤m

‖Xi‖ψ,

where the constant K depends only on ψ.

Proof. We first make the stronger assumption that ψ(1) ≤ 1/2 and that
ψ(x)ψ(y) ≤ ψ(cxy) for all x, y ≥ 1. Under this stronger assumption, we
also have ψ(x/y) ≤ ψ(cx)/ψ(y) for all x ≥ y ≥ 1. Hence, for any y ≥ 1 and
k > 0,

max
1≤i≤m

ψ

(
|Xi|
ky

)
≤ max

i

[
ψ(c|Xi|/k)

ψ(y)
1
{
|Xi|
ky

≥ 1
}

+ψ
(
|Xi|
ky

)
1
{
|Xi|
ky

< 1
}]

≤
m∑
i=1

[
ψ(c|Xi|/k)

ψ(y)

]
+ ψ(1).

In the summation, set k = cmaxi ‖Xi‖ψ and take expectations of both
sides to obtain

Eψ
(

maxi |Xi|
ky

)
≤ m

ψ(y)
+

1
2
.

With y = ψ−1(2m), the right-hand-side is ≤ 1. Thus ‖maxi |Xi|‖ψ ≤
cψ−1(2m)maxi ‖Xi‖ψ. Since ψ is convex and ψ(0) = 0, x �→ ψ−1(x) is
concave and one-to-one for x > 0. Thus ψ−1(2m) ≤ 2ψ−1(m), and the
result follows with K = 2c for the special ψ functions specified at the
beginning of the proof.

By exercise 8.5.3 below, we have for any ψ satisfying the conditions of
the lemma, that there exists constants 0 < σ ≤ 1 and τ > 0 such that
φ(x) ≡ σψ(τx) satisfies φ(1) ≤ 1/2 and φ(x)φ(y) ≤ φ(cxy) for all x, y ≥ 1.
Furthermore, for this φ, φ−1(u) ≤ ψ−1(u)/(στ), for all u > 0, and, for any
random variable X , ‖X‖ψ ≤ ‖X‖φ/(στ) ≤ ‖X‖ψ/σ. Hence

στ
∥∥∥max

i
Xi

∥∥∥
ψ

≤
∥∥∥max

i
Xi

∥∥∥
φ

≤ 2cφ−1(m)max
i

‖Xi‖φ ≤ 2c
σ
ψ−1(m)max

i
‖Xi‖ψ,
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and the desired result follows with K = 2c/(σ2τ).�
An important consequence of lemma 8.2 is that maximums of random

variables with bounded ψ-norm grow at the rate ψ−1(m). Based on ex-
ercise 8.5.4, ψp satisfies the conditions of lemma 8.2 with c = 1, for any
p ∈ [1,∞). The implication in this situation is that the growth of maxima
is at most logarithmic, since ψ−1

p (m) = (log(m+ 1))1/p. These results will
prove quite useful in the next section.

We now present an inequality for collections X1, . . . , Xm of random vari-
ables which satisfy

P (|Xi| > x) ≤ 2e−
1
2

x2
b+ax , for all x > 0,(8.3)

for i = 1, . . . ,m and some a, b ≥ 0. This setting will arise later in the
development of a Donsker theorem based on bracketing entropy.

Lemma 8.3 Let X1, . . . , Xm be random variables that satisfy the tail
bound (8.3) for 1 ≤ i ≤ m and some a, b ≥ 0. Then∥∥∥∥ max

1≤i≤m
|Xi|

∥∥∥∥
ψ1

≤ K
{
a log(1 +m) +

√
b
√

log(1 +m)
}
,

where the constant K is universal, in the sense that it does not depend on
a, b, or on the random variables.

Proof. Assume for now that a, b > 0. The condition implies for all
x ≤ b/a the upper bound 2 exp(−x2/(4b)) for P (|Xi| > x), since in this
case b + ax ≤ 2b. For all x > b/a, the condition implies an upper bound
of 2 exp(−x/(4a)), since b/x + a ≤ 2a in this case. This implies that
P (|Xi|1{|Xi| ≤ b/a} > x) ≤ 2 exp(−x2/(4b)) and P (|Xi|1{|Xi| > b/a} >
x) ≤ 2 exp(−x/(4a)) for all x > 0. Hence, by lemma 8.1, the Orlicz norms
‖ |Xi|1{|Xi| ≤ b/a}‖ψ2 and ‖ |Xi|1{|Xi| > b/a}‖ψ1 are bounded by

√
12b

and 12a, respectively. The result now follows by lemma 8.2 combined with
the inequality

‖max
i

|Xi| ‖ψ1 ≤ ‖max
i

[|Xi|1{|Xi| ≤ b/a}] ‖ψ1+‖max
i

[|Xi|1{|Xi| > b/a}] ‖ψ2,

where the replacement of ψ1 with ψ2 in the last term follows since ψp norms
increase in p.

Suppose now that a > 0 but b = 0. Then the tail bound (8.3) holds for all
b > 0, and the the result of the lemma is thus true for all b > 0. The desired
result now follows by letting b ↓ 0. A similar argument will verify that the
result holds when a = 0 and b > 0. Finally, the result is trivially true when
a = b = 0 since, in this case, Xi = 0 almost surely for i = 1, . . . ,m.�

8.1.2 Maximal Inequalities for Processes

The goals of this section are to first establish a general maximal inequality
for separable stochastic processes and then specialize the result to sub-
Gaussian processes. A stochastic process {X(t), t ∈ T } is separable when
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there exists a countable subset T∗ ⊂ T such that supt∈T infs∈T∗ |X(t) −
X(s)| = 0 almost surely. For example, any cadlag process indexed by a
closed interval in R is separable because the rationals are a separable subset
of R. The need for separability of certain processes in the Glivenko-Cantelli
and Donsker theorems is hidden in other conditions of the involved theo-
rems, and direct verification of separability is seldom required in statistical
applications.

A stochastic process is sub-Gaussian when

P (|X(t) −X(s)| > x) ≤ 2e−
1
2x

2/d2(s,t), for all s, t ∈ T , x > 0,(8.4)

for a semimetric d on T . In this case, we say that X is sub-Gaussian with
respect to d. An important example of a separable sub-Gaussian stochas-
tic process, the Rademacher process, will be presented at the end of this
section. These processes will be utilized later in this chapter in the devel-
opment of a Donsker theorem based on uniform entropy. Another example
of a sub-Gaussian process is Brownian motion on [0, 1], which can easily be
shown to be sub-Gaussian with respect to d(s, t) = |s− t|1/2. Because the
sample paths are continuous, Brownian motion is also separable.

The conclusion of lemma 8.2 above is not immediately useful for max-
imizing X(t) over t ∈ T since a potentially infinite number of random
variables is involved. However, a method called chaining, which involves
linking up increasingly refined finite subsets of T and repeatedly applying
lemma 8.2, does make such maximization possible in some settings. The
technique depends on the metric entropy of the index set T based on the
semimetric d(s, t) = ‖X(s) −X(t)‖ψ.

For an arbitrary semimetric space (T, d), the covering number N(ε, T, d)
is the minimal number of closed d-balls of radius ε required to cover T . The
packing number D(ε, T, d) is the maximal number of points that can fit in
T while maintaining a distance greater than ε between all points. When
the choice of index set T is clear by context, the notation for covering and
packing numbers will be abbreviated as N(ε, d) and D(ε, d), respectively.
The associated entropy numbers are the respective logarithms of the cov-
ering and packing numbers. Taken together, these concepts define metric
entropy.

For a semimetric space (T, d) and each ε > 0,

N(ε, d) ≤ D(ε, d) ≤ N(ε/2, d).

To see this, note that there exists a minimal subset Tε ⊂ T such that the
cardinality of Tε = D(ε, d) and the minimum distance between distinct
points in Tε is > ε. If we now place closed ε-balls around each point in Tε,
we have a covering of T . If this were not true, there would exist a point
t ∈ T which has distance > ε from all the points in Tε, but this would mean
that D(ε, d) + 1 points can fit into T while still maintaining a separation
> ε between all points. But this contradicts the maximality ofD(ε, d). Thus
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N(ε, d) ≤ D(ε, d). Now note that no ball of radius ≤ ε/2 can cover more
than one point in Tε, and thus at least D(ε, d) closed ε/2-balls are needed
to cover Tε. Hence D(ε, d) ≤ N(ε/2, d).

This forgoing discussion reveals that covering and packing numbers are
essentially equivalent in behavior as ε ↓ 0. However, it turns out to be
slightly more convenient for our purposes to focus on packing numbers in
this section. Note that T is totally bounded if and only if D(ε, d) is finite
for each ε > 0. The success of the following maximal inequality depends on
how fast D(ε, d) increases as ε ↓ 0:

Theorem 8.4 (General maximal inequality) Let ψ satisfy the conditions
of lemma 8.2, and let {X(t), t ∈ T } be a separable stochastic process with
‖X(s) −X(t)‖ψ ≤ rd(s, t), for all s, t ∈ T , some semimetric d on T , and
a constant r <∞. Then for any η, δ > 0,∥∥∥∥∥ sup
s,t∈T :d(s,t)≤δ

|X(s) −X(t)|
∥∥∥∥∥
ψ

≤ K

[∫ η

0

ψ−1(D(ε, d))dε+ δψ−1(D2(η, d))
]
,

for a constant K < ∞ which depends only on ψ and r. Moreover,∥∥∥∥ sup
s,t∈T

|X(s) −X(t)|
∥∥∥∥
ψ

≤ 2K
∫ diam T

0

ψ−1(D(ε, d))dε,

where diamT ≡ sups,t∈T d(s, t) is the diameter of T .

Before we present the proof of this theorem, recall in the discussion
following the proof of lemma 8.2 that ψp-norms, for any p ∈ [1,∞), satisfy
the conditions of this lemma. The case p = 2, which applies to sub-Gaussian
processes, is of most interest to us and is explicitly evaluated in corollary 8.5
below. This corollary plays a key role in the proof of the Donsker theorem
for uniform entropy (see theorem 8.19 in section 8.4).

Proof of theorem 8.4. Note that if the first integral were infinite, the
inequalities would be trivially true. Hence we can, without loss of generality
assume that the packing numbers and associated integral are bounded.
Construct a sequence of finite nested sets T0 ⊂ T1 ⊂ · · · ⊂ T such that
for each Tj, d(s, t) > η2−j for every distinct s, t ∈ Tj , and that each Tj
is “maximal” in the sense that no additional points can be added to Tj
without violating the inequality. Note that by the definition of packing
numbers, the number of points in Tj is bounded above by D(η2−j , d).

Now we will do the chaining part of the proof. Begin by “linking” every
point tj+1 ∈ Tj+1 to one and only one tj ∈ Tj such that d(tj , tj+1) ≤
η2−j, for all points in Tj+1. Continue this process to link all points in Tj
with points in Tj−1, and so on, to obtain for every tj+1 (∈ Tj+1) a chain
tj+1, tj , tj−1, . . . , t0 that connects to a point in T0. For any integer k ≥ 0
and arbitrary points sk+1, tk+1 ∈ Tk+1, the difference in increments along
their respective chains connecting to s0, t0 can be bounded as follows:
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|{X(sk+1) −X(tk+1)} − {X(s0) −X(t0)}|

=

∣∣∣∣∣∣
k∑
j=0

{X(sj+1) −X(sj)} −
k∑
j=0

{X(tj+1) −X(tj)}

∣∣∣∣∣∣
≤ 2

k∑
j=0

max |X(u) −X(v)|,

where for fixed j the maximum is taken over all links (u, v) from Tj+1 to
Tj. Hence the jth maximum is taken over at most the cardinality of Tj+1

links, with each link having ‖X(u)−X(v)‖ψ bounded by rd(u, v) ≤ rη2−j .
By lemma 8.2, we have for a constant K0 <∞ depending only on ψ and r,∥∥∥∥ max

s,t∈Tk+1
|{X(s) −X(s0)} − {X(t) −X(t0)}|

∥∥∥∥
ψ

(8.5)

≤ K0

k∑
j=0

ψ−1(D(η2−j−1, d))η2−j

= 4K0

k∑
j=0

ψ−1(D(η2−k+j−1, d))η2−k+j−2

≤ 4ηK0

∫ 1

0

ψ−1(D(ηu, d))du

= 4K0

∫ η

0

ψ−1(D(ε, d))dε.

In this bound, s0 and t0 depend on s and t in that they are the endpoints
of the chains starting at s and t, respectively.

The maximum of the increments |X(sk+1)−X(tk+1)|, over all sk+1 and
tk+1 in Tk+1 with d(sk+1, tk+1) < δ, is bounded by the left-hand-side
of (8.5) plus the maximum of the discrepancies at the ends of the chains
|X(s0) − X(t0)| for those points in Tk+1 which are less than δ apart. For
every such pair of endpoints s0, t0 of chains starting at two points in Tk+1

within in distance δ of each other, choose one and only one pair sk+1, tk+1

in Tk+1, with d(sk+1, tk+1) < δ, whose chains end at s0, t0. By definition
of T0, this results in at most D2(η, d) pairs. Now,

|X(s0) −X(t0)| ≤ |{X(s0) −X(sk+1)} − {X(t0) −X(tk+1)}|(8.6)
+|X(sk+1) −X(tk+1)|.

Take the maximum of (8.6) over all pairs of endpoints s0, t0. The maximum
of the first term of the right-hand-side of (8.6) is bounded by the left-
hand-side of (8.5). The maximum of the second term of the right-hand-
side of (8.6) is the maximum of D2(η, d) terms with ψ-norm bounded by
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rδ. By lemma 8.2, this maximum is bounded by some constant C times
δψ−1(D2(η, d)). Combining this with (8.5), we obtain∥∥∥∥ max

s,t∈Tk+1:d(s,t)<δ
|X(s) −X(t)|

∥∥∥∥
ψ

≤ 8K0

∫ η

0

ψ−1(D(ε, d))dε + Cδψ−1(D2(η, d)).

By the fact that the right-hand-side does not depend on k, we can replace
Tk+1 with T∞ = ∪∞

j=0Tj by the monotone convergence theorem. If we
can verify that taking the supremum over T∞ is equivalent to taking the
supremum over T , then the first conclusion of the theorem follows with
K = (8K0) ∨ C.

Since X is separable, there exists a countable subset T∗ ⊂ T such that
supt∈T infs∈T∗ |X(t) −X(s)| = 0 almost surely. Let Ω∗ denote the subset
of the sample space of X for which this supremum is zero. Accordingly
P(Ω∗) = 1. Now, for any point t and sequence {tn} in T , it is easy to see that
d(t, tn) → 0 implies |X(t) − X(tn)| → 0 almost surely (see exercise 8.5.5
below). For each t ∈ T∗, let Ωt be the subset of the sample space of X
for which infs∈T∞ |X(s) − X(t)| = 0. Since T∞ is a dense subset of the
semimetric space (T, d), P(Ωt) = 1. Letting Ω̃ ≡ Ω∗ ∩ (∩t∈T∗Ωt), we now
have P(Ω̃) = 1. This, combined with the fact that

sup
t∈T

inf
s∈T∞

|X(t) −X(s)| ≤ sup
t∈T

inf
s∈T∗

|X(t) −X(s)|

+ sup
t∈T∗

inf
s∈T∞

|X(s) −X(t)|,

implies that supt∈T infs∈T∞ |X(t) −X(s)| = 0 almost surely. Thus taking
the supremum over T is equivalent to taking the supremum over T∞.

The second conclusion of the theorem follows from the previous result
by setting δ = η = diamT and noting that, in this case, D(η, d) = 1. Now
we have

δψ−1(D2(η, d)) = ηψ−1(D(η, d))

=
∫ η

0

ψ−1(D(η, d))dε

≤
∫ η

0

ψ−1(D(ε, d))dε,

and the second conclusion follows.�
As a consequence of exercise 8.5.5 below, the conclusions of theorem 8.4

show that X has d-continuous sample paths almost surely whenever the in-
tegral

∫ η
0
ψ−1(D(ε, d))dε is bounded for some η > 0. It is also easy to verify

that the maximum of the process of X is bounded, since ‖ supt∈T X(t)‖ψ ≤
‖X(t0)‖ψ + ‖ sups,t∈T |X(t) −X(s)| ‖ψ, for any choice of t0 ∈ T . Thus X
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is tight and takes its values in UC(T, d) almost surely. These results will
prove quite useful in later developments.

An important application of theorem 8.4 is to sub-Gaussian processes:

Corollary 8.5 Let {X(t), t ∈ T } be a separable sub-Gaussian process
with respect to d. Then for all δ > 0,

E

(
sup

s,t∈T :d(s,t)≤δ
|X(s) −X(t)|

)
≤ K

∫ δ

0

√
logD(ε, d)dε,

where K is a universal constant. Also, for any t0 ∈ T ,

E
(

sup
t∈T

|X(t)|
)

≤ E|X(t0)| +K

∫ diam T

0

√
logD(ε, d)dε.

Proof. Apply theorem 8.4 with ψ = ψ2 and η = δ. Because ψ−1
2 (m) =√

log(1 +m), ψ−1
2 (D2(δ, d)) ≤

√
2ψ−1(D(δ, d)). Hence the second term of

the general maximal inequality can be replaced by

√
2δψ−1(D(δ, d)) ≤

√
2
∫ δ

0

ψ−1(D(ε, d))dε,

and we obtain∥∥∥∥∥ sup
d(s,t)≤δ

|X(s) −X(t)|
∥∥∥∥∥
ψ2

≤ K

∫ δ

0

√
log(1 +D(ε, d))dε,

for an enlarged universal constant K. Note that D(ε, d) ≥ 2 for all ε strictly
less than diamT . Since (1 + m) ≤ m2 for all m ≥ 2, the 1 inside of the
logarithm can be removed at the cost of increasing K again, whenever
δ < diamT . Thus it is also true for all δ ≤ diamT . We are done with the
first conclusion since d(s, t) ≤ diamT for all s, t ∈ T . Since the second
conclusion is an easy consequence of the first, the proof is complete.�

The next corollary shows how to use the previous corollary to establish
bounds on the modulus of continuity of certain sub-Gaussian processes.
Here the modulus of continuity for a stochastic process {X(t) : t ∈ T },
where (T, d) is a semimetric space, is defined as

mX(δ) ≡ sup
s,t∈T :d(s,t)≤δ

|X(s) −X(t)|.

Corollary 8.6 Assume the conditions of corollary 8.5. Also assume
there exists a differentiable function δ �→ h(δ), with derivative ḣ(δ), satisfy-
ing h(δ) ≥

√
logD(δ, d) for all δ > 0 small enough and limδ↓0[δḣ(δ)/h(δ)] =

0. Then

lim
M→∞

lim sup
δ↓0

P
(
mX(δ)
δh(δ)

> M

)
= 0.
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Proof. Using L’Hospital’s rule and the assumptions of the theorem, we
obtain that ∫ δ

0

√
logD(ε, d)dε
δh(δ)

≤
∫ δ
0 h(ε)dε
δh(δ)

→ 1,

as δ ↓ 0. The result now follows from the first assertion of corollary 8.5.�
In the situation where D(ε, d) ≤ K(1/ε)r, for constants 0 < r,K <

∞ and all ε > 0 small enough, the above corollary works for h(δ) =
c
√

log(1/δ), for some constant 0 < c < ∞. This follows from simple cal-
culations. This situation applies, for example, when X is either a standard
Brownian motion or a Brownian bridge on T = [0, 1]. Both of these pro-
cesses are sub-Gaussian with respect to the metric d(s, t) = |s− t|1/2, and
if we let η = δ2, we obtain from the corollary that

lim
M→∞

lim sup
η↓0

P

(
mX(η)√
η log(1/η)

> M

)
= 0.

The rate in the denominator is quite precise in this instance since the Lévy
modulus theorem (see theorem 9.25 of Karatzas and Shreve, 1991) yields

P

(
lim sup
η↓0

mX(η)√
η log(1/η)

=
√

2

)
= 1.

The above discussion is also applicable to the modulus of continuity of
certain empirical processes, and we will examine this briefly in chapter 11.

We now consider an important example of a sub-Gaussian process useful
for studying empirical processes. This is the Rademacher process

X(a) =
n∑
i=1

εiai, a ∈ Rn,

where ε1, . . . , εn are i.i.d. Rademacher random variables satisfying P (ε =
−1) = P (ε = 1) = 1/2. We will verify shortly that this is indeed a sub-
Gaussian process with respect to the Euclidean distance d(a, b) = ‖a− b‖
(which obviously makes T = Rn into a metric space). This process will
emerge in our development of Donsker results based on uniform entropy.
The following lemma, also known as Hoeffding’s inequality, verifies that
Rademacher processes are sub-Gaussian:

Lemma 8.7 (Hoeffding’s inequality) Let a = (a1, . . . , an) ∈ Rn and
ε1, . . . , εn be independent Rademacher random variables. Then

P

(∣∣∣∣∣
n∑
i=1

εiai

∣∣∣∣∣ > x

)
≤ 2e−

1
2x

2/‖a‖2
,

for the Euclidean norm ‖ · ‖. Hence ‖
∑
εa‖ψ2 ≤

√
6‖a‖.
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Proof. For any λ and Rademacher variable ε, one has Eeλε = (eλ +
e−λ)/2 =

∑∞
i=0 λ

2i/(2i)! ≤ eλ
2/2, where the last inequality follows from the

relation (2i)! ≥ 2ii! for all nonnegative integers. Hence Markov’s inequality
gives for any λ > 0

P

(
n∑
i=1

εiai > x

)
≤ e−λxEexp

{
λ

n∑
i=1

εiai

}
≤ exp{(λ2/2)‖a‖2 − λx}.

Setting λ = x/‖a‖2 yields the desired upper bound. Since multiplying
ε1, . . . , εn by −1 does not change the joint distribution, we obtain

P

(
−

n∑
i=1

εiai > x

)
= P

(
n∑
i=1

εiai > x

)
,

and the desired upper bound for the absolute value of the sum follows. The
bound on the ψ2-norm follows directly from lemma 8.1.�

8.2 The Symmetrization Inequality and
Measurability

We now discuss a powerful technique for empirical processes called sym-
metrization. We begin by defining the “symmetrized” empirical process
f �→ P◦

nf ≡ n−1
∑n

i=1 εif(Xi), where ε1, . . . , εn are independet Rademacher
random variables which are also independent of X1, . . . , Xn. The basic idea
behind symmetrization is to replace supremums of the form ‖(Pn−P )f‖F
with supremums of the form ‖P◦

nf‖F . This replacement is very useful in
Glivenko-Cantelli and Donsker theorems based on uniform entropy, and a
proof of the validity of this replacement is the primary goal of this sec-
tion. Note that the processes (Pn − P )f and P◦

nf both have mean zero. A
deeper connection between these two processes is that a Donsker theorem
or Glivenko-Cantelli theorem holds for one of these processes if and only if
it holds for the other.

One potentially troublesome difficulty is that the supremums involved
may not be measurable, and we need to be clear about the underlying
product probability spaces so that the outer expectations are well defined.
In this setting, we will assume that X1, . . . , Xn are the coordinate projec-
tions of the product space (Xn,An, Pn), where (X ,A, P ) is the product
space for a single observation and An is shorthand for the product σ-field
generated from sets of the form A1 × · · · × An, where A1, . . . , An ∈ A.
In many of the settings of interest to us, the σ-field An will be strictly
smaller than the Borel σ-field generated from the product topology, as
discussed in section 6.1, but the results we obtain using An will be suf-
ficient for our purposes. In some settings, an additional source of ran-
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domness, independent of X1, . . . , Xn, will be involved which we will de-
note Z. If we let the probability space for Z be (Z,D, Q), we will as-
sume that the resulting underlying joint probability space has the form
(Xn,An, Pn) × (Z,D, Q) = (Xn × Z,An × D, Pn × Q), where we define
the product σ-field An×D in the same manner as before. Now X1, . . . , Xn

are equal to the coordinate projections on the first n coordinates, while Z
is equal to the coordinate projection on the (n+ 1)st coordinate.

We now present the symmetrization theorem. After its proof, we will
discuss a few additional important measurability issues.

Theorem 8.8 (Symmetrization) For every nondecreasing, convex φ :
R �→ R and class of measurable functions F ,

E∗φ

(
1
2
‖Pn − P‖F

)
≤ E∗φ (‖P◦

n‖F) ≤ E∗φ (2‖Pn − P‖F + |Rn| · ‖P‖F) ,

where Rn ≡ P◦
n1 = n−1

∑n
i=1 εi and the outer expectations are computed

based on the product σ-field described in the previous paragraph.

Before giving the proof of this theorem, we make a few observations.
Firstly, the constants 1/2, 1 and 2 appearing in front of the three respective
supremum norms in the chain of inequalities can all be replaced by c/2,
c and 2c, respectively, for any positive constant c. This follows trivially
since, for any positive c, x �→ φ(cx) is nondecreasing and convex whenever
x �→ φ(x) is nondecreasing and convex. Secondly, we note that most of
our applications of this theorem will be for the setting φ(x) = x. Thirdly,
we note that the first inequality in the chain of inequalities will be of
greatest use to us. However, the second inequality in the chain can be used
to establish the following Glivenko-Cantelli result, the complete proof of
which will be given later on, at the tail end of section 8.3:

Proposition 8.9 For any class of measurable functions F , the following
are equivalent:

(i) F is P -Glivenko-Cantelli and ‖P‖F <∞.

(ii) ‖P◦
n‖F

as∗→ 0.

As mentioned previously, there is also a similar equivalence involving Donsker
results, but we will postpone further discussion of this until we encounter
multiplier central limit theorems in chapter 10.

Proof of theorem 8.8. Let Y1, . . . , Yn be independent copies of X1, . . . ,
Xn. Formally, Y1, . . . , Yn are the coordinate projections on the last n co-
ordinates in the product space (Xn,An, Pn) × (Z,D, Q) × (Xn,An, Pn).
Here, (Z,D, Q) is the probability space for the n-vector of independent
Rademacher random variables ε1, . . . , εn used in P◦

n. Since, by lemma 6.13,
coordinate projections are perfect maps, the outer expectations in the the-
orem are unaffected by the enlarged product probability space. For fixed
X1, . . . , Xn, ‖Pn − P‖F =
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sup
f∈F

1
n

∣∣∣∣∣
n∑
i=1

[f(Xi) − Ef(Yi)]

∣∣∣∣∣ ≤ E∗
Y sup
f∈F

1
n

∣∣∣∣∣
n∑
i=1

[f(Xi) − f(Yi)]

∣∣∣∣∣ ,
where E∗

Y is the outer expectation with respect to Y1, . . . , Yn computed
by treating the X1, . . . , Xn as constants and using the probability space
(Xn,An, Pn). Applying Jensen’s inequality, we obtain

φ (‖Pn − P‖F) ≤ EY φ

⎛
⎝
∥∥∥∥∥ 1
n

n∑
i=1

[f(Xi) − f(Yi)]

∥∥∥∥∥
∗Y

F

⎞
⎠ ,

where ∗Y denotes the minimal measurable majorant of the supremum with
respect to Y1, . . . , Yn and holding X1, . . . , Xn fixed. Because φ is nonde-
creasing and continuous, the ∗Y inside of the φ in the forgoing expression
can be removed after replacing EY with E∗

Y , as a consequence of lemma 6.8.
Now take the expectation of both sides with respect toX1, . . . , Xn to obtain

E∗φ (‖Pn − P‖F) ≤ E∗
XE∗

Y φ

(
1
n

∥∥∥∥∥
n∑
i=1

[f(Xi) − f(Yi)]

∥∥∥∥∥
F

)
.

The repeated outer expectation can now be bounded above by the joint
outer expectation E∗ by lemma 6.14 (Fubini’s theorem for outer expecta-
tions).

By the product space structure of the underlying probability space, the
outer expectation of any function g(X1, . . . , Xn, Y1, . . . , Yn) remains un-
changed under permutations of its 2n arguments. Since −[f(Xi)−f(Yi)] =
[f(Yi) − f(Xi)], we have for any n-vector (e1, . . . , en) ∈ {−1, 1}n, that∥∥n−1

∑n
i=1 ei[f(Xi) − f(Yi)]

∥∥
F is just a permutation of

h(X1, . . . , Xn, Y1, . . . , Yn) ≡
∥∥∥∥∥n−1

n∑
i=1

[f(Xi) − f(Yi)]

∥∥∥∥∥
F

.

Hence

E∗φ (‖Pn − P‖F) ≤ EεE∗
X,Y φ

∥∥∥∥∥ 1
n

n∑
i=1

ei[f(Xi) − f(Yi)]

∥∥∥∥∥
F

.

Now the triangle inequality combined with the convexity of φ yields

E∗φ (‖Pn − P‖F) ≤ EεE∗
X,Y φ (2‖P◦

n‖F) .

By the perfectness of coordinate projections, E∗
X,Y can be replaced by

E∗
XE∗

Y . Now EεE∗
XE∗

Y is bounded above by the joint expectation E∗ by
reapplication of lemma 6.14. This proves the first inequality.

For the second inequality, let Y1, . . . , Yn be independent copies ofX1, . . . ,
Xn as before. Holding X1, . . . , Xn and ε1, . . . , εn fixed, we have ‖P◦

nf‖F =
‖P◦

n(f − Pf) + P◦
nPf‖F =
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‖P◦
n(f − Ef(Y )) +RnPf‖F ≤ E∗

Y

∥∥∥∥∥ 1
n

n∑
i=1

εi[f(Xi) − f(Yi)]

∥∥∥∥∥ +Rn‖P‖F .

Applying Jensen’s inequality, we now have

φ (‖Pn − P‖F) ≤ E∗
Y φ

(∥∥∥∥∥ 1
n

n∑
i=1

εi[f(Xi) − f(Yi)]

∥∥∥∥∥
F

+Rn‖P‖F

)
.

Using the permutation argument we used for the first part of the proof, we
can replace the ε1, . . . , εn in the summation with all 1’s, and take expecta-
tions with respect to X1, . . . , Xn and ε1, . . . , εn (which are still present in
Rn). This gives us

E∗φ (‖Pn − P‖F) ≤ EεE∗
XE∗

Y φ

(∥∥∥∥∥ 1
n

n∑
i=1

[f(Xi) − f(Yi)]

∥∥∥∥∥
F

+Rn‖P‖F

)
.

After adding and subtracting Pf in the summation and applying the con-
vexity of φ, we can bound the right-hand-side by

1
2
EεE∗

XE∗
Y φ

(
2

∥∥∥∥∥ 1
n

n∑
i=1

[f(Xi) − Pf ]

∥∥∥∥∥
F

+Rn‖P‖F

)

+
1
2
EεE∗

XE∗
Y φ

(
2

∥∥∥∥∥ 1
n

n∑
i=1

[f(Yi) − Pf ]

∥∥∥∥∥
F

+Rn‖P‖F

)
.

By reapplication of the permutation argument and lemma 6.14, we obtain
the desired upper bound.�

The above symmetrization results will be most useful when the supre-
mum ‖P◦

n‖F is measurable and Fubini’s theorem permits taking the expec-
tation first with respect to ε1, . . . , εn given X1, . . . , Xn and secondly with
respect to X1, . . . , Xn. Without this measurability, only the weaker version
of Fubini’s theorem for outer expectations applies (theorem 6.14), and thus
the desired reordering of expectations may not be valid. To overcome this
difficulty, we will assume that the class F is a P -measurable class. A class
F of measurable functions f : X �→ R, on the probability space (X ,A, P ),
is P -measurable if (X1, . . . , Xn) �→ ‖

∑n
i=1 eif(Xi)‖F is measurable on the

completion of (Xn,An, Pn) for every constant vector (e1, . . . , en) ∈ Rn.
It is possible to weaken this condition, but at least some measurability
assumptions will usually be needed. In the Donsker theorem for uniform
entropy, it will be necessary to assume that several related classes of F
are also P -measurable. These additional classes are Fδ ≡ {f − g : f, g ∈
F , ‖f − g‖P,2 < δ}, for all δ > 0, and F2

∞ ≡ {(f − g)2 : f, g ∈ F} (recall
that ‖f‖P,2 ≡ (Pf2)1/2).

Another assumption on F which is stronger than P -measurability and
often easier to verify in statistical applications is pointwise measurability.



138 8. Empirical Process Methods

A class F of measurable functions is pointwise measurable if there exists a
countable subset G ⊂ F such that for every f ∈ F , there exists a sequence
{gm} ∈ G with gm(x) → f(x) for every x ∈ X . Since, by exercise 8.5.6
below, ‖

∑
eif(Xi)‖F = ‖

∑
eif(Xi)‖G for all (e1, . . . , en) ∈ Rn, pointwise

measurable classes are P -measurable for all P . Consider, for example, the
class F = {1{x ≤ t} : t ∈ R} where the sample space X = R. Let G =
{1{x ≤ t} : t ∈ Q}, and fix the function x �→ f(x) = 1{x ≤ t0} for some
t0 ∈ R. Note that G is countable. Let {tm} be a sequence of rationals with
tm ≥ t0, for all m ≥ 1, and with tm ↓ t0. Then x �→ gm(x) = 1{x ≤ tm}
satisfies gm ∈ G, for all m ≥ 1, and gm(x) → f(x) for all x ∈ R. Since
t0 was arbitrary, we have just proven that F is pointwise measurable (and
hence also P -measurable for all P ). Hereafter, we will use the abbreviation
PM as a shorthand for denoting pointwise measurable classes.

Another nice feature of PM classes is that they have a number of useful
preservation features. An obvious example is that when F1 and F2 are PM
classes, then so is F1 ∪ F2. The following lemma provides a number of
additional preservation results:

Lemma 8.10 Let F1, . . . ,Fk be PM classes of real functions on X , and
let φ : Rk �→ R be continuous. Then the class φ◦ (F1, . . . ,Fk) is PM, where
φ◦(F1, . . . ,Fk) denotes the class {φ(f1, . . . , fk) : (f1, . . . , fk) ∈ F1 × · · · × Fk}.

Proof. Denote H ≡ φ◦(F1, . . . ,Fk). Fix an arbitrary h = φ(f1, . . . , fk) ∈
H. By assumption, each Fj has a countable subset Gj ⊂ Fj such that
there exists a subsequence {gjm} ∈ Gj with gjm(x) → fj(x), as m → ∞,
for all x ∈ X and j = 1, . . . , k. By continuity of φ, we thus have that
φ(g1

m(x), . . . , gkm(x)) → φ(f1(x), . . . , fk(x)) = h(x), as m → ∞, for all
x ∈ X . Since the choice of h was arbitrary, we therefore have that the set
φ(G1, . . . ,Gk) is a countable subset of H making H pointwise measurable.�

Lemma 8.10 automatically yields many other useful PM preservation
results, including the following for PM classes F1 and F2:

• F1 ∧ F2 (all possible pairwise minimums) is PM.

• F1 ∨ F2 (all possible pairwise maximums) is PM.

• F1 + F2 is PM.

• F1 · F2 ≡ {f1f2 : f1 ∈ F1, f2 ∈ F2} is PM.

We will use these properties of PM classes to establish Donsker properties
for some specific statistical examples later on in the case studies presented
in chapter 15. The following proposition shows an additional property of
PM classes that potentially simplifies the measurability requirements of the
Donsker theorem for uniform entropy, theorem 8.19, given in section 8.4
below:
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Proposition 8.11 Let F be a class of measurable functions f : X �→ R

on the probability space (X ,A, P ). Provided F is PM with envelope F such
that P ∗F 2 <∞, then F , Fδ and F2

∞ are PM for all δ > 0.

Proof. The fact that both F∞ and F2
∞ are PM follows easily from

lemma 8.10. Assume, without loss of generality, that the envelope F is
measurable (if not, simply replace F with F ∗). Next, let H ⊂ F∞ be
a countable subset for which there exists for each g ∈ F∞ a sequence
{hm} ∈ H such that hm(x) → g(x) for all x ∈ X . Fix δ > 0 and h ∈ Fδ.
Then there exists an ε > 0 such that Ph2 = δ2 − ε. Let {gm} ∈ H be a
sequence for which gm(x) → h(x) for all x ∈ X , and assume that Pg2

m ≥ δ2

infinitely often. Then there exists another sequence {g̃m} ∈ H such that
P g̃2

m ≥ δ2 for all m ≥ 1 and also g̃m(x) → h(x) for all x ∈ X . Since
|g̃m| ≤ F , for all m ≥ 1, we have by the dominated convergence theorem
that δ2 ≤ lim infm→∞ P g̃2

m = Ph2 = δ2 − ε, which is impossible. Hence,
returning to the original sequence {gm}, ‖gm‖P,2 cannot be ≥ δ infinitely
often. Thus there exists a sequence {ǧm} ∈ Hδ ≡ {g ∈ H : ‖g‖P,2 < δ} such
that ǧm(x) → h(x) for all x ∈ X . Thus Fδ is PM since h was arbitrary
and Hδ does not depend on h. Since δ was also arbitrary, the proof is
complete.�

We next consider establishing P -measurability for the class{
1{Y − βTZ ≤ t} : β ∈ Rk, t ∈ R

}
,

where X ≡ (Y, Z) ∈ X ≡ R × Rk has distribution P , for arbitrary P . This
class was considered in the linear regression example of section 4.1. The
desired measurability result is stated in the following lemma:

Lemma 8.12 Let F ≡
{
1{Y − βTZ ≤ t} : β ∈ Rk, t ∈ R

}
. Then the classes

F , Fδ ≡ {f − g : f, g ∈ F , ‖f − g‖P,2 < δ}, and F2
∞ ≡

{
(f − g)2 : f, g ∈ F

}
are all P -measurable for any probability measure on X .

Proof. We first assume that ‖Z‖ ≤ M for some fixed M < ∞. Hence
the sample space is XM ≡ {(y, z) : (y, z) ∈ X , ‖z‖ ≤ M}. Consider the
countable set G =

{
1{Y − βTZ ≤ t} : β ∈ Qk, t ∈ Q

}
, where Q are the

rationals. Fix β ∈ Rk and t ∈ R, and construct a sequence {(βm, tm)} as
follows: for each m ≥ 1, pick βm ∈ Qk so that ‖βm − β‖ < 1/(2mM)
and pick tm ∈ Q so that tm ∈ (t + 1/(2m), t + 1/m]. Now, for any (y, z)
with y ∈ R and z ∈ Rk with ‖z‖ ≤ M , we have that 1{y − βTmz ≤ tm} =
1{y − βT z ≤ tm + (βm − β)T z}. Since |(βm − β)T z| < 1/(2m) by design,
we have that rm ≡ tm + (βm − β)T z − t > 0 for all m and that rm → 0 as
m → ∞. Since the function t �→ {u ≤ t} is right-continuous and since (y, z)
was arbitrary, we have just proven that 1{y− βTmz ≤ tm} → {y− βT z ≤ t}
for all (y, z) ∈ XM . Thus F is pointwise measurable with respect to the
countable subset G.

We can also verify that Fδ and F2
∞ are likewise PM classes, under the

constraint that the random variable Z satisfies ‖Z‖ ≤ M . To see this for
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Fδ, let f1, f2 ∈ F satisfy ‖f1 − f2‖P,2 < δ and let {gm,1}, {gm,2} ∈ G be
such that gm,1 → f1 and gm,2 → f2 pointwise in XM . Then, by dominated
convergence, ‖gm,1 − gm,2‖P,2 → ‖f1 − f2‖, and thus ‖gm,1 − gm,2‖P,2 < δ
for all m large enough. Hence

gm,1 − gm,2 ∈ Gδ ≡ {f − g : f, g ∈ G, ‖f − g‖P,2 < δ}

for all m large enough, and thus Gδ is a separable subset of Fδ making
Fδ into a PM class. The proof that F2

∞ is also PM follows directly from
lemma 8.10.

Now let JM (x1, . . . , xn) = 1{max1≤i≤n ‖zi‖ ≤ M}, where xi = (yi, zi),
1 ≤ i ≤ n. Since M was arbitrary, the previous two paragraphs have
established that

(x1, . . . , xn) �→
∥∥∥∥∥
n∑
i=1

eif(xi)

∥∥∥∥∥
H

JM (x1, . . . , xn)(8.7)

is measurable for every n-tuple (e1, . . . , en) ∈ Rn, every M < ∞, and
with H being replaced by F , Fδ or F2

∞. Now, for any (x1, . . . , xn) ∈ Xn,
JM (x1, . . . , xn) = 1 for all M large enough. Thus the map (8.7) is also
measurable after replacing JM with its pointwise limit 1 = limM→∞ JM .
Hence F , Fδ and F2

∞ are all P -measurable classes for any measure P on
X .�

Another example of a P -measurable class occurs when F is a Suslin
topological space (for an arbitrary topology O), and the map (x, f) �→
f(x) is jointly measurable on X × F for the product σ-field of A and
the Borel σ-field generated from O. Further insights and results on this
measurable Suslin condition can be found in example 2.3.5 and chapter 1.7
of VW. While this approach to establishing measurability can be useful
in some settings, a genuine need for it does not often occur in statistical
applications, and we will not pursue it further here.

8.3 Glivenko-Cantelli Results

We now present several Glivenko-Cantelli (G-C) results. First, we discuss
an interesting necessary condition for a class F to be P -G-C. Next, we
present the proofs of G-C theorems for bracketing (theorem 2.2) and uni-
form (theorem 2.4) entropy. Part of the proof in the uniform entropy case
will include the presentation of a new G-C theorem, theorem 8.15 below.
Finally, we give the proof of proposition 8.9 which was promised in the
previous section.

The following lemma shows that the existence of an integrable envelope
of the centered functions of a class F is a necessary condition for F to be
P -G-C:
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Lemma 8.13 If the class of functions F is strong P -G-C, then P‖f −
Pf‖∗F < ∞. If in addition ‖P‖F < ∞, then also P‖f‖∗F < ∞.

Proof. Since f(Xn)−Pf = n(Pn −P )f − (n− 1)(Pn−1 −P )f , we have
n−1‖f(Xn)−Pf‖F ≤ ‖Pn−P‖F +(1−n−1)‖Pn−1−P‖F . Since F is strong
P -G-C, we now have that P (‖f(Xn)−Pf‖∗F ≥ n infinitely often) = 0. The
Borel-Cantelli lemma now yields that

∑∞
n=1 P (‖f(Xn)−Pf‖∗F ≥ n) < ∞.

Since the Xn are i.i.d., the f(Xn) in the summands can be replaced with
f(X1) for all n ≥ 1. Now we have

P ∗‖f − Pf‖F ≤
∫ ∞

0

P (‖f(X1) − Pf‖∗F > x) dx

≤ 1 +
∞∑
n=1

P (‖f(X1) − Pf‖∗F ≥ n)

< ∞.�

Proof of theorem 2.2. Fix ε > 0. Since the L1-bracketing entropy is
bounded, it is possible to choose finitely many ε-brackets [li, ui] so that their
union contains F and P (ui−li) < ε for every i. Now, for every f ∈ F , there
is a bracket [li, ui] containing f with (Pn−P )f ≤ (Pn−P )ui+P (ui−f) ≤
(Pn − P )ui + ε. Hence

sup
f∈F

(Pn − P )f ≤ max
i

(Pn − P )ui + ε

as∗→ ε.

Similar arguments can be used to verify that

inf
f∈F

(Pn − P )f ≥ min
i

(Pn − P )li − ε

as∗→ −ε.

The desired result now follows since ε was arbitrary.�
To prove theorem 2.4, we first restate the theorem to clarify the meaning

of “appropriately measurable” in the original statement of the theorem,
and then prove a more general version (theorem 8.15 below):

Theorem 8.14 (Restated theorem 2.4) Let F be a P -measurable class
of measurable functions with envelope F and supQN(ε‖F‖Q,1,F , L1(Q)) <
∞, for every ε > 0, where the supremum is taken over all finite probability
measures Q with ‖F‖Q,1 > 0. If P ∗F <∞, the F is P -G-C.

Proof. The result is trivial if P ∗F = 0. Hence we will assume without
loss of generality that P ∗F > 0. Thus there exists an η > 0 such that,
with probability 1, PnF > η for all n large enough. Fix ε > 0. By assump-
tion, there is a K < ∞ such that 1{PnF > 0} logN(εPnF,F , L1(Pn)) ≤ K
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almost surely, since Pn is a finite probability measure. Hence, with proba-
bility 1, logN(εη,F , L1(Pn)) ≤ K for all n large enough. Since ε was arbi-
trary, we now have that logN(ε,F , L1(Pn)) = O∗

P (1) for all ε > 0. Now fix
ε > 0 (again) and M < ∞, and define FM ≡ {f1{F ≤M} : f ∈ F}. Since,
‖(f−g)1{F ≤M}‖1,Pn ≤ ‖f−g‖1,Pn for any f, g ∈ F , N(ε,FM , L1(Pn)) ≤
N(ε,F , L1(Pn)). Hence logN(ε,FM , L1(Pn)) = O∗

P (1). Finally, since ε and
M are both arbitrary, the desired result follows from theorem 8.15 below.�

Theorem 8.15 Let F be a P -measurable class of measurable functions
with envelope F such that P ∗F < ∞. Let FM be as defined in the above
proof. If logN(ε,FM , L1(Pn)) = o∗P (n) for every ε > 0 and M < ∞, then
P‖Pn − P‖∗F → 0 and F is strong P -G-C.

Before giving the proof of theorem 8.15, we give the following lemma
which will be needed. This is lemma 2.4.5 of VW, and we omit the proof:

Lemma 8.16 Let F be a class of measurable functions f : X �→ R with
integrable envelope. Define a filtration by letting Σn be the σ-field generated
by all measurable functions h : X∞ �→ R that are permutation-symmetric
in their first n arguments. Then E (‖Pn − P‖∗F |Σn+1) ≥ ‖Pn+1 − P‖∗F ,
almost surely. Furthermore, there exist versions of the measurable cover
functions ‖Pn − P‖∗F that are adapted to the filtration. Any such versions
form a reverse submartingale and converge almost surely to a constant.

Proof of theorem 8.15. By the symmetrization theorem 8.8, P -measura-
bility of F , and by Fubini’s theorem, we have for all M > 0 that

E∗‖Pn − P‖F ≤ 2EXEε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
F

≤ 2EXEε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)1{F ≤ M}
∥∥∥∥∥
F

+2EXEε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)1{F > M}
∥∥∥∥∥
F

≤ 2EXEε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
FM

+ 2P ∗ [F1{F > M}] .

The last term can be made arbitrarily small by making M large enough.
Thus, for convergence in mean, it is enough to show that the first term goes
to zero for each M . Accordingly, fix M < ∞. Fix also X1, . . . , Xn, and let
G be a finite δ-mesh in L1(Pn) over FM . Thus

Eε

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
FM

≤
∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
G

+ δ.(8.8)
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By definition of the entropy number, the cardinality of G can be chosen
equal to N(δ,FM , L1(Pn)). Now, we can bound the L1-norm on the right-
hand-side of (8.8) by the Orlicz-norm for ψ2(x) = exp(x2) − 1, and apply
the maximal inequality lemma 8.2 to find that the left-hand-side of (8.8)
is bounded by a universal constant times

√
1 + logN(δ,FM , L1(Pn)) sup

f∈F

∥∥∥∥∥ 1
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
ψ2|X

+ δ,

where the Orlicz norms ‖ · ‖ψ2|X are taken over ε1, . . . , εn with X1, . . . , Xn

still fixed. From exercise 8.5.7 below, we have—by Hoeffding’s inequal-
ity (lemma 8.1) combined with lemma 8.1—that the Orlicz norms are all
bounded by

√
6/n (Pnf2)1/2, which is bounded by

√
6/nM . The last dis-

played expression is thus bounded by√
6{1 + logN(δ,FM , L1(Pn))}

n
M + δ

P→ δ.

Thus the left-hand-side of (8.8) goes to zero in probability. Since it is
also bounded by M , the bounded convergence theorem implies that its
expectation also goes to zero. Since M was arbitrary, we now have that
E∗‖Pn − P‖F → 0. This now implies that F is weak P -G-C.

From lemma 9.13, we know that there exists a version of ‖Pn−P‖∗F that
converges almost surely to a constant. Since we already know that ‖Pn −
P‖∗F

P→ 0, this constant must be zero. The desired result now follows.�
Proof of proposition 8.9. Assume (i). By the second inequality of

the symmetrization theorem (theorem 8.8), ‖P◦
n‖F

P→ 0. This convergence
can be strengthened to outer almost surely, since ‖P◦

n‖F for a reverse sub-
martingale as in the previous proof. Now assume (ii). By lemma 8.13 and
the fact that P [εf(X)] = 0 for a Rademacher ε independent of X , we
obtain that P‖f‖∗F = P‖εf(X)‖∗F < ∞. Now, the fact that F is weak
P -G-C follows from the first inequality in the symmetrization theorem.
The convergence can be strengthened to outer almost sure by the reverse
martingale argument used previously. Thus (ii) follows.�

8.4 Donsker Results

We now present several Donsker results. We begin with several interesting
necessary and sufficient conditions for a class to be P -Donsker. We next
present the proofs of Donsker theorems for bracketing (theorem 2.3) and
uniform (theorem 2.5) entropy. Before proceeding, let Fδ ≡ {f − g : f, g ∈
F , ‖f − g‖P,2 < δ}, for any 0 < δ ≤ ∞.

The following lemma outlines several properties of Donsker classes and
shows that Donsker classes are automatically strong Glivenko-Cantelli classes:
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Lemma 8.17 Let F be a class of measurable functions, with envelope
F ≡ ‖f‖F . For any f, g ∈ F , define ρ(f, g) ≡ P (f − Pf − g + Pg)2; and,
for any δ > 0, let Fδ ≡ {f − g : ρ(f, g) < δ}. Then the following are
equivalent:

(i) F is P -Donsker;

(ii) (F , ρ) is totally bounded and ‖Gn‖Fδn

P→ 0 for every δn ↓ 0;

(iii) (F , ρ) is totally bounded and E∗‖Gn‖Fδn
→ 0 for every δn ↓ 0.

These conditions imply that E∗‖Gn‖rF → ‖G‖rF < ∞, for every 0 < r < 2;
that P (‖f − Pf‖∗F > x) = o(x−2) as x→ ∞; and that F is strong P -G-C.
If in addition ‖P‖F <∞, then also P (F ∗ > x) = o(x−2) as x → ∞.

Proof. The equivalence of (i)–(iii) and the first assertion is lemma 2.3.11
of VW, and we omit the equivalence part of the proof. Now assume condi-
tions (i)–(iii) hold. Lemma 2.3.9 of VW states that if F is Donsker, then

lim
x→∞

x2 sup
n≥1

P∗ (‖Gn‖F > x) = 0.(8.9)

This immediately implies that the rth moment of ‖Gn‖F is uniformly
bounded in n and that E‖G‖rF < ∞ for all 0 < r < 2. Thus the first asser-
tion follows and, therefore, F is weak P -G-C. Lemma 8.16 now implies F is
strong G-C. Letting n = 1 in (8.9) yields that P (‖f − Pf‖∗F > x) = o(x−2)
as x→ ∞, and the remaining assertions follow.�

Proof of theorem 2.3 (Donsker with bracketing entropy). With
a given set of ε/2-brackets [li, ui] covering F , we can construct a set of
ε-brackets covering F∞ by taking differences [li − uj , ui − lj ] of upper and
lower bounds, i.e., if f ∈ [li, ui] and g ∈ [lj, uj ], then f−g ∈ [li−uj, ui− lj ].
ThusN[](ε,F∞, L2(P )) ≤ N2

[](ε/2,F , L2(P )). From exercise 8.5.8 below, we
now have that J[](δ,F∞, L2(P )) ≤

√
8J[](δ,F , L2(P )).

Now, for a given, small δ > 0, select a minimal number of δ-brackets
that cover F , and use them to construct a finite partition F = ∪mi=1Fi
consisting of sets of L2(P )-diameter δ. For any i ∈ {1, . . . ,m}, the subset
of F∞ consisting of all f−g with f, g ∈ Fi consists of functions with L2(P )
norm strictly smaller than δ. Hence by lemma 8.18 below, there exists a
number a(δ) > 0 satisfying

E∗

[
sup

1≤i≤m
sup
f,g∈Fi

|Gn(f − g)|
]
� J[](δ,F , L2(P ))(8.10)

+
√
nP ∗ [G1{G > a(δ)

√
n}

]
,

where G is an envelope for F∞ and the relation �means that the left-hand-
side is bounded above by a universal positive constant times the right-hand-
side. In this setting, “universal” means that the constant does not depend
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on n or δ. If [l, u] is a minimal bracket for covering all of F , then G can be
taken to be u − l. Boundedness of the entropy integral implies that there
exists some k < ∞ so that only one L2(P ) bracket of size k is needed to
cover F . This implies PG2 < ∞.

By exercise 8.5.9 below, the second term on the right-hand-side of (8.10)
is bounded above by [a(δ)]−1P ∗ [G21 {G > a(δ)

√
n}

]
and thus goes to zero

as n → ∞. Since J[](δ,F , L2(P )) = o(δ), as δ ↓ 0, we now have that
limδ↓0 lim supn→∞ of the left-hand-side of (8.10) goes to zero. In view of
Markov’s inequality for outer probability (which follows from Chebyshev’s
inequality for outer probability as given in lemma 6.10), condition (ii) in
lemma 7.20 is satisfied for the stochastic processXn(f) = Gn(f) with index
set T = F . Now, theorem 2.1 yields the desired result.�

Lemma 8.18 For any class F of measurable functions f : X �→ R with
Pf2 < δ2 for every f , we have, with

a(δ) ≡ δ√
1 ∨ logN[](δ,F , L2(P ))

,

and F an envelope function for F , that

E∗‖Gn‖F � J[](δ,F , L2(P )) +
√
nP ∗ [F1{F >

√
na(δ)}

]
.

This is lemma 19.34 of van der Vaart (1998), who gives a nice proof which
utilizes the maximal inequality result given in lemma 8.3 above. The argu-
ments are lengthy, and we omit the proof.

To prove theorem 2.5 (Donsker with uniform entropy), we first restate
the theorem with a clarification of the measurability assumption, as done
in the previous section for theorem 2.4:

Theorem 8.19 (Restated theorem 2.5) Let F be a class of measurable
functions with envelope F and J(1,F , L2) < ∞. Let the classes Fδ and
F2

∞ ≡ {h2 : h ∈ F∞} be P -measurable for every δ > 0. If P ∗F 2 <∞, then
F is P -Donsker.

We note here that by proposition 8.11, if F is PM, then so are Fδ and F2
∞,

for all δ > 0, provided F has envelope F such that P ∗F 2 < ∞. Since PM
implies P -measurability, all measurability requirements for theorem 8.19
are thus satisfied whenever F is PM.

Proof of theorem 8.19. Let the positive, decreasing sequence δn ↓ 0
be arbitrary. By Markov’s inequality for outer probability (see lemma 6.10)
and the symmetrization theorem 8.8,

P∗ (‖Gn‖Fδn
> x

)
≤ 2
x

E∗

∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
Fδn

,

for i.i.d. Rademachers ε1, . . . , εn independent of X1, . . . , Xn. By the P -
measurability assumption for Fδ, for all δ > 0, the standard version of Fu-
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bini’s theorem applies, and the outer expectation is just a standard expecta-
tion and can be calculated in the order EXEε. Accordingly, fix X1, . . . , Xn.
By Hoeffding’s inequality (lemma 8.1), the stochastic process f �→ n−1/2

×
∑n
i=1 εif(Xi) is sub-Gaussian for the L2(Pn)-seminorm

‖f‖n ≡

√√√√ 1
n

n∑
i=1

f2(Xi).

This stochastic process is also separable since, for any measure Q and ε > 0,
N(ε,Fδn , L2(Q)) ≤ N(ε,F∞, L2(Q)) ≤ N2(ε/2,F , L2(Q)), and the latter
is finite for any finite dimensional probability measure Q and any ε > 0.
Thus the second conclusion of corollary 8.5 holds with

Eε

∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
Fδn

�
∫ ∞

0

√
logN(ε,Fδn , L2(Pn))dε.(8.11)

Note that we can omit the term E
∣∣n−1/2

∑n
i=1 εif0(Xi)

∣∣ from the con-
clusion of the corollary because it is also bounded by the right-hand-side
of (8.11).

For sufficiently large ε, the set Fδn fits in a single ball of L2(Pn)-radius
ε around the origin, in which case the integrand on the right-hand-side
of (8.11) is zero. This will definitely happen when ε is larger than θn,
where

θ2n ≡ sup
f∈Fδn

‖f‖2
n =

∥∥∥∥∥ 1
n

n∑
i=1

f2(Xi)

∥∥∥∥∥
Fδn

.

Thus the right-hand-side of (8.11) is bounded by∫ θn

0

√
logN(ε,Fδn , L2(Pn))dε

�
∫ θn

0

√
logN2(ε/2,F , L2(Pn))dε

�
∫ θn/(2‖F‖n)

0

√
logN(ε‖F‖n,F , L2(Pn))dε‖F‖n

� ‖F‖nJ(θn,F , L2).

The second inequality follows from the change of variables u = ε/(2‖F‖n)
(and then renaming u to ε). For the third inequality, note that we can
add 1/2 to the envelope function F without changing the existence of its
second moment. Hence ‖F‖n ≥ 1/2 without loss of generality, and thus
θn/(2‖F‖n) ≤ θn. Because ‖F‖n = Op(1), we can now conclude that the
left-hand-side of (8.11) goes to zero in probability, provided we can verify
that θn

P→ 0. This would then imply asymptotic L2(P )-equicontinuity in
probability.
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Since ‖Pf2‖Fδn
→ 0 and Fδn ⊂ F∞, establishing that ‖Pn−P‖F2∞

P→ 0

would prove that θn
P→ 0. The class F2

∞ has integrable envelope (2F )2 and
is P -measurable by assumption. Since also, for any f, g ∈ F∞, Pn|f2 −
g2| ≤ Pn(|f − g|4F ) ≤ ‖f − g‖n‖4F‖n, we have that the covering number
N(ε‖2F‖2

n,F2
∞, L1(Pn)) is bounded by N(ε‖F‖n,F∞, L2(Pn)). Since this

last covering number is bounded by supQN
2(ε‖F‖Q,2/2,F , L2(Q)) < ∞,

where the supremum is taken over all finitely discrete probability measures
with ‖F‖Q,2 > 0, we have by theorem 8.14 that F2

∞ is P -Glivenko-Cantelli.

Thus θ̂n
P→ 0. This completes the proof of asymptotic equicontinuity.

The last thing we need to prove is that F is totally bounded in L2(P ).
By the result of the last paragraph, there exists a sequence of discrete
probability measures Pn with ‖(Pn − P )f2‖F∞ → 0. Fix ε > 0 and take n
large enough so that ‖(Pn − P )f2‖F∞ < ε2. Note that N(ε,F , L2(Pn)) is
finite by assumption, and, for any f, g ∈ F with ‖f−g‖Pn,2 < ε, P (f−g)2 ≤
Pn(f − g)2 + |(Pn − P )(f − g)2| ≤ 2ε2. Thus any ε-net in L2(Pn) is also
a

√
2ε-net in L2(P ). Hence F is totally bounded in L2(P ) since ε was

arbitrary.�

8.5 Exercises

8.5.1. For any ψ valid for defining an Orlicz norm ‖ · ‖ψ, show that the
space Hψ of real random variables X with ‖X‖ψ < ∞ defines a Banach
space, where we equate a random variable X with zero if X = 0 almost
surely:

(a) Show first that ‖ · ‖ψ defines a norm on Hψ. Hint: Use the convexity
of ψ to establish that for any X,Y ∈ Hψ and any c1, c2 > 0,

Eψ
(
|X + Y |
c1 + c2

)
≤ c1
c1 + c2

Eψ
(
|X |
c1

)
+

c2
c1 + c2

Eψ
(
|Y |
c2

)
.

(b) Now show that Hψ is complete. Hint: Show that for any Cauchy
sequence of random variables {Xn} ∈ Hψ, lim supn→∞ ‖Xn‖ψ < ∞.
Use Prohorov’s theorem to show that every such Cauchy sequence
converges to an almost surely unique element of Hψ.

8.5.2. Show that 1 ∧ (eu − 1)−1 ≤ 2e−u, for any u > 0.

8.5.3. For a function ψ meeting the conditions of lemma 8.2, show that
there exists constants 0 < σ ≤ 1 and τ > 0 such that φ(x) ≡ σψ(τx)
satisfies φ(x)φ(y) ≤ φ(cxy) for all x, y ≥ 1 and φ(1) ≤ 1/2. Show that this
φ also satisfies the following

(a) For all u > 0, φ−1(u) ≤ ψ−1(u)/(στ).
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(b) For any random variable X , ‖X‖ψ ≤ ‖X‖φ/(στ) ≤ ‖X‖ψ/σ.

8.5.4. Show that for any p ∈ [1,∞), ψp satisfies the conditions of lemma 8.2
with c = 1.

8.5.5. Let ψ satisfy the conditions of lemma 8.2. Show that for any se-
quence of random variables {Xn}, ‖Xn‖ψ → 0 implies Xn

P→ 0. Hint: Show
that lim infx→∞ ψ(x)/x > 0, and hence ‖Xn‖ψ → 0 implies E|Xn| → 0.

8.5.6. Show that if the class of functions F has a countable subset G ⊂
F such that for each f ∈ F there exists a sequence {gm} ∈ G with
gm(x) → f(x) for every x ∈ X , then ‖

∑
eif(Xi)‖F = ‖

∑
eif(Xi)‖G

for all (e1, . . . , en) ∈ Rn.

8.5.7. In the context of the proof of theorem 8.15, use Hoeffding’s in-
equality (lemma 8.7) combined with lemma 8.1 to show that∥∥∥∥∥ 1

n

n∑
i=1

εif(Xi)

∥∥∥∥∥
ψ2|X

≤
√

6/n(Pnf2)1/2,

where the meaning of the subscript ψ2|X is given in the body of the proof.

8.5.8. In the context of the proof of theorem 2.3 above, show that by
taking logarithms followed by square roots,

J[](δ,F∞, L2(P )) ≤
√

8J[](δ,F , L2(P )).

8.5.9. Show, for any map X : Ω �→ R and constants α ∈ [0,∞) and
m ∈ (0,∞), that

E∗ [|X |α1{|X | > m}] ≤ m−1E∗ [|X |α+11{|X | > m}
]
.

8.6 Notes

Lemma 8.2, corollary 8.5, and theorems 8.15 and 8.19 correspond to lemma
2.2.1, corollary 2.2.8, and theorems 2.4.3 and 2.5.2 of VW, respectively.
The first inequality in theorem 8.8 corresponds to lemma 2.3.1 of VW.
Lemma 8.3 is a modification of lemma 2.2.10 of VW, and theorem 8.4 is
a modification and combination of both theorem 2.2.4 and corollary 2.2.5 of
VW. The version of Hoeffding’s inequality we use (lemma 8.7) is lemma 2.2.7
of VW, and lemma 8.13 was inspired by exercise 2.4.1 of VW. The proof of
theorem 2.3 follows closely van der Vaart’s (1998) proof of his theorem 19.5.
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9
Entropy Calculations

The focus of this chapter is on computing entropy for empirical processes.
An important use of such entropy calculations is in evaluating whether a
class of functions F is Glivenko-Cantelli and/or Donsker or neither. Several
additional uses of entropy bounds will be discussed in chapter 11. Some of
these uses will be very helpful in chapter 14 for establishing rates of con-
vergence for M-estimators. An additional use of entropy bounds, one which
will receive only limited discussion in this book, is in precisely assessing
the asymptotic smoothness of certain empirical processes. Such smooth-
ness results play a role in the asymptotic analysis of a number of statistical
applications, including confidence bands for kernel density estimation (eg.,
Bickel and Rosenblatt, 1973) and certain hypothesis tests for multimodality
(Polonik, 1995).

We begin the chapter by describing methods to evaluate uniform entropy.
Provided the uniform entropy for a class F is not too large, F might be
G-C or Donsker, as long as sufficient measurability holds. Since many of
the techniques we will describe for building bounded uniform entropy inte-
gral (BUEI) classes (which include VC classes) closely parallel the methods
for building pointwise measurable (PM) classes described in the previous
chapter, we will include a discussion on joint BUEI and PM preservation
towards the end of section 9.1.2. We then present methods based on brack-
eting entropy. Several important results for building G-C classes from other
G-C classes (G-C preservation), are presented next. Finally, we discuss sev-
eral useful Donsker preservation results.

One can think of this chapter as a handbag of tools for establishing
weak convergence properties of empirical processes. Illustrations of how to
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use these tools will be given in various applications scattered throughout
later chapters. To help anchor the context for these tools in practice, it
might be worthwhile rereading the counting process regression example of
section 4.2.1, in the first case studies chapter of this book. In the second
case studies chapter of this book (chapter 15), we will provide additional—
and more complicated—illustrations of these tools, with special emphasis
on Donsker preservation techniques.

9.1 Uniform Entropy

We first discuss the very powerful concept of VC-classes of sets and func-
tions. Such classes are extremely important tools in assessing and control-
ling bounded uniform entropy. We then discuss several useful and powerful
preservation results for bounded uniform entropy integral (BUEI) classes.

9.1.1 VC-Classes

In this section, we introduce Vapnik-Červonenkis (VC) classes of sets, VC-
classes of functions, and several related function classes. We then present
several examples of VC-classes.

Consider an arbitrary collection {x1, . . . , xn} of points in a set X and a
collection C of subsets of X . We say that C picks out a certain subset A of
{x1, . . . , xn} if A = C∩{x1, . . . , xn} for some C ∈ C. We say that C shatters
{x1, . . . , xn} if all of the 2n possible subsets of {x1, . . . , xn} are picked out
by the sets in C. The VC-index V (C) of the class C is the smallest n for
which no set of size n {x1, . . . , xn} ⊂ X is shattered by C. If C shatters all
sets {x1, . . . , xn} for all n ≥ 1, we set V (C) = ∞. Clearly, the more refined
C is, the higher the VC-index. We say that C is a VC-class if V (C) < ∞.

For example, let X = R and define the collection of sets C = {(−∞, c] :
c ∈ R}. Consider any two point set {x1, x2} ⊂ R and assume, without loss
of generality, that x1 < x2. It is easy to verify that C can pick out the
null set {} and the sets {x1} and {x1, x2} but can’t pick out {x2}. Thus
V (C) = 2 and C is a VC-class. As another example, let C = {(a, b] : −∞ ≤
a < b ≤ ∞}. The collection can shatter any two point set, but consider
what happens with a three point set {x1, x2, x3}. Without loss of generality,
assume x1 < x2 < x3, and note that the set {x1, x3} cannot be picked out
with C. Thus V (C) = 3 in this instance.

For any class of sets C and any collection {x1, . . . , xn} ⊂ X , let Δn(C, x1,
. . . , xn) be the number of subsets of {x1, . . . , xn} which can be picked
out by C. A surprising combinatorial result is that if V (C) < ∞, then
Δn(C, x1, . . . , xn) can increase in n no faster than O(nV (C)−1). This is more
precisely stated in the following lemma:

Lemma 9.1 For a VC-class of sets C,
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max
x1,...,xn∈X

Δn(C, x1, . . . , xn) ≤
V (C)−1∑
j=1

(
n
j

)
.

Since the right-hand-side is bounded by V (C)nV (C)−1, the left-hand-side
grows polynomially of order at most O(nV (C)−1).

This is a corollary of lemma 2.6.2 of VW, and we omit the proof.
Let 1{C} denote the collection of all indicator functions of sets in the

class C. The following theorem gives a bound on the Lr covering numbers
of 1{C}:

Theorem 9.2 There exists a universal constant K < ∞ such that for
any VC-class of sets C, any r ≥ 1, and any 0 < ε < 1,

N(ε, 1{C}, Lr(Q)) ≤ KV (C)(4e)V (C)

(
1
ε

)r(V (C)−1)

.

This is theorem 2.6.4 of VW, and we omit the proof. Since F = 1 serves as
an envelope for 1{C}, we have as an immediate corollary that, for F = 1{C},
supQN(ε‖F‖1,Q,F , L1(Q)) < ∞ and

J(1,F , L2) �
∫ 1

0

√
log(1/ε)dε =

∫ ∞

0

u1/2e−udu ≤ 1,

where the supremum is over all finite probability measuresQ with ‖F‖Q,2 >
0. Thus the uniform entropy conditions required in the G-C and Donsker
theorems of the previous chapter are satisfied for indicators of VC-classes
of sets. Since the constant 1 serves as a universally applicable envelope
function, these classes of indicator functions are therefore G-C and Donsker,
provided the requisite measurability conditions hold.

For a function f : X �→ R, the subset of X × R given by {(x, t) : t <
f(x)} is the subgraph of f . A collection F of measurable real functions on
the sample space X is a VC-subgraph class or VC-class (for short), if the
collection of all subgraphs of functions in F forms a VC-class of sets (as
sets in X × R). Let V (F) denote the VC-index of the set of subgraphs of
F . The following theorem, the proof of which is given in section 9.5, shows
that covering numbers of VC-classes of functions grow at a polynomial rate
just like VC-classes of sets:

Theorem 9.3 There exists a universal constant K < ∞ such that, for
any VC-class of measurable functions F with integrable envelope F , any
r ≥ 1, any probability measure Q with ‖F‖Q,r > 0, and any 0 < ε < 1,

N(ε‖F‖Q,r,F , Lr(Q)) ≤ KV (F)(4e)V (F)

(
2
ε

)r(V (F)−1)

.
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Thus VC-classes of functions easily satisfy the uniform entropy require-
ments of the G-C and Donsker theorems of the previous chapter. A related
kind of function class is the VC-hull class. A class of measurable functions
G is a VC-hull class if there exists a VC-class F such that each f ∈ G is the
pointwise limit of a sequence of functions {fm} in the symmetric convex
hull of F (denoted sconvF). A function f is in sconvF if f =

∑m
i=1 αifi,

where the αis are real numbers satisfying
∑m

i=1 |αi| ≤ 1 and the fis are
in F . The convex hull of a class of functions F , denoted convF , is simi-
larly defined but with the requirement that the αi’s are positive. We use
convF to denote pointwise closure of convF and sconvF to denote the
pointwise closure of sconvF . Thus the class of functions F is a VC-hull
class if F = sconvG for some VC-class G. The following theorem provides
a useful relationship between the L2 covering numbers of a class F (not
necessarily a VC-class) and the L2 covering numbers of convF when the
covering numbers for F are polynomial in 1/ε:

Theorem 9.4 Let Q be a probability measure on (X ,A), and let F be a
class of measurable functions with measurable envelope F , such that QF 2 <
∞ and, for 0 < ε < 1,

N(ε‖F‖Q,2,F , L2(Q)) ≤ C

(
1
ε

)V
,

for constants C, V < ∞ (possibly dependent on Q). Then there exist a
constant K depending only on V and C such that

logN(ε‖F‖Q,2, convF , L2(Q)) ≤ K

(
1
ε

)2V/(V+2)

.

This is theorem 2.6.9 of VW, and we omit the proof.
It is not hard to verify that sconvF is a subset of the convex hull of

F ∪ {−F} ∪ {0}, where −F ≡ {−f : f ∈ F} (see exercise 9.6.1 below).
Since the covering numbers of F ∪ {−F} ∪ {0} are at most one plus twice
the covering numbers of F , the conclusion of theorem 9.4 also holds if
convF is replaced with sconvF . This leads to the following easy corollary
for VC-hull classes, the proof of which we save as an exercise:

Corollary 9.5 For any VC-hull class F of measurable functions and
all 0 < ε < 1,

sup
Q

logN(ε‖F‖Q,2,F , L2(Q)) ≤ K

(
1
ε

)2−2/V

, 0 < ε < 1,

where the supremum is taken over all probability measures Q with ‖F‖Q,2 >
0, V is the VC-index of the VC-subgraph class associated with F , and the
constant K < ∞ depends only on V .
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We now present several important examples and results about VC-classes
of sets and both VC-subgraph and VC-hull classes of functions. The first
lemma, lemma 9.6, applies to vector spaces of functions, a frequently oc-
curring function class in statistical applications.

Lemma 9.6 Let F be a finite-dimensional vector space of measurable
functions f : X �→ R. Then F is VC-subgraph with V (F) ≤ dim(F) + 2.

Proof. Fix any collectionG of k = dim(F)+2 points (x1, t1), . . . , (xk, tk)
in X × R. By assumption, the vectors (f(x1) − t1, . . . , f(xk) − tk)

T , as f
ranges over F , are restricted to a dim(F)+1 = k−1-dimensional subspace
H of Rk. Any vector 0 �= a ∈ Rk orthogonal to H satisfies

∑
j:aj>0

aj(f(xj) − tj) =
∑
j:aj<0

(−aj)(f(xj) − tj),(9.1)

for all f ∈ F , where we define sums over empty sets to be zero. There
exists such a vector a with at least one strictly positive coordinate. For
this a, the subset of G of the form {(xj , tj) : aj > 0} cannot also be of the
form {(xj , tj) : tj < f(xj)} for any f ∈ F , since otherwise the left side of
the equation (9.1) would be strictly positive while the right side would be
nonpositive. Conclude that the subgraphs of F cannot pick out the subset
{(xj , tj) : aj > 0}. Since G was arbitrary, we have just shown that the
subgraphs of F cannot shatter any set of k points in X × R. The desired
result now follows.�.

The next three lemmas, lemmas 9.7 through 9.9, consist of useful tools for
building VC-classes from other VC-classes. One of these lemmas, lemma 9.8,
is the important identity that classes of sets are VC if and only if the cor-
responding classes of indicator functions are VC-subgraph. The proof of
lemma 9.9 is relegated to section 9.5.

Lemma 9.7 Let C and D be VC-classes of sets in a set X , with respective
VC-indices VC and VD; and let E be a VC-class of sets in W, with VC-index
VE . Also let φ : X �→ Y and ψ : Z �→ X be fixed functions. Then

(i) Cc ≡ {Cc : C ∈ C} is VC with V (Cc) = VC ;

(ii) C � D ≡ {C ∩D : C ∈ C, D ∈ D} is VC with index ≤ VC + VD − 1;

(iii) C � D ≡ {C ∪D : C ∈ C, D ∈ D} is VC with index ≤ VC + VD − 1;

(iv) D × E is VC in X ×W with VC index ≤ VD + VE − 1;

(v) φ(C) is VC with index VC if φ is one-to-one;

(vi) ψ−1(C) is VC with index ≤ VC .
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Proof. For any C ∈ C, the set Cc picks out the points of a given set
x1, . . . , xn that C does not pick out. Thus if C shatters a given set of points,
so does Cc, and vice versa. This proves (i). From n points, C can pick out
O(nVC−1) subsets. From each of these subsets, D can pick out O(nVD−1)
further subsets. Hence C�D can pick out at most O(nVC+VD−2) subsets, and
thus (ii) follows from the definition of a VC-class. We save it as an exercise
to show that (i) and (ii) imply (iii). For (iv), note that D × W and X × E
are both VC-classes with respective VC-indices VD and VE . The desired
conclusion now follows from part (ii), since D × E = (D ×W) � (X × E).

For part (v), if φ(C) shatters {y1, . . . , yn}, then each yi must be in the
range of φ and there must therefore exist x1, . . . , xn such that φ is a bijec-
tion between x1, . . . , xn and y1, . . . , yn. Hence C must shatter x1, . . . , xn,
and thus V (φ(C)) ≤ V (C). Conversely, it is obvious that if C shatters
x1, . . . , xn, then φ(C) shatters φ(x1), . . . , φ(xn). Hence V (C) ≤ V (φ(C)).
For (vi), if ψ−1(C) shatters z1, . . . , zn, then all ψ(zi) must be distinct and
the restriction of ψ to z1, . . . , zn is a bijection onto its range. Thus C shat-
ters ψ(z1), . . . , ψ(zn), and hence V (ψ−1(C)) ≤ V (C).�

Lemma 9.8 For any class C of sets in a set X , the class FC of indicator
functions of sets in C is VC-subgraph if and only if C is a VC-class. More-
over, whenever at least one of C or FC is VC, the respective VC-indices are
equal.

Proof. Let D be the collection of sets of the form {(x, t) : t < 1{x ∈ C}}
for all C ∈ C. Suppose that D is VC, and let k = V (D). Then no set of the
form {(x1, 0), . . . , (xk, 0)} can by shattered by D, and hence V (C) ≤ V (D).
Now suppose that C is VC with VC-index k. Since for any t < 0, 1{x ∈
C} > t for all x and all C, we have that no collection {(x1, t1), . . . , (xk, tk)}
can be shattered by D if any of the tjs are < 0. It is similarly true that no
collection {(x1, t2), . . . , (xk, tk)} can be shattered by D if any of the tjs are
≥ 1, since 1{x ∈ C} > t is never true when t ≥ 1. It can now be deduced
that {(x1, t1), . . . , (xk, tk)} can only be shattered if {(x1, 0), . . . , (xk, 0)} can
be shattered. But this can only happen if {x1, . . . , xk} can be shattered by
C. Thus V (D) ≤ V (C).�

Lemma 9.9 Let F and G be VC-subgraph classes of functions on a set
X , with respective VC indices VF and VG . Let g : X �→ R, φ : R �→ R, and
ψ : Z �→ X be fixed functions. Then

(i) F ∧ G ≡ {f ∧ g : f ∈ F , g ∈ G} is VC-subgraph with index ≤
VF + VG − 1;

(ii) F ∨ G is VC with index ≤ VF + VG − 1;

(iii) {F > 0} ≡ {{f > 0} : f ∈ F} is a VC-class of sets with index VF ;

(iv) −F is VC-subgraph with index VF ;
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(v) F + g ≡ {f + g : f ∈ F} is VC with index VF ;

(vi) F · g ≡ {fg : f ∈ F} is VC with index ≤ 2VF − 1;

(vii) F ◦ ψ ≡ {f(ψ) : f ∈ F} is VC with index ≤ VF ;

(viii) φ ◦ F is VC with index ≤ VF for monotone φ.

The next two lemmas, lemmas 9.10 and 9.11, refer to properties of mono-
tone processes and classes of monotone functions. The proof of lemma 9.11
is relegated to section 9.5.

Lemma 9.10 Let {X(t), t ∈ T } be a monotone increasing stochastic pro-
cess, where T ⊂ R. Then X is VC-subgraph with index V (X) = 2.

Proof. Let X be the set of all monotone increasing functions g : T �→ R;
and for any s ∈ T and x ∈ X , define (s, x) �→ fs(x) = x(s). Thus the proof
is complete if we can show that the class of functions F ≡ {fs : s ∈ T } is
VC-subgraph with VC index 2. Now let (x1, t1), (x2, t2) be any two points
in X ×R. F shatters (x1, t1), (x2, t2) if the graph G of (fs(x1), fs(x2)) in R2

“surrounds” the point (t1, t2) as s ranges over T . By surrounding a point
(a, b) ∈ R2, we mean that the graph must pass through all four of the sets
{(u, v) : u ≤ a, v ≤ b}, {(u, v) : u > a, v ≤ b}, {(u, v) : u ≤ a, v > b} and
{(u, v) : u > a, v > b}. By the assumed monotonicity of x1 and x2, the
graph G forms a monotone curve in R2, and it is thus impossible for it to
surround any point in R2. Thus (x1, t1), (x2, t2) cannot be shattered by F ,
and the desired result follows.�

Lemma 9.11 The set F of all monotone functions f : R �→ [0, 1] satisfies

sup
Q

logN(ε,F , L2(Q)) ≤ K

ε
, 0 < ε < 1,

where the supremum is taken over all probability measures Q, and the con-
stant K < ∞ is universal.

The final lemma of this section, lemma 9.12 below, addresses the claim
raised in section 4.1 that the class of functions F ≡ {1{Y − b′Z ≤ v} : b ∈
Rk, v ∈ R} is Donsker. Because the indicator functions in F are a subset of
the indicator functions for half-spaces in Rk+1, part (i) of the lemma implies
that F is VC with index k + 3. Since lemma 8.12 from chapter 8 verifies
that F , Fδ and F2

∞ are all P -measurable, for any probability measure P ,
theorem 9.3 combined with theorem 8.19 and the fact that indicator func-
tions are bounded, establishes that F is P -Donsker for any P . Lemma 9.12
also gives a related result on closed balls in Rd. In the lemma, 〈a, b〉 denotes
the Euclidean inner product.

Lemma 9.12 The following are true:



156 9. Entropy Calculations

(i) The collection of all half-spaces in Rd, consisting of the sets {x ∈
Rd : 〈x, u〉 ≤ c} with u ranging over Rd and c ranging over R, is VC
with index d+ 2.

(ii) The collection of all closed balls in Rd is VC with index ≤ d+ 3.

Proof. The class A+ of sets {x : 〈x, u〉 ≤ c}, with u ranging over Rd and
c ranging over (0,∞), is equivalent to the class of sets {x : 〈x, u〉 − 1 ≤ 0}
with u ranging over Rd. In this last class, since 〈x, u〉 spans a d-dimensional
vector space, lemma 9.6 and part (v) of lemma 9.9 yield that the class of
functions spanned by 〈x, u〉−1 is VC with index d+2. Part (iii) of lemma 9.9
combined with part (i) of lemma 9.7 now yields that the class A+ is VC
with index d + 2. Similar arguments verify that both the class A−, with
c restricted to (−∞, 0), and the class A0, with c = 0, are VC with index
d+ 2. It is easy to verify that the union of finite VC classes has VC index
equal to the maximum of the respective VC indices. This concludes the
proof of (i).

Closed balls in Rd are sets of the form {x : 〈x, x〉 − 2〈x, u〉 + 〈u, u〉 ≤ c},
where u ranges over Rd and c ranges over [0,∞). It is straightforward to
check that the class G all functions of the form x �→ −2〈x, u〉 + 〈u, u〉 − c
are contained in a d + 1 dimensional vector space, and thus G is VC with
index ≤ d + 3. Combining this with part (v) of lemma 9.9 yields that the
class F = G+〈x, x〉 is also VC with index d+3. Now the desired conclusion
follows from part (iii) lf lemma 9.9 combined with part (i) of lemma 9.7.�

9.1.2 BUEI-Classes

Recall for a class of measurable functions F , with envelope F , the uniform
entropy integral

J(δ,F , L2) ≡
∫ δ

0

√
sup
Q

logN(ε‖F‖Q,2,F , L2(Q))dε,

where the supremum is taken over all finitely discrete probability measures
Q with ‖F‖Q,2 > 0. Note the dependence on choice of envelope F . This
is crucial since there are many random functions which can serve as an
envelope. For example, if F is an envelope, then so is F + 1 and 2F . One
must allow that different envelopes may be needed in different settings. We
say that the class F has bounded uniform entropy integral (BUEI) with
envelope F—or is BUEI with envelope F—if J(1,F , L2) < ∞ for that
particular choice of envelope.

Theorem 9.3 tells us that a VC-class F is automatically BUEI with any
envelope. We leave it as an exercise to show that if F and G are BUEI with
respective envelopes F and G, then F � G is BUEI with envelope F ∨ G.
The following lemma, which is closely related to an important Donsker
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preservation theorem in section 9.4 below, is also useful for building BUEI
classes from other BUEI classes:

Lemma 9.13 Let F1, . . . ,Fk be BUEI classes with respective envelopes
F1, . . . , Fk, and let φ : Rk �→ R satisfy

|φ ◦ f(x) − φ ◦ g(x)|2 ≤ c2
k∑
j=1

(fj(x) − gj(x))
2 ,(9.2)

for every f, g ∈ F1×· · ·×Fk and x for a constant 0 < c <∞. Then the class
φ ◦ (F1, . . . ,Fk) is BUEI with envelope H ≡ |φ(f0)| + c

∑k
j=1(|f0j | + Fj),

where f0 ≡ (f01, . . . , f0k) is any function in F1 × · · · × Fk, and where
φ ◦ (F1, . . . ,Fk) is as defined in lemma 8.10.

Proof. Fix ε > 0 and a finitely discrete probability measure Q, and let
f, g ∈ F1×· · ·×Fk satisfy ‖fj−gj‖Q,2 ≤ ε‖Fj‖Q,2 for 1 ≤ j ≤ k. Now (9.2)
implies that

‖φ ◦ f − φ ◦ g‖Q,2 ≤ c

√√√√ k∑
j=1

‖fj − gj‖2
Q,2

≤ εc

k∑
j=1

‖Fj‖Q,2

≤ εH.

Hence

N(εH, φ ◦ (F1, . . . ,Fk), L2(Q)) ≤
k∏
j=1

N(ε‖Fj‖Q,2,Fj , L2(Q)),

and the desired result follows since ε and Q were arbitrary.�
Some useful consequences of lemma 9.13 are given in the following lemma:

Lemma 9.14 Let F and G be BUEI with respective envelopes F and
G, and let φ : R �→ R be a Lipschitz continuous function with Lipschitz
constant 0 < c < ∞. Then

(i) F ∧ G is BUEI with envelope F +G;

(ii) F ∨ G is BUEI with envelope F +G;

(iii) F + G is BUEI with envelope F +G;

(iv) φ(F) is BUEI with envelope |φ(f0)| + c(|f0| + F ), provided f0 ∈ F .

The proof, which we omit, is straightforward.
As mentioned earlier, lemma 9.13 is very similar to a Donsker preserva-

tion result we will present later in this chapter. In fact, most of the BUEI



158 9. Entropy Calculations

preservation results we give in this section have parallel Donsker preser-
vation properties. An important exception, and one which is perhaps the
primary justification for the use of BUEI preservation techniques, applies to
products of Donsker classes. As verified in the following theorem, the prod-
uct of two BUEI classes is BUEI, whether or not the two classes involved
are bounded (compare with corollary 9.15 below):

Theorem 9.15 Let F and G be BUEI classes with respective envelopes
F and G. Then F · G ≡ {fg : f ∈ F , g ∈ G} is BUEI with envelope FG.

Proof. Fix ε > 0 and a finitely discrete probability measure Q̃ with
‖FG‖Q̃,2 > 0, and let dQ∗ ≡ G2dQ̃/‖G‖2

Q̃,2
. Clearly, Q∗ is a finitely

discrete probability measure with ‖F‖Q∗,2 > 0. Let f1, f2 ∈ F satisfy
‖f1 − f2‖Q∗,2 ≤ ε‖F‖Q∗,2. Then

ε ≥ ‖f1 − f2‖Q∗,2

‖F‖Q∗,2
=

‖(f1 − f2)G‖Q̃,2
‖FG‖Q̃,2

,

and thus, if we let F ·G ≡ {fG : f ∈ F},

N(ε‖FG‖Q̃,2,F ·G,L2(Q̃)) ≤ N(ε‖F‖Q∗,2,F , L2(Q∗))
≤ sup

Q
N(ε‖F‖Q,2,F , L2(Q)),(9.3)

where the supremum is taken over all finitely discrete probability measures
Q for which ‖F‖Q,2 > 0. Since the right-hand-side of (9.3) does not depend
on Q̃, and since Q̃ satisfies ‖FG‖Q̃,2 > 0 but is otherwise arbitrary, we have
that

sup
Q
N(ε‖FG‖Q,2,F ·G,L2(Q)) ≤ sup

Q
N(ε‖F‖Q,2,F , L2(Q)),

where the supremums are taken over all finitely discrete probability mea-
sures Q but with the left side taken over the subset for which ‖FG‖Q,2 > 0
while the right side is taken over the subset for which ‖F‖Q,2 > 0.

We can similarly show that the uniform entropy numbers for the class
G · F with envelope FG is bounded by the uniform entropy numbers for
G with envelope G. Since |f1g1 − f2g2| ≤ |f1 − f2|G + |g1 − g2|F for all
f1, f2 ∈ F and g1, g2 ∈ G, the forgoing results imply that

sup
Q
N(ε‖FG‖Q,2,F · G, L2(Q)) ≤ sup

Q
N(ε‖F‖Q,2/2,F , L2(Q))

× sup
Q
N(ε‖G‖Q,2/2,G, L2(Q)),

where the supremums are all taken over the appropriate subsets of all
finitely discrete probability measures. After taking logs, square roots, and
then integrating both sides with respect to ε, the desired conclusion follows.�
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In order for BUEI results to be useful for obtaining Donsker results, it is
necessary that sufficient measurability be established so that theorem 8.19
can be used. As shown in proposition 8.11 and the comments following
theorem 8.19, pointwise measurability (PM) is sufficient measurability for
this purpose. Since there are significant similarities between PM preserva-
tion and BUEI preservation results, one can construct useful joint PM and
BUEI preservation results. Here is one such result:

Lemma 9.16 Let the classes F1, . . . ,Fk be both BUEI and PM with re-
spective envelopes F1, . . . , Fk, and let φ : Rk �→ R satisfy (9.2) for ev-
ery f, g ∈ F1 × · · · × Fk and x for a constant 0 < c < ∞. Then the
class φ ◦ (F1, . . . ,Fk) is both BUEI and PM with envelope H ≡ |φ(f0)| +
c
∑k
j=1(|f0j | + Fj), where f0 is any function in F1 × · · · × Fk.

Proof. Since a function satisfying (9.2) as specified is also continuous, the
desired result is a direct consequence of lemmas 8.10 and 9.13.�

The following lemma contains some additional joint preservation results:

Lemma 9.17 Let the classes F and G be both BUEI and PM with re-
spective envelopes F and G, and let φ : R �→ R be a Lipschitz continuous
function with Lipschitz constant 0 < c < ∞. Then

(i) F ∪ G is both BUEI and PM with envelope F ∨G;

(ii) F ∧ G is both BUEI and PM with envelope F +G;

(iii) F ∨ G is both BUEI and PM with envelope F +G;

(iv) F + G is both BUEI and PM with envelope F +G;

(v) F · G is both BUEI and PM with envelope FG;

(vi) φ(F) is both BUEI and PM with envelope |φ(f0)|+ c(|f0|+F ), where
f0 ∈ F .

Proof. Verifying (i) is straightforward. Results (ii), (iii), (iv) and (vi) are
consequences of lemma 9.16. Result (v) is a consequence of lemma 8.10 and
theorem 9.15.�

If a class of measurable functions F is both BUEI and PM with enve-
lope F , then theorem 8.19 implies that F is P -Donsker whenever P ∗F 2 <
∞. Note that we have somehow avoided discussing preservation for subsets
of classes. This is because it is unclear whether a subset of a PM class F is
itself a PM class. The difficulty is that while F may have a countable dense
subset G (dense in terms of pointwise convergence), it is unclear whether
any arbitrary subset H ⊂ F also has a suitable countable dense subset.
An easy way around this problem is to use various preservation results to
establish that F is P -Donsker, and then it follows directly that any H ⊂ F
is also P -Donsker by the definition of weak convergence. We will explore
several additional preservation results as well as several practical examples
later in this chapter and in the case studies of chapter 15.
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9.2 Bracketing Entropy

We now present several useful bracketing entropy results for certain func-
tion classes as well as a few preservation results. We first mention that
bracketing numbers are in general larger than covering numbers, as veri-
fied in the following lemma:

Lemma 9.18 Let F be any class of real function on X and ‖·‖ any norm
on F . Then

N(ε,F , ‖ · ‖) ≤ N[](ε,F , ‖ · ‖)

for all ε > 0.

Proof. Fix ε > 0, and let B be collection of ε-brackets that covers F .
From each bracket B ∈ B, take a function g(B) ∈ B ∩ F to form a finite
colleciton of functions G ⊂ F of the same cardinality as B consisting of
one function from each bracket in B. Now every f ∈ F lies in a bracket
B ∈ B such that ‖f − g(B)‖ ≤ ε by the definition of an ε-bracket. Thus G
is an ε cover of F of the same cardinality as B. The desired conclusion now
follows.�

The first substantive bracketing entropy result we present considers classes
of smooth functions on a bounded set X ⊂ Rd. For any vector K =
(k1, . . . , kd) of nonnegative integers define the differential operator Dk ≡
∂k•/(∂xk11 , . . . , ∂x

kd

d ), where k• ≡ k1 + · · · + kd. As defined previously, let
�x be the largest integer j ≤ x, for any x ∈ R. For any function f : X �→ R

and α > 0, define the norm

‖f‖α ≡ max
k•≤�α�

sup
x

|Dkf(x)| + max
k:k•=�α�

sup
x,y

|Dkf(x) −Dkf(y)|
‖x− y‖α−�α� ,

where the suprema are taken over x �= y in the interior of X . Now let
CαM (X ) be the set of all continuous functions f : X �→ R with ‖f‖α ≤ M .
Recall that for a set A in a metric space, diamA = supx,y∈A d(x, y). We
have the following theorem:

Theorem 9.19 Let X ⊂ Rd be bounded and convex with nonempty in-
terior. There exists a constant K < ∞ depending only on α, diamX , and
d such that

logN[](ε, Cα1 (X ), Lr(Q)) ≤ K

(
1
ε

)d/α
,

for every r ≥ 1, ε > 0, and any probability measure Q on Rd.

This is corollary 2.7.2 of VW, and we omit the proof.
We now consider several results for Lipschitz and Sobolev function classes.

We first present the results for covering numbers based on the uniform norm
and then present the relationship to bracketing entropy.
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Theorem 9.20 For a compact, convex subset C ⊂ Rd, let F be the class
of all convex functions f : C �→ [0, 1] with |f(x) − f(y)| ≤ L‖x − y‖ for
every x, y. For some integer m ≥ 1, let G be the class of all functions
g : [0, 1] �→ [0, 1] with

∫ 1

0 [g(m)(x)]2dx ≤ 1, where superscript (m) denotes
the m’th derivative. Then

logN(ε,F , ‖ · ‖∞) ≤ K(1 + L)d/2
(

1
ε

)d/2
, and

logN(ε,G, ‖ · ‖∞) ≤ M

(
1
ε

)1/m

,

where ‖ · ‖∞ is the uniform norm and the constant K < ∞ depends only
on d and C and the constant M depends only on m.

The first displayed result is corollary 2.7.10 of VW, while the second dis-
played result is theorem 2.4 of van de Geer (2000). We omit the proofs.

The following lemma shows how theorem 9.20 applies to bracketing en-
tropy:

Lemma 9.21 For any norm ‖ · ‖ dominated by ‖ · ‖∞ and any class of
functions F ,

logN[](2ε,F , ‖ · ‖) ≤ logN(ε,F , ‖ · ‖∞),

for all ε > 0.

Proof. Let f1, . . . , fm be a uniform ε-cover of F . Since the 2ε-brackets
[fi − ε, fi + ε] now cover F , the result follows.�

We now present a second Lipschitz continuity result which is in fact a
generalization of lemma 9.21. The result applies to function classes of the
form F = {ft : t ∈ T }, where

|fs(x) − ft(x)| ≤ d(s, t)F (x)(9.4)

for some metric d on T , some real function F on the sample space X , and
for all x ∈ X . This special Lipschitz structure arises in a number of settings,
including parametric Z- and M- estimation. For example, consider the least
absolute deviation regression setting of section 2.2.6, under the assumption
that the random covariate U and regression parameter θ are constrained
to known compact subsets U ,Θ ⊂ Rp. Recall that, in this setting, the
outcome given U is modeled as Y = θ′U + e, where the residual error e has
median zero. Estimation of the true parameter value θ0 is accomplished by
minimizing θ �→ Pnmθ, where mθ(X) ≡ |e− (θ − θ0)′U | − |e|, X ≡ (Y, U)
and e = Y − θ′0U . From (2.20) in section 2.2.6, we know that the class
F = {mθ : θ ∈ Θ} satisfies (9.4) with T = Θ, d(s, t) = ‖s − t‖ and
F (x) = ‖u‖, where x = (y, u) is a realization of X .

The following theorem shows that the bracketing numbers for a general
F satisfying (9.4) are bounded by the covering numbers for the associated
index set T .
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Theorem 9.22 Suppose the class of functions F = {ft : t ∈ T } satis-
fies (9.4) for every s, t ∈ T and some fixed function F . Then, for any norm
‖ · ‖,

N[](2ε‖F‖,F , ‖ · ‖) ≤ N(ε, T, d).

Proof. Note that for any ε-net t1, . . . , tk that covers T with respect to
d, the brackets [ftj − εF, ftj + εF ] cover F . Since these brackets are all of
size 2ε‖F‖, the proof is complete.�

Note that when ‖ · ‖ is any norm dominated by ‖ · ‖∞, theorem 9.22
simplifies to lemma 9.21 when T = F and d = ‖·‖∞ (and thus automatically
F = 1).

We move now from continuous functions to monotone functions. As was
done in lemma 9.11 above for uniform entropy, we can study bracketing
entropy of the class of all monotone functions mapping into [0, 1]:

Theorem 9.23 For each integer r ≥ 1, there exists a constant K < ∞
such that the class F of monotone functions f : R �→ [0, 1] satisfies

logN[](ε,F , Lr(Q)) ≤ K

ε
,

for all ε > 0 and every probability measure Q.

The lengthy proof, which we omit, is given in chapter 2.7 of VW.
We now briefly discuss preservation results. Unfortunately, it appears

that there are not as many useful preservation results for bracketing entropy
as there are for uniform entropy, but the following lemma contains two such
results which are easily verified:

Lemma 9.24 Let F and G be classes of measurable function. Then for
any probability measure Q and any 1 ≤ r ≤ ∞,

(i) N[](2ε,F + G, Lr(Q)) ≤ N[](ε,F , Lr(Q))N[](ε,G, Lr(Q));

(ii) Provided F and G are bounded by 1,

N[](2ε,F · G, Lr(Q)) ≤ N[](ε,F , Lr(Q))N[](ε,G, Lr(Q)).

The straightforward proof is saved as an exercise.

9.3 Glivenko-Cantelli Preservation

In this section, we discuss methods which are useful for building up Glivenko-
Cantelli (G-C) classes from other G-C classes. Such results can be useful for
establishing consistency for Z- and M- estimators and their bootstrapped
versions. It is clear from the definition of P -G-C classes, that if F and G
are P -G-C, then F ∪G and any subset thereof is also P -G-C. The purpose
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of the remainder of this section is to discuss more substantive preservation
results. The main tool for this is the following theorem, which is a minor
modification of theorem 3 of van der Vaart and Wellner (2000) and which
we give without proof:

Theorem 9.25 Suppose that F1, . . . ,Fk are strong P -G-C classes of
functions with max1≤j≤k ‖P‖Fj < ∞, and that φ : Rk �→ R is continu-
ous. Then the class H ≡ φ(F1, . . . ,Fk) is strong P -G-C provided it has an
integrable envelope.

The following corollary lists some obvious consequences of this theorem:

Corollary 9.26 Let F and G be P -G-C classes with respective inte-
grable envelopes F and G. Then the following are true:

(i) F + G is P -G-C.

(ii) F · G is P -G-C provided P [FG] < ∞.

(iii) Let R be the union of the ranges of functions in F , and let ψ : R �→ R

be continuous. Then ψ(F) is P -G-C provided it has an integrable
envelope.

Proof. The statement (i) is obvious. Since (x, y) �→ xy is continuous in
R2, statement (ii) follows from theorem 9.25. Statement (iii) also follows
from the theorem since ψ has a continuous extension to R, ψ̃, such that
‖Pψ̃(f)‖F = ‖Pψ(f)‖F .�

It is interesting to note that the “preservation of products” result in
part (ii) of the above corollary does not hold in general for Donsker classes
(although, as was shown in section 9.1.2, it does hold for BUEI classes).
This preservation result for G-C classes can be useful in formulating master
theorems for bootstrapped Z- and M- estimators. Consider, for example,
verifying the validity of the bootstrap for a parametric Z-estimator θ̂n which
is a zero of θ �→ Pnψθ, for θ ∈ Θ, where ψθ is a suitable random function. Let
Ψ(θ) = Pψθ, where we assume that for any sequence {θn} ∈ Θ, Ψ(θn) → 0
implies θn → θ0 ∈ Θ (ie., the parameter is identifiable). Usually, to obtain
consistency, it is reasonable to assume that the class {ψθ, θ ∈ Θ) is P -G-C.
Clearly, this condition is sufficient to ensure that θ̂n

as∗→ θ0.
Now, under a few additional assumptions, the Z-estimator master the-

orem, theorem 2.11 can be applied, to obtain asymptotic normality of√
n(θ̂n− θ0). In section 2.2.5, we made the claim that if Ψ is appropriately

differentiable and the parameter is identifiable (as defined in the previous
paragraph), sufficient additional conditions for this asymptotic normality
to hold and for the bootstrap to be valid are that the {ψθ : θ ∈ Θ} is
strong P -G-C with supθ∈Θ P |ψθ| < ∞, that {ψθ : θ ∈ Θ, ‖θ − θ0‖ ≤ δ} is
P -Donsker for some δ > 0, and that P‖ψθ − ψθ0‖2 → 0 as θ → θ0. As we
will see in chapter 13, where we present the arguments for this result in
detail, an important step in the proof of bootstrap validity is to show that
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the bootstrap estimate θ̂◦n is unconditionally consistent for θ0. If we use a
weighted bootstrap with i.i.d. non-negative weights ξ1, . . . , ξn, which are
independent of the data and which satisfy Eξ1 = 1, then result (ii) from
the above corollary tells us that F ≡ {ξψθ : θ ∈ Θ} is P -G-C. This follows
since both classes of functions {ξ} (a trivial class with one member) and
{ψθ : θ ∈ Θ} are P -G-C and since the product class F has an integral
envelope by lemma 8.13. Note here that we are tacetly augmenting P to
be the product probability measure of both the data and the independent
bootstrap weights. We will expand on these ideas in section 10.3 of the next
chapter for the special case where Θ ⊂ Rp and in chapter 13 for the more
general case.

Another result which can be useful for inference is the following lemma
on covariance estimation. We mentioned this result in the first paragraph
of section 2.2.3 in the context of conducting uniform inference for Pf as f
ranges over a class of functions F . The lemma answers the question of when
the limiting covariance of Gn, indexed by F , can be consistently estimated.
Recall that this covariance is σ(f, g) ≡ Pfg − PfPg, and its estimator is
σ̂(f, g) ≡ Pnfg−PnfPng. Although knowledge of this covariance matrix is
usually not sufficient in itself to obtain inference on {Pf : f ∈ F}, it still
provides useful information.

Lemma 9.27 Let F be Donsker. Then ‖σ̂(f, g)−σ(f, g)‖F·F
as∗→ 0 if and

only if P ∗‖f − Pf‖2
F <∞.

Proof. Note that since F is Donsker, F is also G-C. Hence Ḟ ≡ {ḟ :
f ∈ F} is G-C, where for any f ∈ F , ḟ = f − Pf . Now we first assume
that P ∗‖f − Pf‖2

F < ∞. By theorem 9.25, Ḟ · Ḟ is also G-C. Uniform
consistency of σ̂ now follows since, for any f, g ∈ F , σ̂(f, g) − σ(f, g) =
(Pn−P )ḟ ġ− PnḟPnġ. Assume next that ‖σ̂(f, g)− σ(f, g)‖F·F

as∗→ 0. This
implies that Ḟ · Ḟ is G-C. Now lemma 8.13 implies that P ∗‖f − Pf‖2

F =
P ∗‖fg‖Ḟ·Ḟ <∞.�

We close this section with the following theorem which provided several
interesting necessary and sufficient conditions for F to be strong G-C:

Theorem 9.28 Let F be a class of measurable functions. Then the fol-
lowing are equivalent:

(i) F is strong P -G-C;

(ii) E∗‖Pn − P‖F → 0 and E∗‖f − Pf‖F < ∞;

(iii) ‖Pn − P‖F P→ 0 and E∗‖f − Pf‖F <∞.

Proof. Since Pn − P does not change when the class F is replaced by
{f − Pf : f ∈ F}, we will assume hereafter that ‖P‖F = 0 without loss of
generality.

(i)⇒(ii): That (i) implies E∗‖f‖F < ∞ follows from lemma 8.13. Fix
0 < M <∞, and note that
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E∗‖Pn − P‖F ≤ E∗ ‖(Pn − P )f × 1{F ≤ M}‖F(9.5)
+2E∗ [F × 1{F > M}] .

By assertion (ii) of corollary 9.26, F · 1{F ≤ M} is strong P -G-C, and
thus the first term on the right of (9.5) → 0 by the bounded convergence
theorem. Since the second term on the right of (9.5) can be made arbitrarily
small by increasing M , the left side of (9.5) → 0, and the desired result
follows.

(ii)⇒(iii): This is obvious.
(iii)⇒(i): By the assumed integrability of the envelope F , lemma 8.16 can

be employed to verify that there is a version of ‖Pn − P‖∗F that converges
outer almost surely to a constant. Condition (iii) implies that this constant
must be zero.�

9.4 Donsker Preservation

In this section, we describe several techniques for building Donsker from
other Donsker classes. The first theorem, theorem 9.29, gives results for
subsets, pointwise closures and symmetric convex hulls of Donsker classes.
The second theorem, theorem 9.30, presents a very powerful result for Lip-
schitz functions of Donsker classes. The corollary that follows present con-
sequences of this theorem that are quite useful in statistical applications.

For a class F of real-valued, measurable functions on the sample space
X , let F (P,2)

be the set of all f : X �→ R for which there exists a sequence
{fm} ∈ F such that fm → f both pointwise (ie., for every argument x ∈ X )
and in L2(P ). Similarly, let sconv(P,2) F be the pointwise and L2(P ) closure
of sconvF defined in section 9.1.1.

Theorem 9.29 Let F be a P -Donsker class. Then

(i) For any G ⊂ F , G is P -Donsker.

(ii) F (P,2)
is P -Donsker.

(iii) sconv(P,2) F is P -Donsker.

Proof. The proof of (i) is obvious by the facts that weak convergence
consists of marginal convergence plus asymptotic equicontinuity and that
the maximum modulus of continuity does not increase when maximizing
over a smaller set. For (ii), one can without loss of generality assume that
both F and F (P,2)

are mean zero classes. For a class of measurable functions
G, denote the modulus of continuity

MG(δ) ≡ sup
f,g∈G:‖f−g‖P,2<δ

|Gn(f − g)|.



166 9. Entropy Calculations

Fix δ > 0. We can choose f, g ∈ F (P,2)
such that |Gn(f − g)| is arbitrarily

close to MF(P,2) (δ) and ‖f − g‖P,2 < δ. We can also choose f∗, g∗ ∈ F
such that ‖f − f∗‖P,2 and ‖g− g∗‖P,2 are arbitrarily small (for fixed data).
Thus MF(P,2)(δ) ≤ MF (2δ). Since δ > 0 was arbitrary, we obtain that

asymptotic equicontinuity in probability for F(P,2)
follows from asymptotic

equicontinuity in probability of {Gn(f) : f ∈ F}. Part (iii) is theorem 2.10.3
of VW, and we omit its proof.�

The following theorem, theorem 2.10.6 of VW, is one of the most useful
Donsker preservation results for statistical applications. We omit the proof.

Theorem 9.30 Let F1, . . . ,Fk be Donsker classes with max1≤i≤k ‖P‖Fi

<∞. Let φ : Rk �→ R satisfy

|φ ◦ f(x) − φ ◦ g(x)|2 ≤ c2
k∑
i=1

(fi(x) − gi(x))2,

for every f, g ∈ F1 × · · · × Fk and x ∈ X and for some constant c < ∞.
Then φ ◦ (F1, . . . ,Fk) is Donsker provided φ ◦ f is square integrable for at
least one f ∈ F1 × · · · × Fk.

The following corollary is a useful consequence of this theorem:

Corollary 9.31 Let F and G be Donsker classes. Then:

(i) F ∪ G and F + G are Donsker.

(ii) If ‖P‖F∪G < ∞, then the classes of pairwise infima, F ∧ G, and
pairwise suprema, F ∨ G, are both Donsker.

(iii) IF F and G are both uniformly bounded, F · G is Donsker.

(iv) If ψ : R �→ R is Lipschitz continuous, where R is the range of func-
tions in F , and ‖ψ(f)‖P,2 < ∞ for at least one f ∈ F , then ψ(F) is
Donsker.

(v) If ‖P‖F < ∞ and g is a uniformly bounded, measurable function,
then F · g is Donsker.

Proof. For any measurable function f , let ḟ ≡ f − Pf . Also define
Ḟ ≡ {ḟ : f ∈ F} and Ġ ≡ {ḟ : f ∈ G}. Note that for any f ∈ F and g ∈ G,
Gnf = Gnḟ , Gng = Gnġ and Gn(f+g) = Gn(ḟ+ġ). Hence F∪G is Donsker
if and only if Ḟ ∪ Ġ is Donsker; and, similarly, F +G is Donsker if and only
Ḟ + Ġ is Donsker. Clearly, ‖P‖Ḟ∪Ġ = 0. Hence Lipschitz continuity of the
map (x, y) �→ x+ y on R2 yields that Ḟ + Ġ is Donsker, via theorem 9.30.
Hence also F + G is Donsker. Since Ḟ ∪ Ġ is contained in the union of
Ḟ ∪{0} and Ġ ∪ {0}, Ḟ ∪ Ġ is Donsker and hence so is F ∪G. Thus part (i)
follows.
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Proving parts (ii) and (iv) is saved as an exercise. Part (iii) follows since
the map (x, y) �→ xy is Lipschitz continuous on bounded subsets of R2.
For part (v), note that for any f1, f2 ∈ F , |f1(x)g(x) − f2(x)g(x)| ≤
‖g‖∞|f1(x) − f2(x)|. Hence φ ◦ {F , {g}}, where φ(x, y) = xy, is Lipschitz
continuous in the required manner.�

9.5 Proofs

Proof of theorem 9.3. Let C denote the set of all subgraphs Cf of func-
tions f ∈ F . Note that for any probability measure Q on X and any
f, g ∈ F ,

Q|f − g| =
∫
X

∫
R

|1{t < f(x)} − 1{t < g(x)}| dtQ(dx)

= (Q× λ)(CfΔCg),

where λ is Lebesgue measure, AΔB ≡ A∪B−A∩B for any two sets A,B,
and the second equality follows from Fubini’s theorem. Construct a proba-
bility measure P on X×R by restrictingQ×λ to the set {(x, t) : |t| ≤ F (x)}
and letting P = (Q × λ)/(2‖F‖Q,1). Now Q|f − g| = 2‖F‖Q,1P |1{Cf} −
1{Cg}|. Thus, by theorem 9.2 above,

N(ε2‖F‖Q,1,F , L1(Q)) = N(ε, C, L1(P ))(9.6)

≤ KV (C)(4e)V (C)

(
1
ε

)V (C)−1

.

For r > 1, we have

Q|f − g|r ≤ Q
{
|f − g|(2F )r−1

}
= 2r−1R|f − g|QF r−1,

where R is the probability measure with density F r−1/QF r−1 with respect
to Q. Thus

‖f − g‖Q,r ≤ 21−1/r‖f − g‖1/r
R,1

(
QF r−1

)1/r

= 21−1/r‖f − g‖1/r
R,1‖F‖Q,r

(
QF r−1

QF r

)1/r

,

which implies
‖f − g‖Q,r
2‖F‖Q,r

≤
(
‖f − g‖R,1
2‖F‖R,1

)1/r

.

Hence N(ε2‖F‖Q,r,F , Lr(Q)) ≤ N(εr2‖F‖R,1,F , L1(R)). Since (9.6) ap-
plies equally well with Q replaced by R, we now have that
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N(ε2‖F‖Q,r,F , Lr(Q)) ≤ KV (C)(4e)V (C)

(
1
ε

)r(V (C)−1)

.

The desired result now follows by bringing the factor 2 in the left-hand-side
over to the numerator of 1/ε in the right-hand-side.�

Proof of lemma 9.9. We leave it as an exercise to show that parts (i)
and (ii) follow from parts (ii) and (iii) of lemma 9.7. To prove (iii), note
first that the sets {x : f(x) > 0} are (obviously) one-to-one images of the
sets {(x, 0) : f(x) > 0} which are the intersections of the open subgraphs
{(x, t) : f(x) > t} with the set X × {0}. Since a single set has VC index
1, the result now follows by applying (ii) and then (iv) of lemma 9.7. The
subgraphs of −F are the images of the open supergraphs {(x, t) : t > f(x)}
under the one-to-one map (x, t) �→ (x,−t). Since the open supergraphs are
the complements of the closed subgraphs {(x, t) : t ≥ f(x)}, they have the
same VC-index as F by lemma 9.32 below and by part (i) of lemma 9.7.

Part (v) follows from the fact that F + g shatters a given set of points
(x1, t1), . . . , (xn, tn) if and only if F shatters (x1, t

′
1), . . . , (xn, t

′
n), where

t′i = ti − g(xi), 1 ≤ i ≤ n. For part (vi), note that for any f ∈ F the
subgraph of fg is the union of the sets C+

f ≡ {(x, t) : t < f(x)g(x), g(x) >
0}, C−

f ≡ {(x, t) : t < f(x)g(x), g(x) < 0} and C0
f ≡ {(x, t) : t < 0, g(x) =

0}. Define C+ ≡ {C+
f : f ∈ F}, C− ≡ {C−

f : f ∈ F} and C0 ≡ {C0
f :

f ∈ F}. By exercise 9.6.6 below, it suffices to show that these three classes
are VC on the respective disjoint sets X ∩ {x : g(x) > 0} × R, X ∩ {x :
g(x) < 0} × R and X ∩ {x : g(x) = 0} × R, with respective VC indices
bounded by VF , VF and 1. Consider first C+ on X ∩ {x : g(x) < 0}. Note
that the subset (x1, t1), . . . , (xm, tm) is shattered by C+ if and only if the
subset (x1, t1/g(x1)), . . . , (xm, tm/g(xm)) is shattered by the subgraphs of
F . Thus the VC-index of C+ on the relevant subset of X × R is VF . The
same VC-index occurs for C−, but the VC-index for C0 is clearly 1. This
concludes the proof of (vi).

For (vii), the result follows from part (vi) of lemma 9.7 since the sub-
graphs of the class F ◦ψ are the inverse images of the subgraphs of F uner
the map (z, t) �→ (ψ(z), t). For part (viii), suppose that the subgraphs of
φ ◦ F shatter the set of points (x1, t1), . . . , (xn, tn). Now choose f1, . . . , fm
from F so that the subgraphs of the functions φ ◦ fj pick out all m = 2n

subsets. For each 1 ≤ i ≤ n, define si to be the largest value of fj(xi) over
those j ∈ {1, . . . ,m} for which φ(fj(xi)) ≤ ti. Now note that fj(xi) ≤ si
if and only if φ(fj(xi)) ≤ ti, for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. Hence the
subgraphs of f1, . . . , fm shatter the points (x1, s1), . . . , (xn, sn).�

Proof of lemma 9.11. First consider the class H+,r of monotone in-
creasing, right-continuous functions h : R �→ [0, 1]. For each h ∈ H+,r,
define h−1(t) ≡ inf{x : h(x) ≥ t}, and note that for any x, t ∈ R,
h(x) ≥ t if and only if x ≥ h−1(t). Thus the class of indicator functions
{1{h(x) ≥ t} : h ∈ H+,r} =

{
1{x ≥ h−1(t)} : h ∈ H+,r

}
⊂ {1{x ≥ t} : t ∈

R}. Since the last class of sets has VC index 2, the first class is also VC
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with index 2. Since each function h ∈ H+,r is the pointwise limit of the
sequence

hm =
m∑
j=1

1
m

1
{
h(x) ≥ j

m

}
,

we have that H+,r is contained in the closed convex hull of a VC-subgraph
class with VC index 2. Thus, by corollary 9.5, we have for all 0 < ε < 1,

sup
Q

logN(ε,H+,r, L2(Q)) ≤ K0

ε
,

where the supremum is taken over all probability measures Q and the con-
stant K0 is universal. Now consider the class H+,l of monotone increasing,
left-continuous functions, and define h̃−1(x) ≡ sup{x : h(x) ≤ t}. Now note
that for any x, t ∈ R, h(x) > t if and only if x > h̃−1(t). Arguing as before,
we deduce that {1{h(x) > t} : h ∈ H+,l} is a VC-class with index 2. Since
each h ∈ H+,l is the pointwise limit of the sequence

hm =
m∑
j=1

1
m

1
{
h(x) >

j

m

}
,

we can again apply corollary 9.5 to arrive at the same uniform entropy
bound we arrived at for H+,r.

Now let H+ be the class of all monotone increasing functions h : R �→
[0, 1], and note that each h ∈ H+ can be written as hr+hl, where hr ∈ H+,r

and hl ∈ H+,l. Hence for any probability measure Q and any h(1), h(2) ∈
H+, ‖h(1)−h(2)‖Q,2 ≤ ‖h(1)

r −h(2)
r ‖Q,r+‖h(1)

l −h(2)
l ‖Q,2, where h(1)

r , h
(2)
r ∈

H+,r and h
(1)
l , h

(2)
l ∈ H+,l. Thus N(ε,H+, L2(Q)) ≤ N(ε/2,H+,r, L2(Q))

×N(ε/2,H+,l, L2(Q)), and hence

sup
Q

logN(ε,H+, L2(Q)) ≤ K1

ε
,

where K1 = 4K0. Since any monotone decreasing function g : R �→ [0, 1]
can be written as 1 − h, where h ∈ H+, the uniform entropy numbers for
the class of all monotone functions f : R �→ [0, 1], which we denote F ,
is log(2) plus the uniform entropy numbers for H+. Since 0 < ε < 1, we
obtain the desired conclusion given in the statement of the lemma, with
K =

√
2K1 =

√
32K0.�

Lemma 9.32 Let F be a set of measurable functions on X . Then the
closed subgraphs have the same VC-index as the open subgraphs.

Proof. Suppose the closed subgraphs (the subgraphs of the form {(x, t) :
t ≤ f(x)}) shatter the set of points (x1, t1), . . . , (xn, tn). Now select out of
F functions f1, . . . , fm whose closed subgraphs shatter all m = 2n subsets.
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Let ε = (1/2) inf{ti − fj(xi) : ti − fj(xi) > 0}, and note that the open
subgraphs (the subgraphs of the form {(x, t), t < f(x)}) of the f1, . . . , fm
shatter the set of points (x1, t1 − ε), . . . , (xn, tn − ε). This follows since,
by construction, ti − ε ≥ fj(xi) if and only if ti > fj(xi), for all 1 ≤
i ≤ n and 1 ≤ j ≤ m. Now suppose the open subgraphs shatter the set
of points (x1, t1), . . . , (xn, tn). Select out of F functions f1, . . . , fm whose
open subgraphs shatter all m = 2n subsets, and let ε = (1/2) inf{fj(xi) −
ti : fj(xi) − ti > 0}. Note now that the closed subgraphs of f1, . . . , fm
shatter the set of points (x1, t1 + ε), . . . , (xn, tn+ ε), since, by construction,
ti < fj(xi) if and only if ti + ε ≤ fj(xi). Thus the VC-indices of open and
closed subgraphs are the same.�

9.6 Exercises

9.6.1. Show that sconvF ⊂ convG, where G = F ∪ {−F} ∪ {0}.

9.6.2. Show that the expression N(ε‖aF‖bQ,r, aF , Lr(bQ)) does not de-
pend on the constants 0 < a, b <∞, where 1 ≤ r < ∞.

9.6.3. Prove corollary 9.5.

9.6.4. In the proof of lemma 9.7, verify that part (iii) follows from parts (i)
and (ii).

9.6.5. Show that parts (i) and (ii) of lemma 9.9 follow from parts (ii)
and (iii) of lemma 9.7.

9.6.6. Let X = ∪mi=1Xi, where the Xi are disjoint; and assume Ci is a
VC-class of subsets of Xi, with VC-index Vi, 1 ≤ i ≤ m. Show that �mi=1Ci
is a VC-class in X with VC-index V1 + · · · + Vm −m+ 1. Hint: Note that
C1 ∪ X2 and X1 ∪ C2 are VC on X1 ∪X2 with respective indices V1 and V2.
Now use part (ii)—not part (iii)—of lemma 9.7 to show that C1 �C2 is VC
on X1 ∪ X2 with VC index V1 + V2 − 1.

9.6.7. Show that if F and G are BUEI with respective envelopes F and
G, then F � G is BUEI with envelope F ∨G.

9.6.8. In the context of the simple linear regression example of section 4.4.1,
verify the following:

(a) Show that both G1 and G2 are Donsker even though neither U nor e
are bounded. Hint: Use BUEI preservation results.

(b) Verify that both

sup
z∈[a+h,b−h]

∣∣∣∣
∫

R

h−1L

(
z − u

h

)
H(du) − Ḣ(z)

∣∣∣∣ = O(h)
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and(
sup

z∈[a,a+h)

∣∣∣Ḣ(z) − Ḣ(a+ h)
∣∣∣
)

∨
(

sup
z∈(b−h,b]

∣∣∣Ḣ(z) − Ḣ(b− h)
∣∣∣
)

= O(h).

(c) Show that F1 is Donsker and F2 is Glivenko-Cantelli.

9.6.9. Prove lemma 9.24.

9.6.10. Consider the class F of all functions f : [0, 1] �→ [0, 1] such that
|f(x) − f(y)| ≤ |x − y|. Show that a set of ε-brackets can be constructed
to cover F with cardinality bounded by exp(C/ε) for some 0 < C < ∞.
Hint: Fix ε > 0, and let n be the smallest integer ≥ 3/ε. For any p =
(k0, . . . , kn) ∈ P ≡ {1, . . . , n}n+1, define the path p̄ to be the collection of
all function in F such that f ∈ p̄ only if f(i/n) ∈ [(ki − 1)/n, ki/n] for all
i = 0 . . . n. Show that for all f ∈ F , if f(i/n) ∈ [j/n, (j + 1)/n], then

f

[
i+ 1
n

]
∈
[
(j − 1) ∨ 0

n
,
(j + 2) ∧ n

n

]

for i, j = 0, . . . , n− 1. Show that this implies that the number of paths of
the form p̄ for p ∈ P needed to “capture” all elements of F is bounded by
n3n. Now show that for each p ∈ P , there exists a pair of right-continuous
“bracketing” functions Lp, Up : [0, 1] �→ [0, 1] such that ∀x ∈ [0, 1], Lp(x) <
Up(x), Up(x) − Lp(x) ≤ 3/n ≤ ε, and Lp(x) ≤ f(x) ≤ Up(x) for all f ∈ p̄.
Now complete the proof.

9.6.11. Show that if F is Donsker with ‖P‖F < ∞ and f ≥ δ for all
f ∈ F and some constant δ > 0, then 1/F ≡ {1/f : f ∈ F} is Donsker.

9.6.12. Complete the proof of corollary 9.31:

1. Prove part (ii). Hint: show first that for any real numbers a1, a2, b1, b2,
|a1 ∧ b1 − a2 ∧ b2| ≤ |a1 − a2| + |b1 − b2|.

2. Prove part (iv).

9.7 Notes

Theorem 9.3 is a minor modification of theorem 2.6.7 of VW. Corollary 9.5,
lemma 9.6 and theorem 9.22 are corollary 2.6.12, lemma 2.6.15 and the-
orem 2.7.11, respectively, of VW. Lemmas 9.7 and 9.9 are modification
of lemmas 2.6.17 and 2.6.18, respectively, of VW. Lemma 9.11 was sug-
gested by example 2.6.21 of VW, and lemma 9.12 is a modification of ex-
ercise 2.6.14 of VW. Parts (i) and (ii) of theorem 9.29 are theorems 2.10.1
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and 2.10.2, respectively, of VW. Corollary 9.31 includes some modifications
of examples 2.10.7, 2.10.8 and 2.10.10 of VW. Lemma 9.32 was suggested
by exercise 2.6.10 of VW. Exercise 9.6.10 is a modification of exercise 19.5
of van der Vaart (1998).

The bounded uniform entropy integral (BUEI) preservation techniques
presented here grew out of the author’s work on estimating equations for
functional data described in Fine, Yan and Kosorok (2004).
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10
Bootstrapping Empirical Processes

The purpose of this chapter is to obtain consistency results for bootstrapped
empirical processes. These results can then be applied to many kinds of
bootstrapped estimators since most estimators can be expressed as func-
tionals of empirical processes. Much of the bootstrap results for such esti-
mators will be deferred to later chapters where we discuss the functional
delta method, Z-estimation and M-estimation. We do, however, present one
specialized result for parametric Z-estimators in section 3 of this chapter
as a practical illustration of bootstrap techniques.

We note that both conditional and unconditional bootstrap consistency
results can be useful depending on the application. For the conditional
bootstrap, the goal is to establish convergence of the conditional law given
the data to an unconditional limit law. This convergence can be either in
probability or outer almost sure. While the later convergence is certainly
stronger, convergence in probability is usually sufficient for statistical ap-
plications.

The best choice of bootstrap weights for a given statistical application
is also an important question, and the answer depends on the application.
While the multinomial bootstrap is conceptually simple, its use in survival
analysis applications may result in too much tied data. In the presence
of censoring, it is even possible that a bootstrap sample could be drawn
which consists of only censored observations. To avoid complications of this
kind, it may be better to use the Bayesian bootstrap (Rubin, 1981). The
weights for the Bayesian bootstrap are ξ1/ξ̄, . . . , ξn/ξ̄, where ξ1, . . . , ξn are
i.i.d. standard exponential (mean and variance 1), independent of the data
X1, . . . , Xn, and where ξ̄ ≡ n−1

∑n
i=1 ξi. Since these weights are strictly
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positive, all observations are represented in each bootstrap realization, and
the aforementioned problem with tied data won’t happen unless the original
data has ties. Both the multinomial and Bayesian bootstraps are included
in the bootstrap weights we discuss in this chapter.

The multinomial weighted bootstrap is sometimes called the nonparamet-
ric bootstrap since it amounts to sampling from the empirical distribution
which is a nonparametric estimate of the true distribution. In contrast, the
parametric bootstrap is obtained by sampling from a parametric estimate
Pθ̂n

of the true distribution, where θ̂n is a consistent estimate of the true
value of θ (see, for example, chapter 1 of Shao and Tu, 1995). A detailed
discussion of the parametric bootstrap is beyond the scope of this chapter.
Another kind of bootstrap is the exchangeable weighted bootstrap, which
we only mention briefly in lemma 10.18 below. This lemma is needed for
the proof of theorem 10.15.

We also note that the asymptotic results of this chapter are all first order,
and in this situation the limiting results do not vary among those schemes
that satisfy the stated conditions. A more refined analysis of differences
between weighting schemes is beyond the scope of this chapter, but such
differences may be important in small samples. A good reference for higher
order properties of the bootstrap is Hall (1992).

The first section of this chapter considers unconditional and conditional
convergence of bootstrapped empirical processes to limiting laws when the
class of functions involved is Donsker. The main result of this section is a
proof of theorems 2.6 and 2.7 of section 2.2.3. At the end of the section, we
present several special continuous mapping results for bootstrapped pro-
cesses. The second section considers parallel results when the function class
involved is Glivenko-Cantelli. In this case, the limiting laws are degenerate,
i.e., constant with probability 1. Such results are helpful for establishing
consistency of bootstrapped estimators. The third section presents the sim-
ple Z-estimator illustration promised above. Throughout this chapter, we
will sometimes for simplicity omit the subscript when referring to a rep-
resentative of an i.i.d. sample. For example, we may use E|ξ| to refer to
E|ξ1|, where ξ1 is the first member of the sample ξ1, . . . , ξn. The context
will make the meaning clear.

10.1 The Bootstrap for Donsker Classes

The overall goal of this section is to prove the validity of the bootstrap
central limit theorems given in theorems 2.6 and 2.7 of chapter 2. Both
unconditional and conditional multiplier central limit theorems play a piv-
otal role in this development and will be presented first. At the end of the
section, we also present several special continuous mapping results which
apply to bootstrapped processes. These results allow the construction of
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asymptotically uniformly valid confidence bands for {Pf : f ∈ F} when F
is Donsker.

10.1.1 An Unconditional Multiplier Central Limit Theorem

In this section, we present a multiplier central limit theorem which forms
the basis for proving the unconditional central limit theorems of the next
section. We also present an interesting corollary. For a real random vari-
able ξ, recall from section 2.2.3 the quantity ‖ξ‖2,1 ≡

∫∞
0

√
P(|ξ| > x)dx.

Exercise 10.5.1 below verifies this is a norm which is slightly larger than
‖ · ‖2. Also recall that δXi is the probability measure that assigns a mass
of 1 to Xi so that Pn = n−1

∑n
i=1 δXi and Gn = n−1/2

∑n
i=1(δXi − P ).

Theorem 10.1 (Multiplier central limit theorem) Let F be a class of
measurable functions, and let ξ1, . . . , ξn be i.i.d. random variables with
mean zero, variance 1, and with ‖ξ‖2,1 < ∞, independent of the sample
data X1, . . . , Xn. Let G′

n ≡ n−1/2
∑n

i=1 ξi(δXi − P ) and G′′
n ≡ n−1/2

∑n
i=1

(ξi − ξ̄)δXi , where ξ̄ ≡ n−1
∑n

i=1 ξi. Then the following are equivalent:

(i) F is P -Donsker;

(ii) G′
n converges weakly to a tight process in �∞(F);

(iii) G′
n � G in �∞(F);

(iv) G′′
n � G in �∞(F).

Before giving the proof of this theorem, we will need the following tool.
This lemma is lemma 2.9.1 of VW, and we give it without proof:

Lemma 10.2 (Multiplier inequalities) Let Z1, . . . , Zn be i.i.d. stochastic
processes, with index F such that E∗‖Z‖F < ∞, independent of the i.i.d.
Rademacher variables ε1, . . . , εn. Then for every i.i.d. sample ξ1, . . . , ξn
of real, mean-zero random variables independent of Z1, . . . , Zn, and any
1 ≤ n0 ≤ n,

1
2
‖ξ‖1E∗

∥∥∥∥∥ 1√
n

n∑
i=1

εiZi

∥∥∥∥∥
F

≤ E∗

∥∥∥∥∥ 1√
n

n∑
i=1

ξiZi

∥∥∥∥∥
F

≤ 2(n0 − 1)E∗‖Z‖FE max
1≤i≤n

|ξi|√
n

+2
√

2‖ξ‖2,1 max
n0≤k≤n

E∗

∥∥∥∥∥ 1√
k

k∑
i=n0

εiZi

∥∥∥∥∥
F

.

When the ξi are symmetrically distributed, the constants 1/2, 2 and 2
√

2
can all be replaced by 1.
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Proof of theorem 10.1. Note that the processes G, Gn, G′
n and G′′

n do
not change if they are indexed by Ḟ ≡ {f − Pf : f ∈ F} rather than F .
Thus we can assume throughout the proof that ‖P‖F = 0 without loss of
generality.

(i)⇔(ii): Convergence of the finite-dimensional marginal distributions of
Gn and G′

n is equivalent to F ⊂ L2(P ), and thus it suffices to show that
the asymptotic equicontinuity conditions of both processes are equivalent.
By lemma 8.17, if F is Donsker, then P ∗(F > x) = o(x−2) as x → ∞.
Similarly, if ξ · F is Donsker, then P ∗(|ξ| × F > x) = o(x−2) as x → ∞.
In both cases, P ∗F < ∞. Since the variance of ξ is finite, we have by
exercise 10.5.2 below that E∗ max1≤i≤n |ξi|/

√
n → 0. Combining this with

the multiplier inequality (lemma 10.2), we have

1
2
‖ξ‖1 lim sup

n→∞
E∗

∥∥∥∥∥ 1√
n

n∑
i=1

εif(Xi)

∥∥∥∥∥
Fδ

≤ lim sup
n→∞

E∗

∥∥∥∥∥ 1√
n

n∑
i=1

ξif(Xi)

∥∥∥∥∥
Fδ

≤ 2
√

2‖ξ‖2,1 sup
k≥n0

E∗

∥∥∥∥∥ 1√
k

k∑
i=1

εif(Xi)

∥∥∥∥∥
Fδ

,

for every δ > 0 and n0 ≤ n. By the symmetrization theorem (theorem 8.8),
we can remove the Rademacher variables ε1, . . . , εn at the cost of chang-
ing the constants. Hence, for any sequence δn ↓ 0, E∗‖n−1/2

∑n
i=1(δXi −

P )‖Fδn
→ 0 if and only if E∗‖n−1/2

∑n
i=1 ξi(δXi − P )‖Fδn

→ 0. By lemma
8.17, these mean versions of the asymptotic equicontinuity conditions imply
the probability versions, and the desired results follow. We have actually
proved that the first three assertions are equivalent.

(iii)⇒(iv): Note that by the equivalence of (i) and (iii), F is Glivenko-
Cantelli. Since G′

n − G′′
n =

√
nξ̄Pn, we now have that ‖G′

n − G′′
n‖F

P→ 0.
Thus (iv) follows.

(iv)⇒(i): Let (Y1, . . . , Yn) be an independent copy of (X1, . . . , Xn), and
let (ξ̃1, . . . , ξ̃n) be an independent copy of (ξ1, . . . , ξn), so that (ξ1, . . . , ξn, ξ̃1,
. . . , ξ̃n) is independent of (X1, . . . , Xn, Y1, . . . , Yn). Let ξ̄ be the pooled
mean of the ξis and ξ̃is; set

G′′
2n = (2n)−1/2

(
n∑
i=1

(ξi − ξ̄)δXi +
n∑
i=1

(ξ̃i − ξ̄)δYi

)

and define

G̃′′
n ≡ (2n)−1/2

(
n∑
i=1

(ξ̃i − ξ̄)δXi +
n∑
i=1

(ξi − ξ̄)δYi

)
.

We now have that both G′′
2n � G and G̃′′

2n � G in �∞(F).
Thus, by the definition of weak convergence, we have that (F , ρP ) is

totally bounded and that for any sequence δn ↓ 0 both ‖G′′
2n‖Fδn

P→ 0 and
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‖G̃′′
2n‖Fδn

P→ 0. Hence also ‖G′′
2n − G̃′′

2n‖Fδn

P→ 0. However, since

G′′
2n − G̃′′

2n = n−1/2
n∑
i=1

(ξ − ξ̃)√
2

(f(Xi) − f(Yi)) ,

and since the weights ξ̌i ≡ (ξi − ξ̃i)/
√

2 satisfy the moment conditions for
the theorem we are proving, we now have the Ǧn ≡ n−1/2

∑n
i=1(f(Xi) −

f(Yi)) �
√

2G in �∞(F) by the already proved equivalence between (iii)
and (i). Thus, for any sequence δn ↓ 0, E∗‖Ǧn‖Fδn

→ 0. Since also

EY

∣∣∣∣∣
n∑
i=1

f(Xi) − f(Yi)

∣∣∣∣∣ ≥
∣∣∣∣∣
n∑
i=1

f(Xi) − Ef(Yi)

∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣ ,
we can invoke Fubini’s theorem (lemma 6.14) to yield

E∗‖Ǧn‖Fδn
≥ E∗‖Gn‖Fδn

→ 0.

Hence F is Donsker.�
We now present the following interesting corollary which shows the pos-

sibly unexpected result that the multiplier empirical process is asymptot-
ically independent of the usual empirical process, even though the same
data X1, . . . , Xn are used in both processes:

Corollary 10.3 Assume the conditions of theorem 10.1 hold and that
F is Donsker. Then (Gn,G

′
n,G

′′
n)� (G,G′,G′, ) in [�∞(F)]3, where G and

G′ are independent P -Brownian bridges.

Proof. By the preceding theorem, the three processes are asymptotically
tight marginally and hence asymptotically tight jointly. Since the first pro-
cess is uncorrelated with the second process, the limiting distribution of
the first process is independent of the limiting distribution of the second
process. As argued in the proof of the multiplier central limit theorem, the
uniform difference between G′

n and G′′
n goes to zero in probability, and thus

the remainder of the corollary follows.�

10.1.2 Conditional Multiplier Central Limit Theorems

In this section, the convergence properties of the multiplier processes in
the previous section are studied conditional on the data. This yields in-
probability and outer-almost-sure conditional multiplier central limit the-
orems. These results are one step closer to the bootstrap validity results
of the next section. For a metric space (D, d), define BL1(D) to be the
space of all functions f : D �→ R with Lipschitz norm bounded by 1, i.e.,
‖f‖∞ ≤ 1 and |f(x)−f(y)| ≤ d(x, y) for all x, y ∈ D. In the current set-up,
D = �∞(F), for some class of measurable functions F , and d is the corre-
sponding uniform metric. As we did in section 2.2.3, we will use BL1 as
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shorthand for BL1(�∞(F)). The conditional weak convergence arrows we
use in theorems 10.4 and 10.6 below were also defined in section 2.2.3.

We now present the in-probability conditional multiplier central limit
theorem:

Theorem 10.4 Let F be a class of measurable functions, and let ξ1, . . . ,
ξn be i.i.d. random variables with mean zero, variance 1, and ‖ξ‖2,1 < ∞,
independent of the sample data X1, . . . , Xn. Let G′

n, G′′
n and ξ̄ be as defined

in theorem 10.1. Then the following are equivalent:

(i) F is Donsker;

(ii) G′
n

P�
ξ

G in �∞(F) and G′
n is asymptotically measurable.

(iii) G′′
n

P�
ξ

G in �∞(F) and G′′
n is asymptotically measurable.

Before giving the proof of this theorem, we make a few points and
present lemma 10.5 below to aid in the proof. In the above theorem,
Eξ denotes taking the expectation conditional on X1, . . . , Xn. Note that
for a continuous function h : �∞(F) �→ R, if we fix X1, . . . , Xn, then
(a1, . . . , an) �→ h(n−1/2

∑n
i=1 ai(δXi − P )) is a measurable map from Rn

to R, provided ‖f(X) − Pf‖∗F < ∞ almost surely. This last inequality is
tacetly assumed so that the empirical processes under investigation reside
in �∞(F). Thus the expectation Eξ in conclusions (ii) and (iii) is proper.
The following lemma is a conditional multiplier central limit theorem for
i.i.d. Euclidean data:

Lemma 10.5 Let Z1, . . . , Zn be i.i.d. Euclidean random vectors, with
EZ = 0 and E‖Z‖2 < ∞, independent of the i.i.d. sequence of real ran-
dom variables ξ1, . . . , ξn with Eξ = 0 and Eξ2 = 1. Then, conditionally
on Z1, Z2, . . ., n−1/2

∑n
i=1 ξiZi � N(0, covZ), for almost all sequences

Z1, Z2, . . ..

Proof. By the Lindeberg central limit theorem, convergence to the given
normal limit will occur for every sequence Z1, Z2, . . . for which

n−1
n∑
i=1

ZiZ
T
i → covZ

and

1
n

n∑
i=1

‖Zi‖2Eξξ2i 1{|ξi| × ‖Zi‖ > ε
√
n} → 0,(10.1)

for all ε > 0, where Eξ is the conditional expectation given the Z1, Z2, . . ..
The first condition is true for almost all sequences by the strong law of
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large numbers. We now evaluate the second condition. Fix ε > 0. Now, for
any τ > 0, the sum in (10.1) is bounded by

1
n

n∑
i=1

‖Zi‖2E[ξ21{|ξ| > ε/τ}] + 1
n

n∑
i=1

‖Zi‖21{‖Zi‖ >
√
nτ}.

The first sum has an arbitrarily small upper bound in the limit if we choose
sufficiently small τ . Since E‖Z‖2 < ∞, the second sum will go to zero for
almost all sequences Z1, Z2, . . .. Thus, for almost all sequences Z1, Z2, . . .,
(10.1) will hold for any ε > 0. For, the intersection of the two sets of
sequences, all required conditions hold, and the desired result follows.�

Proof of theorem 10.4. Since the processes G, Gn, G′
n and G′′

n are
unaffected if the class F is replaced with {f −Pf : f ∈ F}, we will assume
‖P‖F = 0 throughout the proof, without loss of generality.

(i)⇒(ii): If F is Donsker, the sequence G′
n converges in distribution to

a Brownian bridge process by the unconditional multiplier central limit
theorem (theorem 10.1). Thus G′

n is asymptotically measurable. Now, by
lemma 8.17, a Donsker class is totally bounded by the semimetric ρP (f, g) ≡
(P [f−g]2)1/2. For each fixed δ > 0 and f ∈ F , denote Πδf to be the closest
element in a given, finite δ-net (with respect to the metric ρP ) for F . We
have by continuity of the limit process G, that G ◦ Πδ → G, almost surely,
as δ ↓ 0. Hence, for any sequence δn ↓ 0,

sup
h∈BL1

|Eh(G ◦ Πδn) − Eh(G)| → 0.(10.2)

By lemma 10.5 above, we also have for any fixed δ > 0 that

sup
h∈BL1

|Eξh(G′
n ◦ Πδ) − Eh(G ◦ Πδ)| → 0,(10.3)

as n → ∞, for almost all sequences X1, X2, . . .. To see this, let f1, . . . , fm
be the δ-mesh of F that defines Πδ. Now define the map A : Rm �→ �∞(F)
by (A(y))(f) = yk, where y = (y1, . . . , ym) and the integer k satisfies
Πδf = fk. Now h(G ◦ Πδ) = g(G(f1), . . . ,G(fm)) for the function g :
Rm �→ R defined by g(y) = h(A(y)). It is not hard to see that if h is
bounded Lipschitz on �∞(F), then g is also bounded Lipschitz on Rm with
a Lipschitz norm no larger than the Lipschitz norm for h. Now (10.3) follows
from lemma 10.5. Note also that BL1(Rm) is separable with respect to the
metric ρ(m)(f, g) ≡

∑∞
i=1 2−i supx∈Ki

|f(x) − g(x)|, where K1 ⊂ K2 ⊂
· · · are compact sets satisfying ∪∞

i=1Ki = Rm. Hence, since G′
n ◦ Πδ and

G◦Πδ are both tight, the supremum in 10.3 can be replaced by a countable
supremum. Thus the displayed quantity is measurable, since h(G′

n ◦ Πδ) is
measurable.

Now, still holding δ fixed,
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sup
h∈BL1

|Eξh(G′
n ◦ Πδ) − Eξh(G′

n)| ≤ sup
h∈BL1

Eξ |h(G′
n ◦ Πδ) − h(G′

n)|

≤ Eξ ‖G′
n ◦ Πδ − G′

n‖
∗
F

≤ Eξ‖G′
n‖∗Fδ

,

where Fδ ≡ {f − g : ρP (f, g) < δ, f, g ∈ F}. Thus the outer expectation of
the left-hand-side is bounded above by E∗‖G′

n‖Fδ
. As we demonstrated in

the proof of theorem 10.1, E∗‖G′
n‖Fδn

→ 0, for any sequence δn ↓ 0. Now,
we choose the sequence δn so that it goes to zero slowly enough to ensure
that (10.3) still holds with δ replaced by δn. Combining this with (10.2),
the desired result follows.

(ii)⇒(i): Let h(G′
n)

∗ and h(G′
n)∗ denote measurable majorants and mi-

norants with respect to (ξ1, . . . , ξn, X1, . . . , Xn) jointly. We now have, by
the triangle inequality and Fubini’s theorem (lemma 6.14),

|E∗h(G′
n) − Eh(G)| ≤ |EXEξh(G′

n)
∗ − E∗

XEξh(G′
n)|

+E∗
X |Eξh(G′

n) − Eh(G)|,

where EX denotes taking the expectation over X1, . . . , Xn. By (ii) and
the dominated convergence theorem, the second term on the right side
converges to zero for all h ∈ BL1. Since the first term on the right is
bounded above by EXEξh(G′

n)
∗ − EXEξh(G′

n)∗, it also converges to zero
since G′

n is asymptotically measurable. It is easy to see that the same
result holds true if BL1 is replaced by the class of all bounded, Lipschitz
continuous nonnegative functions h : �∞(F) �→ R, and thus G′

n � G

unconditionally by the Portmanteau theorem (theorem 7.6). Hence F is
Donsker by the converse part of theorem 10.1.

(ii)⇒(iii): Since we can assume ‖P‖F = 0, we have

|h(G′
n) − h(G′′

n)| ≤ |ξ̄Gn|.(10.4)

Moreover, since (ii) also implies (i), we have that E∗‖ξ̄Gn‖F → 0 by
lemma 8.17. Thus suph∈BL1

|Eξh(G′
n) − Eξh(G′′

n)| → 0 in outer proba-
bility. Since (10.4) also implies that G′′

n is asymptotically measurable, (iii)
follows.

(iii)⇒(i): Arguing as we did in the proof that (ii)⇒(i), it is not hard to
show that G′′

n � G unconditionally. Now theorem 10.1 yields that F is
Donsker.�

We now present the outer-almost-sure conditional multiplier central limit
theorem:

Theorem 10.6 Assume the conditions of theorem 10.4. Then the fol-
lowing are equivalent:

(i) F is Donsker and P ∗‖f − Pf‖2
F < ∞;

(ii) G′
n

as∗�
ξ

G in �∞(F).
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(iii) G′′
n

as∗�
ξ

G in �∞(F).

Proof. The equivalence of (i) and (ii) is given in theorem 2.9.7 of VW,
and we omit its proof.

(ii)⇒(iii): As in the proof of theorem 10.4, we assume that ‖P‖F = 0
without loss of generality. Since

|h(G′
n) − h(G′′

n)| ≤ |
√
nξ̄| × ‖Pn‖F ,(10.5)

for any h ∈ BL1, we have

sup
h∈BL1

|Eξh(G′
n) − Eξ(G′′

n)| ≤ Eξ|
√
nξ̄| × ‖Pn‖F ≤ ‖Pn‖F as∗→ 0,

since the equivalence of (i) and (ii) implies that F is both Donsker and
Glivenko-Cantelli. Hence

sup
h∈BL1

|Eξh(G′′
n) − Eh(G)| as∗→ 0.

The relation (10.5) also yields that Eξh(G′′
n)

∗−Eξh(G′′
n)∗

as∗→ 0, and thus (iii)
follows.

(iii)⇒(ii): Let h ∈ BL1. Since Eξh(G′′
n)

∗−Eh(G) as∗→ 0, we have E∗h(G′′
n) →

Eh(G). Since this holds for all h ∈ BL1, we now have that G′′
n � G uncon-

ditionally by the Portmanteau theorem (theorem 7.6). Now we can invoke
theorem 10.4 to conclude that F is both Donsker and Glivenko-Cantelli.
Now (10.5) implies (ii) by using an argument almost identical to the one
used in the previous paragraph.�

10.1.3 Bootstrap Central Limit Theorems

Theorems 10.4 and 10.6 will now be used to prove theorems 2.6 and 2.7
from section 2.2.3. Recall that the multinomial bootstrap is obtained by
resampling from the data X1, . . . , Xn, with replacement, n times to ob-
tain a bootstrapped sample X∗

1 , . . . , X
∗
n. The empirical measure P̂∗

n of
the bootstrapped sample has the same distribution—given the data—as
the measure P̂n ≡ n−1

∑n
i=1WniδXi , where Wn ≡ (Wn1, . . . ,Wnn) is a

multinomial(n, n−1, . . . , n−1) deviate independent of the data. As in sec-
tion 2.2.3, let P̂n ≡ n−1

∑n
i=1WniδXi and Ĝn ≡ √

n(P̂n − Pn). Also recall
the definitions P̃n ≡ n−1

∑n
i=1(ξ/ξ̄)δXi and G̃n ≡

√
n(μ/τ)(P̃n−Pn), where

the weights ξ1, . . . , ξn are i.i.d. nonnegative, independent of X1, . . . , Xn,
with mean 0 < μ < ∞ and variance 0 < τ2 < ∞, and with ‖ξ‖2,1 < ∞.
When ξ̄ = 0, we define P̃n to be zero. Note that the weights ξ1, . . . , ξn
in this section must have μ substracted from them and then divided by τ
before they satisfy the criteria of the multiplier weights in the previous
section.
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Proof of theorem 2.6. The equivalence of (i) and (ii) follows from the-
orem 3.6.1 of VW, which proof we omit. We note, however, that a key com-
ponent of this proof is a clever approximation of the multinomial weights
with i.i.d. Poisson mean 1 weights. We will use this approximation in our
proof of theorem 10.15 below.

We now prove the equivalence of (i) and (iii). Let ξ◦i ≡ τ−1(ξi − μ), i =
1, . . . , n, and define G◦

n ≡ n−1/2
∑n

i=1(ξ
◦
i −ξ̄◦)δXi , where ξ̄◦ ≡ n−1

∑n
i=1 ξ

◦
i .

The basic idea is to show the asymptotic equivalence of G̃n and G◦
n. Then

theorem 10.4 can be used to establish the desired result. Accordingly,

G◦
n − G̃n =

(
1 − μ

ξ̄

)
G◦
n =

(
ξ̄

μ
− 1

)
G̃n.(10.6)

First, assume that F is Donsker. Since the weights ξ◦1 , . . . , ξ
◦
n satisfy the

conditions of the unconditional multiplier central limit theorem, we have

that G◦
n � G. Theorem 10.4 also implies that G◦

n

P�
ξ

G. Now (10.6) can be

applied to verify that ‖G̃n − G◦
n‖F

P→ 0, and thus G̃n is asymptotically
measurable and

sup
h∈BL1

∣∣∣Eξh(G◦
n) − Eξh(G̃n)

∣∣∣ P→ 0.

Thus (i)⇒(iii).

Second, assume that G̃n
P�
ξ

G. It is not hard to show, arguing as we did

in the proof of theorem 10.4 for the implication (ii)⇒(i), that G̃n � G in
�∞(F) unconditionally. By applying (10.6) again, we now have that ‖G◦

n−
G̃n‖F P→ 0, and thus G◦

n � G in �∞(F) unconditionally. The unconditional
multiplier central limit theorem now verifies that F is Donsker, and thus
(iii)⇒(i).�

Proof of theorem 2.7. The equivalence of (i) and (ii) follows from theo-
rem 3.6.2 of VW, which proof we again omit. We now prove the equivalence
of (i) and (iii).

First, assume (i). Then G◦
n

as∗�
ξ

G by theorem 10.6. Fix ρ > 0, and note

that by using the first equality in (10.6), we have for any h ∈ BL1 that

∣∣∣h(G̃n) − h(G◦
n)
∣∣∣ ≤ 2 × 1

{∣∣∣∣1 − μ

ξ̄

∣∣∣∣ > ρ

}
+ (ρ‖G◦

n‖F) ∧ 1.(10.7)

The first term on the right as∗→ 0. Since the map ‖ · ‖F ∧ 1 : �∞(F) �→ R is
in BL1, we have by theorem 10.6 that Eξ [(ρ‖G◦

n‖F) ∧ 1] as∗→ E [‖ρG‖F ∧ 1].
Let the sequence 0 < ρn ↓ 0 converge slowly enough so that that the
first term on the right in (10.7) as∗→ 0 after replacing ρ with ρn. Since
E [‖ρnG‖F ∧ 1] → 0, we can apply Eξ to both sides of (10.7)—after replac-
ing ρ with ρn—to obtain
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sup
h∈BL1

∣∣∣h(G̃n) − h(G◦
n)
∣∣∣ as∗→ 0.

Combining the fact that h(G◦
n)∗−h(G◦

n)∗
as∗→ 0 with additional applications

of (10.7) yields h(G̃n)∗ − h(G̃n)∗
as∗→ 0. Since h was arbitrary, we have

established that G̃n
as∗�
ξ

G, and thus (iii) follows.

Second, assume (iii). Fix ρ > 0, and note that by using the second
equality in (10.6), we have for any h ∈ BL1 that

∣∣∣h(G◦
n) − h(G̃n)

∣∣∣ ≤ 2 × 1
{∣∣∣∣ ξ̄μ − 1

∣∣∣∣ > ρ

}
+

(
ρ‖G̃n‖F

)
∧ 1.

Since the first term on the right as∗→ 0, we can use virtually identical argu-
ments to those used in the previous paragraph—but with the roles of G◦

n

and G̃n reversed—to obtain that G◦
n

as∗�
ξ

G. Now theorem 10.6 yields that F
is Donsker, and thus (i) follows.�

10.1.4 Continuous Mapping Results

We now assume a more general set-up, where X̂n is a bootstrapped pro-
cess in a Banach space (D, ‖ · ‖) and is composed of the sample data
Xn ≡ (X1, . . . , Xn) and a random weight vector Mn ∈ Rn independent
of Xn. We do not require that X1, . . . , Xn be i.i.d. In this section, we ob-
tain two continuous mapping results. The first result, proposition 10.7,
is a simple continuous mapping results for the very special case of Lips-
chitz continuous maps. It is applicable to both the in-probability or outer-
almost-sure versions of bootstrap consistency. An interesting special case
is the map g(x) = ‖x‖. In this case, the proposition validates the use of
the bootstrap to construct asymptotically uniformly valid confidence bands
for {Pf : f ∈ F} whenever Pf is estimated by Pnf and F is P -Donsker.

Now assume that X̂n
P�
M
X and that the distribution of ‖X‖ is continuous.

Lemma 10.11 towards the end of this section reveals that P(‖X̂n‖ ≤ t|Xn)
converges uniformly to P (‖X‖ ≤ t), in probability. A parallel outer almost
sure result holds when X̂n

as∗�
M
X .

The second result, theorem 10.8, is a considerably deeper result for gen-
eral continuous maps applied to bootstraps which are consistent in prob-
ability. Because of this generality, we must require certain measurability
conditions on the map Mn �→ X̂n. Fortunately, based on the discussion in
the paragraph following theorem 10.4 above, these measurability conditions
are easily satisfied when either X̂n = Ĝn or X̂n = G̃n. It appears that other
continuous mapping results for bootstrapped empirical processes hold, such
as for bootstraps which are outer almost surely consistent, but such results
seem to be very challenging to verify.
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Proposition 10.7 Let D and E be Banach spaces, X a tight random
variable on D, and g : D �→ E Lipschitz continuous. We have the following:

(i) If X̂n
P�
M
X, then g(X̂n)

P�
M
g(X).

(ii) If X̂n
as∗�
M
X, then g(X̂n)

as∗�
M
g(X).

Proof. Let c0 < ∞ be the Lipschitz constant for g, and, without loss
of generality, assume c0 ≥ 1. Note that for any h ∈ BL1(E), the map
x �→ h(g(x)) is an element of c0BL1(D). Thus

sup
h∈BL1(E)

∣∣∣EMh(g(X̂n)) − Eh(g(X))
∣∣∣ ≤ sup

h∈c0BL1(D)

∣∣∣EMh(X̂n) − Eh(X)
∣∣∣

= c0 sup
h∈BL1(D)

∣∣∣EMh(X̂n) − Eh(X)
∣∣∣ ,

and the desired result follows by the respective definitions of
P�
M

and
as∗�
M

.�

Theorem 10.8 Let g : D �→ E be continuous at all points in D0 ⊂ D,
where D and E are Banach spaces and D0 is closed. Assume that Mn �→
h(X̂n) is measurable for every h ∈ Cb(D) outer almost surely. Then if

X̂n
P�
M
X in D, where X is tight and P∗(X ∈ D0) = 1, g(X̂n)

P�
M
g(X).

Proof. As in the proof of the implication (ii)⇒(i) of theorem 10.4, we
can argue that X̂n � X unconditionally, and thus g(X̂n) � g(X) uncon-
ditionally by the standard continuous mapping theorem. Moreover, we can
replace E with its closed linear span so that the restriction of g to D0 has an
extension g̃ : D �→ E which is continuous on all of D by Dugundji’s exten-
sion theorem (theorem 10.9 below). Thus (g(X̂n), g̃(X̂n))� (g(X), g̃(X)),
and hence g(X̂n) − g̃(X̂n)

P→ 0. Therefore we can assume without loss of
generality that g is continuous on all of D. We can also assume without loss
of generality that D0 is a separable Banach space since X is tight. Hence
E0 ≡ g(D0) is also a separable Banach space.

Fix ε > 0. There now exists a compact K ⊂ E0 such that P(X �∈ K) < ε.
By theorem 10.9 below, the proof of which is given in sectoin 10.4, we know
there exists an integer k < ∞, elements z1, . . . , zk ∈ C[0, 1], continuous
functions f1, . . . , fk : E �→ R, and a Lipschitz continuous function J :
lin (z1, . . . , zk) �→ E, such that the map x �→ Tε(x) ≡ J

(∑k
j=1 zjfj(x)

)
has domain E and range ⊂ E and satisfies supx∈K ‖Tε(x) − x‖ < ε. Let
BL1 ≡ BL1(E). We now have
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sup
h∈BL1

∣∣∣EMh(g(X̂n)) − Eh(g(X))
∣∣∣

≤ sup
h∈BL1

∣∣∣EMh(Tεg(X̂n)) − Eh(Tεg(X))
∣∣∣

+EM
{∥∥∥Tεg(X̂n) − g(X̂n)

∥∥∥ ∧ 2
}

+ E {‖Tεg(X) − g(X)‖ ∧ 2} .

However, the outer expectation of the second term on the right converges
to the third term, as n → ∞, by the usual continuous mapping theorem.
Thus, provided

sup
h∈BL1

∣∣∣EMh(Tεg(X̂n)) − Eh(Tεg(X))
∣∣∣ P→ 0,(10.8)

we have that

lim sup
n→∞

E∗
{

sup
h∈BL1

∣∣∣EMh(g(X̂n)) − Eh(g(X))
∣∣∣}(10.9)

≤ 2E {‖Tεg(X) − g(X)‖ ∨ 2}
≤ 2E ‖{Tεg(X) − g(X)} 1{g(X) ∈ K}‖ + 4P(g(X) �∈ K)
< 6ε.

Now note that for each h ∈ BL1, h
(
J
(∑k

j=1 zjaj

))
= h̃(a1, . . . , ak) for

all (a1, . . . , ak) ∈ Rk and some h̃ ∈ c0BL1(Rk), where 1 ≤ c0 < ∞ (this
follows since J is Lipschitz continuous and

∥∥∥∑k
j=1 zjaj

∥∥∥ ≤ max1≤j≤k |aj |×∑k
j=1 ‖zj‖). Hence

sup
h∈BL1

∣∣∣EMh(Tεg(X̂n)) − Eh(Tεg(X))
∣∣∣(10.10)

≤ sup
h∈c0BL1(Rk)

∣∣∣EMh(u(X̂n)) − Eh(u(X))
∣∣∣

= c0 sup
h∈BL1(Rk)

∣∣∣EMh(u(X̂n)) − Eh(u(X))
∣∣∣ ,

where x �→ u(x) ≡ (f1(g(x)), . . . , fk(g(x))). Fix any v : Rk �→ [0, 1]
which is Lipschitz continuous (the Lipschitz constant may be > 1). Then,
since X̂n � X unconditionally, E∗

{
EMv(u(X̂n))∗ − EMv(u(X̂n))∗

}
≤

E∗
{
v(u(X̂n))∗ − v(u(X̂n))∗

}
→ 0, where sub- and super- script ∗ denote

measurable majorants and minorants, respectively, with respect to the joint
probability space of (Xn,Mn). Thus∣∣∣EMv(u(X̂n)) − EMv(u(X̂n))∗

∣∣∣ P→ 0.(10.11)

Note that we are using at this point the outer almost sure measurability
of Mn �→ v(u(X̂n)) to ensure that EMv(u(X̂n)) is well defined, even if the
resulting random expectation is not itself measurable.
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Now, for every subsequence n′, there exists a further subsequence n′′ such
that X̂n′′

as∗�
M
X . This means that for this subsequence, the set B of data sub-

sequences {Xn′′ : n ≥ 1} for which EMv(u(X̂n′′))−Ev(u(X)) → 0 has inner
probability 1. Combining this with (10.11) and proposition 7.22, we obtain
that EMv(u(X̂n))−Ev(u(X)) P→ 0. Since v was an arbitrary real, Lipschitz
continuous function on Rk, we now have by part (i) of lemma 10.11 below
followed by lemma 10.12 below, that

sup
h∈BL1(Rk)

∣∣∣EMh(u(X̂n)) − Eh(u(X))
∣∣∣ P→ 0.

Combining this with (10.10), we obtain that (10.8) is satisfied. The desired
result now follows from (10.9), since ε > 0 was arbitrary.�

Theorem 10.9 (Dugundji’s extension theorem) Let X be an arbitrary
metric space, A a closed subset of X, L a locally convex linear space (which
includes Banach vector spaces), and f : A �→ L a continuous map. Then
there exists a continuous extension of f , F : X �→ L. Moreover, F (X) lies
in the closed linear span of the convex hull of f(A).

Proof. This is theorem 4.1 of Dugundji (1951), and the proof can be
found therein.�

Theorem 10.10 Let E0 ⊂ E be Banach spaces with E0 separable and
lin E0 ⊂ E. Then for every ε > 0 and every compact K ⊂ E0, there ex-
ists an integer k < ∞, elements z1, . . . , zk ∈ C[0, 1], continuous functions
f1, . . . , fk : E �→ R, and a Lipschitz continuous function J : lin (z1, . . . , zk) �→
E, such that the map x �→ Tε(x) ≡ J

(∑k
j=1 zjfj(x)

)
has domain E and

range ⊂ E, is continuous, and satisfies supx∈K ‖Tε(x) − x‖ < ε.

The proof of this theorem is given in section 10.4. For the next two
lemmas, we use the usual partial ordering on Rk to define relations between
points, e.g., for any s, t ∈ Rk, s ≤ t is equivalent to s1 ≤ t1, . . . , sk ≤ tk.

Lemma 10.11 Let Xn and X be random variables in Rk for all n ≥ 1.
Define S ⊂ [R ∪ {−∞,∞}]k to be the set of all continuity points of t �→
F (t) ≡ P(X ≤ t) and H to be the set of all Lipschitz continuous functions
h : Rk �→ [0, 1] (the Lipschitz constants may be > 1). Then, provided the
expectations are well defined, we have:

(i) If E[h(Xn)|Yn] P→ Eh(X) for all h ∈ H, then supt∈A |P(Xn ≤ t|Yn)−
F (t)| P→ 0 for all closed A ⊂ S;

(ii) If E[h(Xn)|Yn] as∗→ Eh(X) for all h ∈ H, then supt∈A |P(Xn ≤ t|Yn)−
F (t)| as∗→ 0 for all closed A ⊂ S.
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Proof. Let t0 ∈ S. For every δ > 0, there exists h1, h2 ∈ H , such that
h1(u) ≤ 1{u ≤ t0} ≤ h2(u) for all u ∈ Rk and E[h2(X) − h1(X)] < δ.
Under the condition in (i), we therefore have that P(Xn ≤ t0|Yn) P→ F (t0),
since δ was arbitrary. The conclusion of (i) follows since this convergence
holds for all t0 ∈ S, since both P(Xn ≤ t|Yn) and F (t) are monotone in
t with range ⊂ [0, 1], and since [0, 1] is compact. The proof for part (ii)
follows similarly.�

Lemma 10.12 Let {Fn} and F be distribution functions on Rk, and let
S ⊂ [R ∪ {−∞,∞}]k be the set of all continuity points of F . Then the
following are equivalent:

(i) supt∈A |Fn(t) − F (t)| → 0 for all closed A ⊂ S.

(ii) suph∈BL1(Rk)

∣∣∫
Rk h(dFn − dF )

∣∣ → 0.

The relatively straightforward proof is saved as exercise 10.5.3.

10.2 The Bootstrap for Glivenko-Cantelli Classes

We now present several results for the bootstrap applied to Glivenko-
Cantelli classes. The primary use of these results is to assist verification of
consistency of bootstrapped estimators. The first theorem (theorem 10.13)
consists of various multiplier bootstrap results, and it is followed by a corol-
lary (corollary 10.14) which applies to certain weighted bootstrap results.
The final theorem of this section (theorem 10.15) gives gives correspond-
ing results for the multinomial bootstrap. On a first reading through this
section, it might be best to skip the proofs and focus on the results and
discussion between the proofs.

Theorem 10.13 Let F be a class of measurable functions, and let ξ1, . . . ,
ξn be i.i.d. nonconstant random variables with 0 < E|ξ| < ∞ and indepen-
dent of the sample data X1, . . . , Xn. Let Wn ≡ n−1

∑n
i=1 ξi(δXi − P ) and

W̃n ≡ n−1
∑n

i=1(ξi− ξ̄)δXi , where ξ̄ ≡ n−1
∑n
i=1 ξi. Then the following are

equivalent:

(i) F is strong Glivenko-Cantelli;

(ii) ‖Wn‖F
as∗→ 0;

(iii) Eξ‖Wn‖F as∗→ 0 and P ∗‖f − Pf‖F < ∞;

(iv) For every η > 0, P (‖Wn‖F > η| Xn) as∗→ 0 and P ∗‖f − Pf‖F < ∞,
where Xn ≡ (X1, . . . , Xn);
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(v) For every η > 0, P (‖Wn‖∗F > η| Xn) as∗→ 0 and P ∗‖f−Pf‖F < ∞, for
some version of ‖Wn‖∗F , where the superscript ∗ denotes a measurable
majorant with respect to (ξ1, . . . , ξn, X1, . . . , Xn) jointly;

(vi) ‖W̃n‖F as∗→ 0;

(vii) Eξ‖W̃n‖F as∗→ 0 and P ∗‖f − Pf‖F < ∞;

(viii) For every η > 0, P
(
‖W̃n‖F > η

∣∣∣Xn) as∗→ 0 and P ∗‖f − Pf‖F <∞;

(ix) For every η > 0, P
(
‖W̃n‖∗F > η

∣∣∣Xn) as∗→ 0 and P ∗‖f − Pf‖F < ∞,

for some version of ‖W̃n‖∗F .

The lengthy proof is given in section 4 below. As is shown in the proof,
the conditional expectations and conditional probabilities in (iii), (iv), (vii)
and (viii) are well defined. This is because the quantities inside of the
expectations in parts (iii) and (vii) (and in the conditional probabilities
of (iv) and (viii)) are measurable as functions of ξ1, . . . , ξn conditional on
the data. The distinctions between (iv) and (v) and between (viii) and (ix)
are not as trivial as they appear. This is because the measurable majorants
involved are computed with respect to (ξ1, . . . , ξn, X1, . . . , X1) jointly, and
thus the differences between ‖Wn‖F and ‖Wn‖∗F or between ‖W̃n‖F and
‖W̃n‖F may be nontrivial.

The following corollary applies to a class of weighted bootstraps which
includes the Bayesian bootstrap mentioned earlier:

Corollary 10.14 Let F be a class of measurable functions, and let
ξ1, . . . , ξn be i.i.d. nonconstant, nonnegative random variables with 0 <
Eξ < ∞ and independent of X1, . . . , Xn. Let P̃n ≡ n−1

∑n
i=1(ξi/ξ̄)δXi ,

where we set P̃n = 0 when ξ̄ = 0. Then the following are equivalent:

(i) F is strong Glivenko-Cantelli.

(ii) ‖P̃n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F < ∞.

(iii) Eξ‖P̃n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F < ∞.

(iv) For every η > 0, P
(
‖P̃n − Pn‖F > η

∣∣∣Xn) as∗→ 0 and P ∗‖f −Pf‖F <
∞;

(v) For every η > 0, P
(
‖P̃n − Pn‖∗F > η

∣∣∣Xn) as∗→ 0 and P ∗‖f −Pf‖F <

∞, for some version of ‖P̃n − Pn‖∗F .

If in addition P (ξ = 0) = 0, then the requirement that P ∗‖f − Pf‖F < ∞
in (ii) may be dropped.
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Proof. Since the processes Pn−P and P̃n−Pn do not change when the
class F is replaced with Ḟ ≡ {f − Pf : f ∈ F}, we can assume ‖P‖F = 0
without loss of generality. Let the envelope of Ḟ be denoted Ḟ ≡ ‖f‖∗Ḟ .
Since multiplying the ξi by a constant does not change ξi/ξ̄, we can also
assume Eξ = 1 without loss of generality. The fact that the conditional
expressions in (iii) and (iv) are well defined can be argued is in the proof of
theorem 10.13 (given below in section 4), and we do not repeat the details
here.

(i)⇒(ii): Since

P̃n − Pn − W̃n =
(

1
ξ̄
− 1

)
1{ξ̄ > 0}W̃n − 1{ξ̄ = 0}Pn,(10.12)

(ii) follows by theorem 10.13 and the fact that ξ̄ as∗→ 1.
(ii)⇒(i): Note that

P̃n − Pn − W̃n = −
(
ξ̄ − 1

)
1{ξ̄ > 0}(P̃n − Pn) − 1{ξ̄ = 0}Pn.(10.13)

The first term on the right as∗→ 0 by (ii), while the second term on the right
is bounded in absolute value by 1{ξ̄ = 0}‖Pn‖Ḟ ≤ 2 × 1{ξ̄ = 0}PnḞ

as∗→ 0,
by the moment condition.

(ii)⇒(iii): The method of proof will be to use the expansion (10.12) to
show that Eξ‖P̃n−Pn−W̃n‖Ḟ

as∗→ 0. Then (iii) will follow by theorem 10.13
and the established equivalence between (ii) and (i). Along this vein, we
have by symmetry followed by an application of theorem 9.28 that

Eξ

{∣∣∣∣1ξ̄ − 1
∣∣∣∣ 1{ξ̄ > 0}‖W̃n‖Ḟ

}
≤ 1

n

n∑
i=1

Ḟ (Xi)Eξ

{
ξi

∣∣∣∣1ξ̄ − 1
∣∣∣∣ 1{ξ̄ > 0}

]

= PnḞEξ
{
|1 − ξ̄|1{ξ̄ > 0}

}
as∗→ 0.

Since also Eξ
[
1{ξ̄ = 0}

]
‖Pn‖Ḟ

as∗→ 0, the desired conclusion follows.
(iii)⇒(iv): This is obvious.
(iv)⇒(i): Consider again expansion (10.13). The moment conditions eas-

ily give us, conditional on X1, X2, . . ., that 1{ξ̄ = 0}‖Pn‖Ḟ ≤ 1{ξ̄ =

0}PnḞ
P→ 0 for almost all sequences X1, X2, . . .. By (iv), we also obtain

that |ξ̄ − 1|1{ξ̄ > 0}‖P̃n − Pn‖Ḟ
P→ 0 for almost all sequences X1, X2, . . ..

Thus assertion (viii) of theorem 10.13 follows, and we obtain (i).
If P (ξ = 0) = 0, then 1{ξ̄ = 0}Pn = 0 almost surely, and we no longer

need the moment condition PḞ < ∞ in the proofs of (ii)⇒(i) and (ii)⇒(iii),
and thus the moment condition in (ii) can be dropped in this setting.

(ii)⇒(v): Assertion (ii) implies that there exists a measurable set B of
infinite sequences (ξ1, X1), (ξ2, X2), . . . with P(B) = 1 such that ‖P̃n −
Pn‖∗F → 0 on B for some version of ‖P̃n − Pn‖∗F . Thus by the bounded



190 10. Bootstrapping Empirical Processes

convergence theorem, we have for any η > 0 and almost all sequences
X1, X2, . . .,

lim sup
n→∞

P
(
‖P̃n − Pn‖∗F > η

∣∣∣) = lim sup
n→∞

Eξ,∞1
{
‖P̃n − Pn‖∗F > η

}
1{B}

= Eξ,∞ lim sup
n→∞

1
{
‖P̃n − Pn‖∗F > η

}
1{B}

= 0.

Thus (v) follows.
(v)⇒(iv): This is obvious.�
The following theorem verifies consistency of the multinomial bootstrapped

empirical measure defined in section 10.1.3, which we denote P̂n, when F
is strong G-C. The proof is given in section 4 below.

Theorem 10.15 Let F be a class of measurable functions, and let the
multinomial vectors Wn in P̂n be independent of the data. Then the follow-
ing are equivalent:

(i) F is strong Glivenko-Cantelli;

(ii) ‖P̂n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F < ∞;

(iii) EW ‖P̂n − Pn‖F as∗→ 0 and P ∗‖f − Pf‖F < ∞;

(iv) For every η > 0, P
(
‖P̂n − Pn‖F > η

∣∣∣Xn) as∗→ 0 and P ∗‖f −Pf‖F <
∞;

(v) For every η > 0, P
(
‖P̂n − Pn‖∗F > η

∣∣∣Xn) as∗→ 0 and P ∗‖f −Pf‖F <

∞, for some version of ‖P̂n − Pn‖∗F .

10.3 A Simple Z-Estimator Master Theorem

Consider Z-estimation based on the estimating equation θ �→ Ψn(θ) ≡
Pnψθ, where θ ∈ Θ ⊂ Rp and x �→ ψθ(x) is a measurable p-vector valued
function for each θ. This is a special case of the more general Z-estimation
approach discussed in section 2.2.5. Define the map θ �→ Ψ(θ) ≡ Pψθ,
and assume θ0 ∈ Θ satisfies Ψ(θ0) = 0. Let θ̂n be an approximate zero
of Ψn, and let θ̂◦n be an approximate zero of the bootstrapped estimating
equation θ �→ Ψ◦

n(θ) ≡ P◦
nψθ, where P◦

n is either P̃n of corollary 10.14—
with ξ1, . . . , ξn satisfying the conditions specified in the first paragraph
of section 10.1.3 (the multiplier bootstrap)—or P̂n of theorem 10.15 (the
multinomial bootstrap).

The goal of this section is to determine reasonably general conditions
under which

√
n(θ̂n−θ0)� Z, where Z is mean zero normally distributed,
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and
√
n(θ̂◦n − θ̂n)

P�
◦
k0Z. Here, we use P�

◦
to denote either

P�
ξ

or
P�
W

de-

pending on which bootstrap is being used, and k0 = τ/μ for the multiplier
bootstrap while k0 = 1 for the multinomial bootstrap. One could also es-
timate the limiting variance rather than use the bootstrap, but there are
many settings, such as least absolute deviation regression, where variance
estimation may be more awkward than the bootstrap. For theoretical vali-
dation of the bootstrap approach, we have the following theorem, which is
related to theorem 2.11 and which utilizes some of the bootstrap results of
this chapter:

Theorem 10.16 Let Θ ⊂ Rp be open, and assume θ0 ∈ Θ satisfies
Ψ(θ0) = 0. Also assume the following:

(A) For any sequence {θn} ∈ Θ, Ψ(θn) → 0 implies ‖θn − θ0‖ → 0;

(B) The class {ψθ : θ ∈ Θ} is strong Glivenko-Cantelli;

(C) For some η > 0, the class F ≡ {ψθ : θ ∈ Θ, ‖θ− θ0‖ ≤ η} is Donsker
and P (ψθ − ψθ0)

2 → 0 as ‖θ − θ0‖ → 0;

(D) P‖ψθ0‖2 <∞ and Ψ(θ) is differentiable at θ0 with nonsingular deriva-
tive matrix Vθ0 ;

(E) Ψn(θ̂n) = oP (n−1/2) and Ψ◦
n(θ̂

◦
n) = oP (n−1/2).

Then √
n(θ̂n − θ0)� Z ∼ N

(
0, V −1

θ0
P [ψθ0ψ

T
θ0 ](V

−1
θ0

)T
)

and
√
n(θ̂◦n − θ̂n)

P�
◦
k0Z.

Before giving the proof, we make a few comments about the conditions
(A)–(E) of the theorem. Condition (A) is one of several possible identifi-
ability conditions. Condition (B) is a sufficient condition, when combined
with (A), to yield consistency of a zero of Ψn. This condition is gener-
ally reasonable to verify in practice. Condition (C) is needed for asymp-
totic normality of

√
n(θ̂n − θ0) and is also not hard to verify in practice.

Condition (D) enables application of the delta method at the appropriate
juncture in the proof below, and (E) is a specification of the level of ap-
proximation permitted in obtaining the zeros of the estimating equations.
See exercise 10.5.5 below for a specific example of an estimation setting
that satisfies these conditions.

Proof of theorem 10.16. By (B) and (E),

‖Ψ(θ̂n)‖ ≤ ‖Ψn(θ̂n)‖ + sup
θ∈Θ

‖Ψn(θ) − Ψ(θ)‖ ≤ oP (1).

Thus θ̂n
P→ θ0 by the identifiability condition (A). By assertion (ii) of either

corollary 10.14 or theorem 10.15 (depending on which bootstrap is used),
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condition (B) implies supθ∈Θ ‖Ψ◦
n(θ) − Ψ(θ)‖ as∗→ 0. Thus reapplication of

conditions (A) and (E) yield θ̂◦n
P→ θ0. Note that for the first part of the

proof we will be using unconditional bootstrap results, while the associated
conditional bootstrap results will be used only at the end.

By (C) and the consistency of θ̂0, we have Gnψθ̂n
−Gnψθ0

P→ 0. Since (E)
now implies that Gnψθ̂n

=
√
nP (ψθ0 − ψθ̂n

) + oP (1), we can use the para-
metric (Euclidean) delta method plus differentiability of Ψ to obtain

√
nVθ0(θ0 − θ̂n) +

√
noP (‖θ̂n − θ0‖) = Gnψθ0 + oP (1).(10.14)

Since Vθ0 is nonsingular, this yields that
√
n‖θ̂n− θ0‖(1+ oP (1)) = OP (1),

and thus
√
n(θ̂n − θ0) = OP (1). Combining this with (10.14), we obtain

√
n(θ̂n − θ0) = −V −1

θ0

√
nPnψθ0 + oP (1),(10.15)

and thus
√
n(θ̂n − θ0)� Z with the specified covariance.

The first part of condition (C) and theorem 2.6 imply that G◦
n ≡ k−1

0

√
n(P◦

n−
Pn)� G in �∞(F) unconditionally, by arguments similar to those used in
the (ii)⇒(i) part of the proof of theorem 10.4. Combining this with the sec-
ond part of condition (C), we obtain k0G◦

n(ψθ̂◦n) + Gn(ψθ̂◦n)− k0G◦
n(ψθ0)−

Gn(ψθ0)
P→ 0. Condition (E) now implies

√
nP (ψθ0 − ψθ̂◦n

) =
√
nP◦

nψθ0 +
oP (1). Using similar arguments to those used in the previous paragraph,
we obtain √

n(θ̂◦n − θ0) = −V −1
θ0

√
nP◦

nψθ0 + oP (1).

Combining with (10.15), we have

√
n(θ̂◦n − θ̂n) = −V −1

θ

√
n(P◦

n − Pn)ψθ0 + oP (1).

The desired conditional bootstrap convergence now follows from theorem 2.6,
part (ii) or part (iii) (depending on which bootstrap is used).�

10.4 Proofs

Proof of theorem 10.10. Fix ε > 0 and a compact K ⊂ E0. The proof
stems from certain properties of separable Banach spaces which can be
found in Megginson (1998). Specifically, the fact that every separable Ba-
nach space is isometrically isomorphic to a subspace of C[0, 1], implies
the existence of an isometric isomorphism J∗ : E0 �→ A0, where A0 is a
subspace of C[0, 1]. Since C[0, 1] has a basis, we know by theorem 4.1.33
of Megginson (1998) that it also has the “approximation property.” This
means by theorem 3.4.32 of Megginson (1998) that since J∗(K) is com-
pact, there exists a finite rank, bounded linear operator T∗ : A0 �→ A0
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such that supy∈J∗(K) ‖T∗(y)− y‖ < ε. Because T∗ is finite rank, this means
there exists elements z1, . . . , zk ∈ A0 ⊂ C[0, 1] and bounded linear func-
tionals f∗

1 , . . . , f
∗
k : A0 �→ R such that T∗(y) =

∑k
j=1 zjf

∗
j (y). Note that

since both J∗ and J−1
∗ : A0 �→ E0 are isometric isomorphisms, they are

also both Lipschitz continuous with Lipschitz constant 1. This means that
the map x �→ T̃ε(x) ≡ J−1

∗ (T∗(J∗(x))), with domain and range E0, satisfies
supx∈K ‖T̃ε(x) − x‖ < ∞.

We now need to verify the existence of several important extensions.
By Dugundji’s extension theorem (theorem 10.9 above), there exists a
continuous extension of J∗, J̃∗ : E �→ lin A0. Also, by the Hahn-Banach
extension theorem, there exist bounded linear extensions of f∗

1 , . . . , f
∗
k ,

f̃∗
1 , . . . , f̃

∗
k : lin A0 �→ R. Now let J̃ denote the restriction of J−1

∗ to the

domain
{∑k

j=1 zjf
∗
j (y) : y ∈ J∗(E0)

}
. Since J̃ is Lipschitz continuous, as

noted previously, we now have by theorem 10.17 below that there exists a
Lipschitz continuous extension of J̃ , J : lin (z1, . . . , zk) �→ E, with Lipschitz
constant possibly larger than 1. Now define x �→ fj(x) ≡ f̃∗

j (J̃∗(x)), for

j = 1, . . . , k, and x �→ Tε(x) ≡ J
(∑k

i=1 zjfj(x)
)
; and note that Tε is a

continuous extension of T̃ε. Now the quantities k, z1, . . . , zk, f1, . . . , fk, J
and Tε all satisfy the given requirements.�

Proof of theorem 10.13. Since the processes Pn − P , Wn and W̃n do
not change when F is replaced by Ḟ ≡ {f − Pf : f ∈ F}, we can use
for the index set either F or Ḟ ≡ {f − Pf : f ∈ F} without changing
the processes. Define also Ḟ ≡ ‖f − Pf‖∗F . We first need to show that the
expectations and probabilities in (iii), (iv), (vii) and (viii) are well defined.
Note that for fixed x1, . . . , xn and a ≡ (a1, . . . , an) ∈ Rn, the map

(a1, . . . , an) �→
∥∥∥∥∥n−1

n∑
i=1

aif(xi)

∥∥∥∥∥
Ḟ

= sup
u∈B

|aTu|,

where B ≡ {(f(x1), . . . , f(xn)) : f ∈ Ḟ} ⊂ Rn. By the continuity of the
map (a, u) �→ |aTu| and the separability of R, this map is a measurable
function even if the set B is not a Borel set. Thus the conditional expecta-
tions and conditional probabilities are indeed well defined.

(i)⇒(ii): Note that F being P -G-C implies that PḞ < ∞ by lemma 8.13.
Because Ḟ is G-C and ξ is trivially G-C, the desired result follows from
corollary 9.26 (of section 9.3) and the fact that ‖ξ(f − Pf)‖∗F ≤ |ξ| × Ḟ is
integrable.

(ii)⇒(i): Since both sign(ξ) and ξ · Ḟ are P -G-C, corollary 9.26 can be
applied to verify that sign(ξ) · ξ · Ḟ = |ξ| · Ḟ is also P -G-C. We also have
by lemma 8.13 that P ∗Ḟ < ∞ since P |ξ| > 0. Now we have for fixed
X1, . . . , Xn,

(Eξ)‖Pn‖Ḟ = ‖n−1
n∑
i=1

(Eξi)δXi‖Ḟ ≤ Eξ‖Wn‖F ,
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and thus (Eξ)E∗‖Pn−P‖F ≤ E∗‖Wn‖F . By applying theorem 9.28 twice,
we obtain the desired result.

(ii)⇒(iii): Note first that (ii) immediately implies P |ξ|Ḟ (X) < ∞ by
lemma 8.13. Thus PḞ < ∞ since E|ξ| > 0. Define Rn ≡ n−1

∑n
i=1 |ξi|Ḟ (Xi),

let B be the set of all infinite sequences (ξ1, X1), (ξ2, X2), . . . such that
‖Wn‖F as∗→ 0 and Rn → E[|ξ|Ḟ ], and let Eξ,∞ be the expectation taken
over the infinite sequence ξ1, ξ2, . . . holding the infinite sequence X1, X2, . . .
fixed. Note that the set B has probability 1. Moreover, by the bounded con-
vergence theorem,

lim sup Eξ‖Wn‖Ḟ1{Rn ≤ K} = lim sup Eξ,∞‖Wn‖Ḟ1{Rn ≤ K}1{B}
≤ Eξ,∞ lim sup ‖Wn‖∗Ḟ1{Rn ≤ K}1{B}
= 0,

outer almost surely, for anyK < ∞. In addition, if we let Sn = n−1
∑n

i=1 |ξi|,
we have for any 0 < N < ∞ that

Eξ‖Wn‖Ḟ1{Rn > K} ≤ EξRn1{Rn > K}
≤ Eξ [Sn1{Rn > K}]PnḞ

≤ N(E|ξ|)[PnḞ ]2

K
+ Eξ[Sn1{Sn > N}]PnḞ ,

where the second-to-last inequality follows by symmetry. By exercise 10.5.4,
the last line of the display has a lim sup ≤ N(PḞ )2/K + (E|ξ|)2/N outer
almost surely. Thus, if we let N =

√
K and allow K ↑ ∞ slowly enough,

we ensure that lim supn→∞ Eξ‖Wn‖F → 0, outer almost surely. Hence (iii)
follows.

(iii)⇒(iv): This is obvious.
(iv)⇒(ii): (iv) clearly implies that ‖Wn‖F P→ 0. Now lemma 8.16 implies

that since the class |ξ| × Ḟ has an integrable envelope, a version of ‖Wn‖∗F
must converge outer almost surely to a constant. Thus (ii) follows.

(ii)⇒(v): Assertion (ii) implies that there exists a measurable set B of
infinite sequences (ξ1, X1), (ξ2, X2), . . . with P(B) = 1 such that ‖Wn‖∗F →
0 on B for some version of ‖Wn‖∗F . Thus by the bounded convergence
theorem, we have for any η > 0 and almost all sequences X1, X2, . . .,

lim sup
n→∞

P (‖Wn‖∗F > η|) = lim sup
n→∞

Eξ,∞1 {‖Wn‖∗F > η} 1{B}

= Eξ,∞ lim sup
n→∞

1 {‖Wn‖∗F > η} 1{B}

= 0.

Thus (v) follows.
(v)⇒(iv): This is obvious.
(ii)⇒(vi): Note that
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‖W̃n − Wn‖Ḟ ≤ |ξ̄ − Eξ| × |n−1
n∑
i=1

Ḟ (Xi)| + (Eξ)‖Pn‖Ḟ .(10.16)

Since (ii)⇒(i), P ∗‖f − Pf‖F < ∞. Thus, since the centered weights ξi −
Eξ satisfy the conditions of the theorem as well as the original weights,
the right side converges to zero outer almost surely. Hence ‖W̃n‖F as∗→ 0,
and (vi) follows.

(vi)⇒(ii): Since ξi can be replaced with ξi − Eξ without changing W̃n,
we will assume without loss of generality that Eξ = 0 (for this paragraph
only). Accordingly, (10.16) implies

‖W̃n − Wn‖Ḟ ≤ |ξ̄ − Eξ| × |n−1
n∑
i=1

Ḟ (Xi)|.(10.17)

Thus (ii) will follow by the strong law of large numbers if we can show that
EḞ < ∞. Now let Y1, . . . , Yn be i.i.d. P independent of X1, . . . , Xn, and let
ξ̃1, . . . , ξ̃n be i.i.d. copies of ξ1, . . . , ξn independent ofX1, . . . , Xn, Y1, . . . , Yn.
Define W̃2n ≡ (2n)−1

∑n
i=1

[
(ξi − ξ̄)f(Xi) + (ξ̃i − ξ̄)f(Yi)

]
and W̃′

2n ≡

(2n)−1
∑n
i=1

[
(ξ̃i − ξ̄)f(Xi) + (ξi − ξ̄)f(Yi)

]
, where ξ̄ ≡ (2n)−1

∑n
i=1(ξi +

ξ̃i). Since both ‖W̃2n‖Ḟ
as∗→ 0 and ‖W̃′

2n‖Ḟ
as∗→ 0, we have that ‖W̃n −

W̃′
2n‖Ḟ

as∗→ 0. However,

W̃n − W̃′
2n =

1
n

n∑
i=1

ξi − ξ̃i
2

[f(Xi) − f(Yi)] ,

and thus ‖n−1
∑n

i=1[f(Xi) − f(Yi)]‖Ḟ
as∗→ 0 by the previously established

equivalence between (i) and (ii) and the fact that the new weights (ξi−ξ̃i)/2
satisfy the requisite conditions. Thus

E∗Ḟ = E∗‖f(X) − Ef(Y )‖Ḟ ≤ E∗‖f(X) − f(Y )‖Ḟ < ∞,

where the last inequality holds by lemma 8.13, and (ii) now follows.
(iii)⇒(vii): Since

Eξ‖W̃n − Wn‖Ḟ ≤ (E|ξ|)‖Pn‖Ḟ ,

we have that Eξ‖W̃n‖Ḟ
as∗→ 0, because (iii) also implies (i).

(vii)⇒(viii): This is obvious.
(viii)⇒(vi): Since W̃n does not change if the ξis are replaced by ξi −

Eξ, we will assume—as we did in the proof that (vi)⇒(ii)—that Eξ = 0
without loss of generality. By reapplication of (10.17) and the strong law of
large numbers, we obtain that ‖W̃n‖F P→ 0. Since the class |ξ| × Ḟ has an
integrable envelope, reapplication of lemma 8.16 yields the desired result.
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(vi)⇒(ix): The proof here is identical to the proof that (ii)⇒(v), after
exchanging Wn with W̃n.

(ix)⇒(viii): This is obvious.�
Proof of theorem 10.15. The fact that the conditional expressions in

assertions (iii) and (iv) are well defined can be argued as in the proof of
theorem 10.13 above, and we omit the details.

(i)⇒(v): This follows from lemma 10.18 below since the vectors Wn/n
are exchangeable and satisfy the other required conditions.

(v)⇒(iv): This is obvious.
(iv)⇒(i): For each integer n ≥ 1, generate an infinite sequence of in-

dependent random row n-vectors m(1)
n ,m

(2)
n , . . . as follows. Set m(k)

1 = 1
for all integers k ≥ 1, and for each n > 1, generate an infinite sequence
of i.i.d. Bernoullies B(1)

n , B
(2)
n , . . . with probability of success 1/n, and set

m
(k)
n = [1 − B

(k)
n ](m(k)

n−1, 0) + B
(k)
n (0, . . . , 0, 1). Note that for each fixed n,

m
(1)
n ,m

(2)
n , . . . are i.i.d. multinomial(1, n−1, . . . , n−1) vectors. Independent

of these random quantities, generate an infinite sequence U1, U2, . . . of i.i.d.
Poisson random variables with mean 1, and set Nn =

∑n
i=1 Ui. Also make

sure that all of these random quantities are independent of X1, X2, . . ..
Without loss of generality assume Wn =

∑n
i=1m

(i)
n and define ξ(n) ≡∑Nn

i=1m
(i)
n . It is easy to verify that the Wn are indeed multinomial(n, n−1,

. . . , n−1) vectors as claimed, and that ξ(n)
i , . . . , ξ

(n)
i , where (ξ(n)

1 , . . . , ξ
(n)
n ) ≡

ξ(n), are i.i.d. Possion mean 1 random variables. Note also that these ran-
dom weights are independent of X1, X2, . . ..

Let Wn ≡ n−1
∑n

i=1(ξ
(n)
i − 1)(δXi − P ), and note that

P̂n − Pn − Wn = n−1
n∑
i=1

(Wni − ξ
(n)
i )(δXi − P ).

Since the nonzero elements of (Wni − ξ
(n)
i ) all have the same sign by con-

struction, we have that

EW,ξ‖P̂n − Pn − Wn‖F ≤ EW,ξ‖n−1
n∑
i=1

|Wni − ξ
(n)
i |(δXi − P )‖F

≤
(

E
∣∣∣∣Nn − n

n

∣∣∣∣
) [

PnḞ + PḞ
]

as∗→ 0,

where the last inequality follows from the exchangeability result EW,ξ|Wni−
ξ
(n)
i | = E[|Nn−n|/n], 1 ≤ i ≤ n, and the outer almost sure convergence to

zero follows from the fact that E[|Nn − n|/n] ≤ n−1/2 combined with the
moment conditions. In the forgoing, we have used EW,ξ to denote taking
expectations over Wn and ξ(n) conditional on X1, X2, . . .. We have just
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established that assertion (iv) holds in theorem 10.13 with weights (ξ(n)
1 −

1, . . . , ξ(n)
n − 1) that satisfy the necessary conditions. Thus F is Glivenko-

Cantelli.
(v)⇒(ii): Let EW,ξ,∞ be the expecation over the infinite sequences of the

weights conditional on X1, X2, . . .. For fixed η > 0 and X1, X2, . . ., we have
by the bounded convergence theorem

EW,ξ,∞ lim sup
n→∞

1
{
‖P̂n − Pn‖∗F > η

}
= lim sup

n→∞
EW,ξ,∞1

{
‖P̂n − Pn‖∗F > η

}
.

But the right side → 0 for almost all X1, X2, . . . by (v). This implies
1
{
‖P̂n − Pn‖∗F > η

}
→ 0, almost surely. Now (ii) follows since η was arbi-

trary.
(ii)⇒(iii): Let B be the set of all sequences of weights and data for which

‖P̂n−Pn‖∗F → 0. From (ii), we know that B is measurable, P (B) = 1 and,
by the bounded convergence theorem, we have for every η > 0 and all
X1, X2, . . .

0 = EW,ξ,∞ lim sup
n→∞

[
1
{
‖P̂n − Pn‖∗F > η

}
1{B}

]
= lim sup

n→∞
EW,ξ,∞

[
1
{
‖P̂n − Pn‖∗F > η

}
1{B}

]
.

Since P (B) = 1, this last line implies (v), since η was arbitrary, and hence
assertions (i) and (iv) also hold by the previously established equivalences.
Fix 0 < K < ∞, and note that the class Ḟ · 1{Ḟ ≤ K} is strong G-C by
corollary 9.26. Now

EW ‖P̂n − Pn‖Ḟ ≤ EW ‖P̂n − Pn‖Ḟ·1{Ḟ≤K}

+EW
[
(P̂n + Pn)Ḟ 1{Ḟ > K}

]
≤ EW ‖P̂n − Pn‖Ḟ·1{Ḟ≤K} + 2Pn[Ḟ1{Ḟ > K}]
as∗→ 2P [Ḟ1{Ḟ > K}],

by assertion (iv). Since this last term can be made arbitrarily small by
choosing K large enough, assertion (iii) follows.

(iii)⇒(iv): This is obvious.�

Theorem 10.17 Let X,Z be metric spaces, with the dimension of X
being finite, and let Y ⊂ X. For any Lipschitz continuous map f : Y �→ Z,
there exists a Lipschitz continuous extension F : X �→ Z.

Proof. This is a simplification of theorem 2 of Johnson, Lindenstrauss
and Schechtman (1986), and the proof can be found therein.�

Lemma 10.18 Let F be a strong Glivenko-Cantelli class of measurable
functions. For each n, let (Mn1, . . . ,Mnn) be an exchangeable nonnegative
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random vector independent of X1, X2, . . . such that
∑n

i=1Mni = 1 and

max1≤i≤n |Mni| P→ 0. Then, for every η > 0,

P

(∥∥∥∥∥
n∑
i=1

Mni(δXi − P )

∥∥∥∥∥
∗

F

> η

∣∣∣∣∣Xn
)

as∗→ 0.

This is lemma 3.6.16 of VW, and we omit the proof.

10.5 Exercises

10.5.1. Show the following:

(a) ‖ · ‖2,1 is a norm on the space of real, square-integrable random vari-
ables.

(b) For any real random variable ξ, and any r > 2, (1/2)‖ξ‖2 ≤ ‖ξ‖2,1 ≤
(r/(r − 2))‖ξ‖r. Hints: For the first inequality, show that E|ξ|2 ≤
2
∫∞
0

P(|ξ| > u)udu ≤ 2‖ξ‖2,1×‖ξ‖2. For the second inequality, show
first that

‖ξ‖2,1 ≤ a+
∫ ∞

a

(
‖ξ‖rr
xr

)1/2

dx

for any a > 0.

10.5.2. Show that for any p > 1, and any real i.i.d. X1, . . . , Xn with
E|X |p < ∞, we have

E max
1≤i≤n

|Xi|
n1/p

→ 0,

as n → ∞. Hint: Show first that for any x > 0,

lim sup
n→∞

P
(

max
1≤i≤n

|Xi|
n1/p

> x

)
≤ 1 − exp

(
−E|X |p

xp

)
.

10.5.3. Prove lemma 10.12.

10.5.4. Let ξ1, . . . , ξn be i.i.d. nonnegative random variables with Eξ <
∞, and denote Sn = n−1

∑n
i=1 ξi. Show that

lim
m→∞

lim sup
n→∞

E[Sn1{Sn > m}] = 0.

Hint: Theorem 9.28 may be useful here.

10.5.5. Assume that, given the covariate Z ∈ Rp, Y is Bernoulli with
probability of success eθ

TZ/(1 + eθ
TZ), where θ ∈ Θ = Rp and E[ZZT ] is

positive definite. Assume that we observe an i.i.d. sample (Y1, Z1), . . . , (Yn,
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Zn) generated from this model with true parameter θ0 ∈ R. Show that the
conditions of theorem 10.16 are satisfied for Z-estimators based on

ψθ(y, z) = Z

(
Y − eθ

TZ

1 + eθTZ

)
.

Note that one of the challenges here is the noncompactness of Θ.

10.6 Notes

Much of the material in section 10.1 is inspired by chapters 2.9 and 3.6 of
VW, although the results for the weights (ξ1 − ξ̄, . . . , ξn − ξ̄) and (ξ1/ξ̄ −
1, . . . , ξn/ξ̄) and the continuous mapping results are essentially new. The
equivalence of assertions (i) and (ii) of theorem 10.4 is theorem 2.9.2 of
VW, while the equivalence of (i) and (ii) of theorem 10.6 is theorem 2.9.6
of VW. Lemma 10.5 is lemma 2.9.5 of VW. Theorem 10.16 is an expansion
of theorem 5.21 of van der Vaart (1998), and part (b) of exercise 10.5.1 is
exercise 2.9.1 of VW.
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11
Additional Empirical Process Results

In this chapter, we study several additional empirical process results that
are useful but don’t fall neatly into the framework of the other chapters.
Because the contents of this chapter are somewhat specialized, some readers
may want to skip it the first time they read the book. Although some of
the results given herein will be used in later chapters, the results of this
chapter are not really necessary for a philosophical understanding of the
remainder of the book. On the other hand, this chapter does contain results
and references that are useful for readers interested in the deeper potential
of empirical process methods in genuinely hard statistical problems.

We first discuss bounding tail probabilities and moments of ‖Gn‖F .
These results will be useful in chapter 14 for determining rates of con-
vergence of M-estimators. We then discuss Donsker results for classes com-
posed of sequences of functions and present several related statistical appli-
cations. After this, we discuss contiguous alternative probability measures
Pn that get progressively closer to a fixed “null” probability measure P as
n gets larger. These results will be useful in part III of the book, especially
in chapter 18, where we discuss optimality of tests.

We then discuss weak convergence of sums of independent but not iden-
tically distributed stochastic processes which arise, for example, in clinical
trials with non-independent randomization schemes such as biased coin de-
signs (see, for example, Wei, 1978). We develop this topic in some depth,
discussing both a central limit theorem and validity of a certain weighted
bootstrap procedure. We also specialize these results to empirical processes
based on i.i.d. data but with functions classes Fn that change with n.
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The final topic we cover is Donsker results for dependent observations.
Here, our brief treatment is primarily meant to introduce the subject and
point the interested reader toward the key results and references.

11.1 Bounding Moments and Tail Probabilities

We first consider bounding moments of ‖Gn‖∗F under assumptions similar
to the Donsker theorems of chapter 8. While these do not provide sharp
bounds, the bounds are still useful for certain problems. We need to in-
troduce some slightly modified entropy integrals. The first is based on a
modified uniform entropy integral:

J∗(δ,F) ≡ sup
Q

∫ δ

0

√
1 + logN(ε‖F‖Q,2,F , L2(Q))dε,

where the supremum is over all finitely discrete probably measures Q with
‖F‖Q,2 > 0. The only difference between this and the previously defined
uniform entropy integral J(δ,F , L2), is the presence of the 1 under the
radical. The following theorem, which we give without proof, is a subset of
theorem 2.14.1 of VW:

Theorem 11.1 Let F be a P -measurable class of measurable functions,
with measurable envelope F . Then, for each p ≥ 1,

‖‖Gn‖∗F‖P,p ≤ cpJ
∗(1,F)‖F‖P,2∧p,

where the constant cp < ∞ depends only on p.

We next provide an analogue of theorem 11.1 for bracketing entropy,
based on the modified bracketing integral:

J∗
[](δ,F) ≡

∫ δ

0

√
1 + logN[](ε‖F‖P,2,F , L2(P ))dε.

The difference between this definition and the previously defined J[](δ,F ,
L2(P )) is twofold: the presence of the 1 under the radical and a rescaling of
ε by the factor ‖F‖P,2. The following theorem, a subset of theorem 2.14.2
of VW, is given without proof:

Theorem 11.2 Let F be a class of measurable functions with measurable
envelope F . Then

‖‖Gn‖∗F‖P,1 ≤ cJ∗
[](1,F)‖F‖P,2,

for some universal constant c <∞.
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For some problems, the previous moment bounds are sufficient. In other
settings, more refined tail probability bounds are needed. To accomplish
this, stronger assumptions are needed for the involved function classes. Re-
call the definition of pointwise measurable (PM) classes from section 8.2.
The following tail probability results, the proofs of which are given in sec-
tion 11.7 below, apply only to bounded and PM classes:

Theorem 11.3 Let F be a pointwise measurable class of functions f :
X �→ [−M,M ], for some M < ∞, such that

sup
Q

logN (ε,F , L2(Q)) ≤ K

(
1
ε

)W
,(11.1)

for all 0 < ε ≤ M and some constants 0 < W < 2 and K < ∞, where the
supremum is taken over all finitely discrete probability measures. Then

‖ ‖Gn‖∗F‖ψ2
≤ c,

for all n ≥ 1, where c <∞ depends only on K, W and M .

Examples of interesting function classes that satisfy the conditions of
theorem 11.3 are bounded VC classes that are also PM, and the set of all
non-decreasing distribution functions on R. This follows from theorem 9.3
and lemma 9.11, since the class of distribution functions can be shown to
be PM. To see this last claim, for each integer m ≥ 1, let Gm be the class
of empirical distribution functions based on a sample of size m from the
rationals union {−∞,∞}. It is not difficult to show that G ≡ ∪m≥1Gm is
countable and that for each distribution function f , there exists a sequence
{gm} ∈ G such that gm(x) → f(x), as m → ∞, for each x ∈ R.

Theorem 11.4 Let F be a pointwise measurable class of functions f :
X �→ [−M,M ], for some M < ∞, such that

N[] (ε,F , L2(P )) ≤ K

(
1
ε

)W
,(11.2)

for all 0 < ε ≤ M and some constants K,W < ∞. Then

‖ ‖Gn‖∗F‖ψ2
≤ c,

for all n ≥ 1, where c <∞ depends only on K, W and M .

An example of a function class that satisfies the conditions of theo-
rem 11.4, are the Lipschitz classes of theorem 9.22 which satisfy condi-
tion 9.4, provided T is separable and N(ε, T, d) ≤ K(1/ε)W for some con-
stants K,W <∞. This will certainly be true if (T, d) is a Euclidean space.

By lemma 8.1, if the real random variable X satisfies ‖X‖ψ2 < ∞, then
the tail probabilities of X are “subgaussian” in the sense that P (|X | >
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x) ≤ Ke−Cx
2

for some constants K < ∞ and C > 0. These results can be
significantly refined under stronger conditions to yield more precise bounds
on the constants. Some results along this line can be found in chapter 2.14
of VW. A very strong result applies to the empirical distribution function
Fn, where F consists of left half-lines in R:

Theorem 11.5 For any i.i.d. sample X1, . . . , Xn with distribution F ,

P
(

sup
t∈R

√
n|Fn(t) − F (t)| > x

)
≤ 2e−2x2

,

for all x > 0.

Proof. This is the celebrated result of Dvoretsky, Kiefer and Wolfowitz
(1956), given in their lemma 2, as refined by Massart (1990) in his corol-
lary 1. We omit the proof of their result but note that their result applies
to the special case where F is continuous. We now show that it also applies
when F may be discontinuous. Without loss of generality, assume that F
has discontinuities, and let t1, . . . , tm be the locations of the discontinuities
of F , where m may be infinity. Note that the number of discontinuities can
be at most countable. Let p1, . . . , pm be the jump sizes of F at t1, . . . , tm.
Now let U1, . . . , Un be i.i.d. uniform random variables independent of the
X1, . . . , Xn, and define new random variables

Yi = Xi +
m∑
j=1

pj [1{Xi > tj} + Ui1{Xi = tj}] ,

1 ≤ i ≤ n. Define also the transformation t �→ T (t) = t +
∑m

j=1 pj1{t ≥
tj}; let F∗

n be the empirical distribution of Y1, . . . , Yn; and let F ∗ be the
distribution of Y1. It is not hard to verify that

sup
t∈R

|Fn(t) − F (t)| = sup
t∈R

|F∗
n(T (t)) − F ∗(T (t))|

≤ sup
s∈R

|F∗
n(s) − F ∗(s)|,

and the desired result now follows since F ∗ is continuous.�

11.2 Sequences of Functions

Whether a countable class of functions F is P -Donsker can be verified using
the methods of chapters 9 and 10, but sometimes the special structure of
certain countable classes simplifies the evaluation. This is true for certain
classes composed of sequences of functions. The following is our first result
in this direction:
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Theorem 11.6 Let {fi, i ≥ 1} be any sequence of measurable functions
satisfying

∑∞
i=1 P (fi − Pfi)2 <∞. Then the class

{ ∞∑
i=1

cifi :
∑∞

i=1 |ci| ≤ 1 and the series converges pointwise

}

is P -Donsker.

Proof. Since the class given in the conclusion of the theorem is the
pointwise closure of the symmetric convex hull (see the comments given
in section 9.1.1 just before theorem 9.4) of the class {fi}, it is enough to
verify that {fi} is Donsker, by theorem 9.29. To this end, fix ε > 0 and
define for each positive integer m, a partition {fi} = ∪m+1

i=1 Fi as follows.
For each i = 1, . . . ,m, let Fi consist of the single point fi, and let Fm+1 =
{fm1, fm+2, . . .}. Since supf,g∈Fi

|Gn(f−g)| = 0 (trivially) for i = 1, . . . ,m,
we have, by Chebyshev’s inequality,

P

(
sup
i

sup
f,g∈Fi

|Gn(f − g)| > ε

)
≤ P

(
sup

f∈Fm+1

|Gnf | >
ε

2

)

≤ 4
ε2

∞∑
i=m+1

P (fi − Pfi)2.

Since this last term can be made arbitrarily small by choosing m large
enough, and since ε was arbitrary, the desired result now follows by theo-
rem 2.1 via lemma 7.20.�

When the sequence {fi} satisfies Pfifj = 0 whenever i �= j, theorem 11.6
can be strengthened as follows:

Theorem 11.7 Let {fi, i ≥ 1} be any sequence of measurable functions
satisfying Pfifj = 0 for all i �= j and

∑∞
i=1 Pf

2
i < ∞. Then the class

{ ∞∑
i=1

cifi :
∑∞
i=1 c

2
i ≤ 1 and the series converges pointwise

}

is P -Donsker.

Proof. Since the conditions on c ≡ (c1, c2, . . .) ensure
∑∞

i=1 cifi ≤√∑∞
i=1 f

2
i , we have by the dominated convergence theorem that point-

wise converging sums also converge in L2(P ). Now we argue that the class
F of all of these sequences is totally bounded in L2(P ). This follows be-
cause F can be arbitrarily closely approximated by a finite-dimensional set,
since

P

(∑
i>m

cifi

)2

=
∑
i>m

c2iPf
2
i ≤

∑
i>m

Pf2
i → 0,
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as m → ∞. Thus the theorem is proved if we can show that the sequence
Gn, as a process indexed by F , is asymptotically equicontinuous with re-
spect to the L2(P )-seminorm. Accordingly, note that for any f =

∑∞
i= cifi,

g =
∑∞

i=1 difi, and integer k ≥ 1,

|Gn(f) − Gn(g)|2 =

∣∣∣∣∣
∞∑
i=1

(ci − di)Gn(fi)

∣∣∣∣∣
2

≤ 2
k∑
i=1

(ci − di)2Pf2
i

k∑
i=1

G2
n(fi)
Pf2

i

+ 2
∞∑

i=k+1

(ci − di)2
∑
i=k+1

G2
n(fi).

Since, by assumption, ‖c − d‖ ≤ ‖c‖ + ‖d‖ ≤ 2 (here, ‖ · ‖ is the infinite-
dimensional Euclidean norm), the above expression is bounded by

2‖f − g‖2
P,2

k∑
i=1

G2
n(fi)
Pf2

i

+ 8
∞∑

i=k+1

G2
n(fi).

Now take the supremum over all pairs of series f and g with ‖f−g‖P,2 < δ.
Since also EG2

n(fi) ≤ Pf2
i , the expectation is bounded above by 2δ2k +

8
∑∞
i=k+1 Pf

2
i . This quantity can now be made arbitrarily small by first

choosing k large and then choosing δ small enough.�
If the functions {fi} involved in the preceding theorem are an orthonor-

mal sequence {ψi} in L2(P ), then the result can be reexpressed in terms
of an elliptical class for a fixed sequence of constants {bi}:

F ≡
{ ∞∑
i=1

ciψi :
∞∑
i=1

c2i
b2i

≤ 1 and the series converges pointwise

}
.

More precisely, theorem 11.7 implies that F is P -Donsker if
∑∞
i=1 b

2
i < ∞.

Note that a sufficient condition for the stated pointwise convergence to hold
at the point x for all {ci} satisfying

∑∞
i=1 c

2
i /b

2
i ≤ 1 is for

∑∞
i=1 b

2
iψ

2
i (x) <

∞. A very important property of an empirical process indexed by an ellip-
tical class F is the following:

‖Gn‖2
F = sup

f∈F

∣∣∣∣∣
∞∑
i=1

ciGn(ψi)

∣∣∣∣∣
2

=
∞∑
i=1

b2iG
2
n(ψi).(11.3)

In the central quantity, each function f ∈ F is represented by its series rep-
resentation {ci}. For the second equality, it is easy to see that the last term
is an upper bound for the second term by the Cauchy-Schwartz inequality
combined with the fact that

∑∞
i=1 c

2
i /b

2
i ≤ 1. The next thing to note is that

this maximum can be achieved by setting ci = b2iGn(ψi)/
√∑∞

i=1 b
2
iG

2
n(ψ).

An important use for elliptical classes is to characterize the limiting
distribution of one- and two- sample Cramér-von Mises, Anderson-Darling,
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and Watson statistics. We will now demonstrate this for both the Cramér-
von Mises and Anderson-Darling statistics. For a study of the one-sample
Watson statistic, see example 2.13.4 of VW. We now have the following key
result, the proof of which we give in section 11.6. Note that the result (11.3)
plays an important role in the proof.

Theorem 11.8 Let Pn be the empirical distribution of an i.i.d. sample
of uniform [0, 1] random variables, let Gn =

√
n(Pn − P ) be the classi-

cal empirical process indexed by t ∈ [0, 1], and let Z1, Z2, . . . be an i.i.d.
sequence of standard normal deviates independent of Pn. Also define the
function classes

F1 ≡

⎧⎨
⎩

∞∑
j=1

cj
√

2 cosπjt :
∞∑
j=1

c2jπ
2j2 ≤ 1

⎫⎬
⎭

and

F2 ≡

⎧⎨
⎩

∞∑
j=1

cj
√

2pj(2t− 1) :
∞∑
j=1

c2jj(j + 1) ≤ 1 and pointwise convergence

⎫⎬
⎭ ,

where the functions p0(u) ≡ (1/2)
√

2, p1(u) ≡ (1/2)
√

6u, p2(u) ≡ (1/4)
√

10
×(3u2−1), p3(u) ≡ (1/4)

√
14(5u3−3u), and so on, are the orthonormalized

Legendre polynomials in L2[−1, 1]. Then the following are true:

(i) The one-sample Cramér-von Mises statistic for uniform data satisfies

∫ 1

0

G2
n(t)dt = ‖Gn‖2

F1
� 1

π2

∞∑
j=1

Z2
j

j2
≡ T1.

(ii) The one-sample Anderson-Darling statistic for uniform data satisfies

∫ 1

0

G2
n(t)

t(1 − t)
dt = ‖Gn‖2

F2
�

∞∑
j=1

Z2
j

j(j + 1)
≡ T2.

Theorem 11.8 applies to testing whether i.i.d. real dataX1, . . . , Xn comes
from an arbitrary continuous distribution F . This is realized be replacing
t with F (x) throughout the theorem. A more interesting result can be
obtained by applying the theorem to testing whether two samples have
the same distribution. Let F̂n,j be the empirical distribution of sample j
of nj i.i.d. real random variables, j = 1, 2, where the two samples are
independent, and where n = n1 + n2. Let F̂n,0 ≡ (n1F̂n,1 + n2F̂n,2)/n
be the pooled empirical distribution. The two-sample Cramér-von Mises
statistic is
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T̂1 ≡ n1n2

n1 + n1

∫ ∞

−∞

(
F̂n,1(s) − F̂n,2(s)

)2

dF̂n,0(s),

while the two-sample Anderson-Darling statistics is

T̂2 ≡ n1n2

n1 + n1

∫ ∞

−∞

(
F̂n,1(s) − F̂n,2(s)

)2

F̂n,0(s)
[
1 − F̂n,0(s)

]dF̂n,0(s).
The proof of the following corollary is given in section 11.6:

Corollary 11.9 Under the null hypothesis that the two samples come
from the same continuous distribution F0, T̂j � Tj, as n1 ∧ n2 � ∞, for
j = 1, 2.

Since the limiting distributions do not depend on F0, critical values can be
easily calculated by Monte Carlo simulation. Our own calculations resulted
in critical values at the 0.05 level of 0.46 for T1 and 2.50 for T2.

11.3 Contiguous Alternatives

For each n ≥ 1, let Xn1, . . . , Xnn be i.i.d. random elements in a measurable
space (X , A). Let P denote the common probability distribution under
the “null hypothesis,” and let Pn be a “contiguous alternative hypothesis”
distribution satisfying

∫ [√
n(dP 1/2

n − dP 1/2) − 1
2
hdP 1/2

]1/2

→ 0,(11.4)

as n → ∞, for some measurable function h : X �→ R. The following lemma,
which is part of lemma 3.10.11 of VW and which we give without proof,
provides some properties for h:

Lemma 11.10 If the sequence of probability measures Pn satisfy (11.4),
then necessarily Ph = 0 and Ph2 < ∞.

The following theorem gives very general weak convergence properties
of the empirical process under the contiguous alternative Pn. Such weak
convergence will be useful for studying efficiency of tests in chapter 18.
This is theorem 3.10.12 of VW which we give without proof:

Theorem 11.11 Let F be a P -Donsker class of measurable functions
with ‖P‖F < ∞, and assume the sequence of probability measures Pn sat-
isfies (11.4). Then

√
n(Pn−P ) converges under Pn in distribution in �∞(F)

to the process f �→ G(f) + Pfh, where G is a tight Brownian bridge.
If, moreover, ‖Pnf2‖F = O(1), then ‖

√
n(Pn − P )f − Pfh‖F → 0 and√

n(Pn − Pn) converges under Pn in distribution to G.
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We now present a bootstrap result for contiguous alternatives. For i.i.d.
nonnegative random weights ξ1, . . . , ξn with mean 0 < μ < ∞ and vari-
ance 0 < τ2 < ∞, recall the bootstrapped empirical measures P̃nf =
n−1

∑n
i=1(ξi/ξ̄)f(Xi) and G̃n =

√
n(μ/τ)(P̃n − Pn) from sections 2.2.3

and 10.1. We define several new symbols: Pn→ and Pn� denote convergence in
probability and weak convergence, respectively, under the distribution Pn.

In addition, X̂n
Pn�
M
X in a metric space D denotes conditional bootstrap con-

vergence in probability under Pn, i.e., supg∈BL1
|EMg(X̂n) − Eg(X)| Pn→ 0

and EMg(X̂n)∗ − EMg(X̂n)∗
Pn→ 0, for all g ∈ BL1, where BL1 is the same

bounded Lipschitz function space defined in section 2.2.3. Note that we re-
quire the weights ξ1, . . . , ξn to have the same distribution and independence
from Xn1, . . . , Xnn under both Pn and P .

Theorem 11.12 Let F be a P -Donsker class of measurable functions,
let Pn satisfy (11.4), and assume

lim
M→∞

lim sup
n→∞

Pn(f − Pf)21{|f − Pf | > M} = 0(11.5)

for all f ∈ F . Also let ξ1, . . . , ξn be i.i.d. nonnegative random variables,
independent of Xn1, . . . , Xnn, with mean 0 < μ < ∞, variance 0 < τ2 <∞,

and with ‖ξ1‖2,1 < ∞. Then G̃n
Pn�
ξ

G in �∞(F) and G̃n is asymptotically

measurable.

Proof. Let ηi ≡ τ−1(ξi − μ), i = 1, . . . , n, and note that

G̃n = n−1/2(μ/τ)
n∑
i=1

(ξi/ξ̄ − 1)δXi(11.6)

= n−1/2(μ/τ)
n∑
i=1

(ξi/ξ̄ − 1)(δXi − P )

= n−1/2
n∑
i=1

ηi(δXi − P )

+
(
μ

ξ̄
− 1

)
n−1/2

n∑
i=1

ηi(δXi − P )

+
(μ
τ

)(
μ

ξ̄
− 1

)
n−1/2

n∑
i=1

(δXi − P ).

Since F is P -Donsker, we also have that Ḟ ≡ {f − Pf : f ∈ F} is
P -Donsker. Thus by the unconditional multiplier central limit theorem
(theorem 10.13), we have that η · F is also P -Donsker. Now, by the fact
that ‖P (f − Pf)‖F = 0 (trivially) combined with theorem 11.11, both
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n−1/2
∑n
i=1 ηi(δXi −P ) Pn� G(f) and n−1/2

∑n
i=1(δXi −P ) Pn� G(f)+P (f−

Pf)h in �∞(F). The reason the first limiting process has mean zero is be-
cause η is independent of X and thus Pη(f−Pf)h = 0 for all f ∈ F . Thus
the last two terms in (11.6) Pn→ 0 and G̃n

Pn� G in �∞(F). This now implies
the unconditional asymptotic tightness and desired asymptotic measura-
bility of G̃n.

By the same kinds of arguments we used in the proof of theorem 10.4, all
we need to verify now is that all finite dimensional collections f1, . . . , fm ∈
F converge under Pn in distribution, conditional on the data, to the appro-
priate limiting Gaussian process. Accordingly, let Zi = (f1(Xi) − Pf1, . . . ,
fm(Xi)−Pfm)′, i = 1, . . . , n. What we need to show is that n−1/2

∑n
i=1 ηiZi

converges weakly under Pn, conditional on the Z1, . . . , Zn, to a mean zero
Gaussian process with variance Σ ≡ PZ1Z

′
1. By lemma 10.5, we are done

if we can verify that n−1
∑n
i=1 ZiZ

′
i
Pn→ Σ and max1≤i≤n ‖Zi‖/

√
n
Pn→ 0.

By the assumptions of the theorem,

lim sup
n→∞

{En(M) ≡ Pn[Z1Z
′
11{‖Z1‖ > M}]} → 0

asM → ∞. Note also that (11.4) can be shown to imply that Pnh → Ph, as
n → ∞, for any bounded h (this verification is saved as an exercise). Thus,
for any M < ∞, PnZ1Z

′
11{‖Z1‖ ≤ M} convergences to PZ1Z

′
11{‖Z1‖ ≤

M}. Since M is arbitrary, this convergence continues to hold if M is re-
placed by a sequence Mn going to infinity slowly enough. Accordingly,

n−1
n∑
i=1

ZiZ
′
i = n−1

n∑
i=1

ZiZ
′
i1{‖Zi‖ > Mn}

+n−1
∑
i=1

ZiZ
′
i1{‖Zi‖ ≤Mn}

Pn→ PZ1Z
′
1,

as n → ∞. Now we also have

max
1≤i≤n

‖Zi‖√
n

=

√
max

1≤i≤n

‖Zi‖2

n

≤

√√√√ max
1≤i≤n

‖Zi‖2

n
1{‖Zi‖ ≤M} +

1
n

n∑
i=1

‖Zi‖21{‖Zi‖ > M}.

The first term under the last square root sign Pn→ 0 trivially, while the
expectation under Pn of the second term, En(M), goes to zero as n →
∞ and M → ∞ sufficiently slowly with n, as argued previously. Thus
max1≤i≤n ‖Zi‖/

√
n
Pn→ 0, and the proof is complete.�
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11.4 Sums of Independent but not Identically
Distributed Stochastic Processes

In this section, we are interested in deriving the limiting distribution of
sums of the form

∑mn

i=1 fni(ω, t), where the real-valued stochastic processes
{fni(ω, t), t ∈ T, 1 ≤ i ≤ mn}, for all integers n ≥ 1, are independent within
rows on the probability space (Ω,A, P ) for some index set T . In addition
to a central limit theorem, we will present a multiplier bootstrap result
to aid in inference. An example using these techniques will be presented
in the upcoming case studies II chapter. Throughout this section, function
arguments or subscripts will sometimes be suppressed for notational clarity.

11.4.1 Central Limit Theorems

The notation and set-up are similar to that found in Pollard (1990) and
Kosorok (2003). A slightly more general approach to the same question can
be found in chapter 2.11 of VW. Part of the generality in VW is the ability
to utilize bracketing entropy in addition to uniform entropy for establishing
tightness. An advantage of Pollard’s approach, on the other hand, is that
total boundedness of the index set T is a conclusion rather than a condition.
Both approaches have their merits and appear to be roughly equally useful
in practice.

We need to introduce a few measurability conditions which are different
from but related to conditions introduced in previous chapters. The first
condition is almost measurable Suslin: Call a triangular array {fni(ω, t), t ∈
T } almost measurable Suslin (AMS) if for all integers n ≥ 1, there exists a
Suslin topological space Tn ⊂ T with Borel sets Bn such that

(i)

P∗

(
sup
t∈T

inf
s∈Tn

mn∑
i=1

(fni(ω, s) − fni(ω, t))
2
> 0

)
= 0,

(ii) For i = 1 . . .mn, fni : Ω × Tn �→ R is A × Bn-measurable.

The second condition is stronger yet seems to be more easily verified in
applications: Call a triangular array of processes {fni(ω, t), t ∈ T } separable
if for every integer n ≥ 1, there exists a countable subset Tn ⊂ T such that

P∗

(
sup
t∈T

inf
s∈Tn

mn∑
i=1

(fni(ω, s) − fni(ω, t))
2
> 0

)
= 0.

The following lemma shows that separability implies AMS:

Lemma 11.13 If the triangular array of stochastic processes {fni(ω, t), t ∈
T } is separable, then it is AMS.
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Proof. The discrete topology applied to Tn makes it into a Suslin topol-
ogy by countability, with resulting Borel sets Bn. For i = 1 . . .mn, fni :
Ω × Tn �→ R is A × Bn-measurable since, for every α ∈ R,

{(ω, t) ∈ Ω × Tn : fni(ω, t) > α} =
⋃
s∈Tn

{(ω, s) : fni(ω, s) > α} ,

and the right-hand-side is a countable union of A × Bn-measurable sets.�
The forgoing measurable Suslin condition is closely related to the defini-

tion given in Example 2.3.5 of VW, while the definition of separable arrays
is similar in spirit to the definition of separable stochastic processes given in
the discussion preceding lemma 7.2 in section 7.1 above. The modifications
of these definitions presented in this section have been made to accom-
modate nonidentically distributed arrays for a broad scope of statistical
applications. However, finding the best possible measurability conditions
was not the primary goal.

We need the following definition of manageability (Definition 7.9 of Pol-
lard, 1990, with minor modification). First, for any setA ∈ Rm, letDm(x,A)
be the packing number for the set A at Euclidean distance x, i.e., the largest
k such that there exist k points in A with the smallest Euclidean distance
between any two distinct points being greater than x. Also let Fnω ≡
{[fn1(ω, t), . . . , fnmn(ω, t)] ∈ Rmn : t ∈ T }; and for any vectors u, v ∈ Rm,
u" v ∈ Rm is the pointwise product and ‖ · ‖ denotes Euclidean distance.
A triangular array of processes {fni(ω, t)} is manageable, with respect to
the envelopes Fn(ω) ≡ [Fn1(ω), . . . , Fnmn(ω)] ∈ Rmn , if there exists a de-
terministic function λ (the capacity bound) for which

(i)
∫ 1

0

√
logλ(x)dx < ∞,

(ii) there exists N ⊂ Ω such that P∗(N) = 0 and for each ω �∈ N ,

Dmn (x ‖α" Fn(ω)‖ , α"Fnω) ≤ λ(x),

for 0 < x ≤ 1, all vectors α ∈ Rmn of nonnegative weights, all n ≥ 1,
and where λ does not depend on ω or n.

We now state a minor modification of Pollard’s Functional Central Limit
Theorem for the stochastic process sum

Xn(ω, t) ≡
mn∑
i=1

[fni(ω, t) − Efni(·, t)] .

The modification is the inclusion of a sufficient measurability requirement
which was omitted in Pollard’s (1990) version of the theorem.

Theorem 11.14 Suppose the triangular array {fni(ω, t), t ∈ T } consists
of independent processes within rows, is AMS, and satisfies:
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(A) the {fni} are manageable, with envelopes {Fni} which are also inde-
pendent within rows;

(B) H(s, t) = limn→∞ EXn(s)Xn(t) exists for every s, t ∈ T ;

(C) lim supn→∞
∑mn

i=1 E∗F 2
ni <∞;

(D) limn→∞
∑mn

i=1 E∗F 2
ni1 {Fni > ε} = 0, for each ε > 0;

(E) ρ(s, t) = limn→∞ ρn(s, t), where

ρn(s, t) ≡
(
mn∑
i=1

E |fni(·, s) − fni(·, t)|2
)1/2

,

exists for every s, t ∈ T , and for all deterministic sequences {sn} and
{tn} in T , if ρ(sn, tn) → 0 then ρn(sn, tn) → 0.

Then

(i) T is totally bounded under the ρ pseudometric;

(ii) Xn converges weakly on �∞(T ) to a tight mean zero Gaussian process
X concentrated on UC(T, ρ), with covariance H(s, t).

The proof is given in Kosorok (2003) who relies on chapter 10 of Pollard
(1990) for some of the steps. We omit the details. We will use this theorem
when discussing function classes changing with n, later in this chapter, as
well as in one of the case studies of chapter 15. One can think of this the-
orem as a Lindeberg central limit theorem for stochastic processes, where
condition (D) is a modified Lindeberg condition.

Note that the manageability condition (A) is an entropy condition quite
similar to the BUEI condition of chapter 9. Pollard (1990) discussed sev-
eral methods and preservation results for establishing manageability, in-
cluding bounded pseudodimension classes which are very close in spirit to
VC-classes of functions (see chapter 4 of Pollard): The set Fn ⊂ Rn has
pseudodimension of at most V if, for every point t ∈ RV+1, no proper co-
ordinate projection of Fn can surround t. A proper coordinate projection
Fk
n is obtained by choosing a subset i1, . . . , ik of indices 1, . . . ,mn, where

k ≤ mn, and then letting Fk
n =

{
fni1(t1), . . . , fnik(tk) : (t1, . . . , tk) ∈ Rk

}
.

It is not hard to verify that if fn1(t), . . . , fnmn(t) are always monotone
increasing functions in t, then the resulting Fn has pseudodimension 1. This
happens because all two-dimensional projections always form monotone
increasing trajectories, and thus can never surround any point in R2. The
proof is almost identical to the proof of lemma 9.10. By theorem 4.8 of
Pollard (1990), every triangular array of stochastic processes for which
Fn has pseudodimension bounded above by V < ∞, for all n ≥ 1, is
manageable. As verified in the following theorem, complicated manageable
classes can be built up from simpler manageable classes:
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Theorem 11.15 Let fn1, . . . , fnmn and gn1, . . . , gnmn be manageable ar-
rays with respective index sets T and U and with respective envelopes Fn1, . . . ,
Fnmn and Gn1, . . . , Gnmn . Then the following are true:

(i) {fn1(t)+gn1(u), . . . , fnmn(t)+gnmn(u) : (t, u) ∈ T ×U}, is manage-
able with envelopes Fn1 +Gn1, . . . , Fnmn +Gnmn ;

(ii) {fn1(t)∧gn1(u), . . . , fnmn(t)∧gnmn (u) : (t, u) ∈ T×U} is manageable
with envelopes Fn1 +Gn1, . . . , Fnmn +Gnmn ;

(iii) {fn1(t)∨gn1(u), . . . , fnmn(t)∨gnmn (u) : (t, u) ∈ T×U} is manageable
with envelopes Fn1 +Gn1, . . . , Fnmn +Gnmn ;

(iv) {fn1(t)gn1(u), . . . , fnmn(t)gnmn(u) : (t, u) ∈ T × U} is manageable
with envelopes Fn1Gn1, . . . , FnmnGnmn .

Proof. For any vectors x1, x2, y1, y2 ∈ Rmn , it is easy to verify that
‖x1�y1 − x2�y2‖ ≤ ‖x1 − x2‖ + ‖y1 − y2‖, where � is any one of the
operations ∧, ∨, or +. Thus

Nmn (ε‖α" Fn +Gn‖, α"Fn�Gn) ≤ Nmn (ε‖α" Fn‖, α"Fn)
×Nmn (ε‖α"Gn‖, α" Gn) ,

for any 0 < ε ≤ 1 and all vectors α ∈ Rmn of nonnegative weights, where
Nmn denotes the covering number version of Dmn , Gn ≡ {gn1(u), . . . ,
gnmn(u) : u ∈ U}, and Fn�Gn has the obvious interpretation. Thus
parts (i)–(iii) of the theorem follow by the relationship between packing
and covering numbers discussed in section 8.1.2 in the paragraphs preced-
ing theorem 8.4.

Proving part (iv) requires a slightly different approach. Let x1, x2, y1, y2
by any vectors in Rmn , and choose the vectors x̃, ỹ ∈ Rmn with nonnegative
components so that both x̃− [x1 ∨ x2 ∨ (−x1) ∨ (−x2)] and ỹ − [y1 ∨ y2 ∨
(−y1) ∨ (−y2)] have only nonnegative components. It is not hard to verify
that ‖x1 " y1 − x2 " y2‖ ≤ ỹ‖x1 − x2‖ + x̃‖y1 − y2‖. From this, we can
deduce

Nmn (2ε‖α" Fn "Gn‖, α"Fn " Gn)
≤ Nmn (ε‖α" Fn "Gn‖, α"Gn "Fn)

×Nmn (ε‖α" Fn "Gn‖, α" Fn " Gn)
= Nmn (ε‖α′ " Fn‖, α′ "Fn) ×Nmn (ε‖α′′ "Gn‖, α′′ " Gn) ,

for any 0 < ε ≤ 1 and all vectors α ∈ Rmn of nonnegative weights, where
α′ ≡ α " Gn and α′′ ≡ α " Fn. Since capacity bounds do not depend on
the nonnegative weight vector (either α, α′ or α′′), part (iv) now follows,
and the theorem is proved.�
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11.4.2 Bootstrap Results

We now present a weighted bootstrap for inference about the limiting pro-
cess X of theorem 11.14. The basic idea shares some similarities with the
wild bootstrap (Praestgaard and Wellner, 1993). Let Z ≡ {zi, i ≥ 1} be a
sequence of random variables satisfying

(F) The {zi} are independent and identically distributed, on the proba-
bility space {Ωz,Az,Πz}, with mean zero and variance 1.

Denote μni(t) ≡ Efni(·, t), and let μ̂ni(t) be estimators of μni(t). The
weighted bootstrapped process we propose for inference is

X̂nω(t) ≡
mn∑
i=1

zi [fni(ω, t) − μ̂ni(ω, t)] ,

which is defined on the product probability space {Ω,A,Π}×{Ωz,Az ,Πz},
similar to what was done in chapter 9 for the weighted bootstrap in the
i.i.d. case. What is unusual about this bootstrap is the need to estimate
the μni terms: this need is a consequence of the terms being non-identically
distributed.

The proposed method of inference is to resample X̂n, using many realiza-
tions of z1, . . . , zmn , to approximate the distribution of Xn. The following
theorem gives us conditions under which this procedure is asymptotically
valid:

Theorem 11.16 Suppose the triangular array {fni} satisfies the condi-
tions of theorem 11.14 and the sequence {zi, i ≥ 1} satisfies condition (F)
above. Suppose also that the array of estimators {μ̂ni(ω, t), t ∈ T, 1 ≤ i ≤
mn, n ≥ 1} is AMS and satisfies the following:

(G) supt∈T
∑mn

i=1 [μ̂ni(ω, t) − μni(t)]
2 = oP (1);

(H) the stochastic processes {μ̂ni(ω, t)} are manageable with envelopes{
F̂ni(ω)

}
;

(I) k∨
∑mn

i=1

[
F̂ni(ω)

]2

converges to k in outer probability as n → ∞, for
some k < ∞.

Then the conclusions of Theorem 11.14 obtain, X̂n is asymptotically mea-

surable, and X̂n
P�
Z
X.

The main idea of the proof is to first study the conditional limiting
distribution of X̃nω(t) ≡

∑mn

i=1 zi [fni(ω, t) − μni(t)], and then show that
the limiting result is unchanged after replacing μni with μ̂ni. The first step
is summarized in the following theorem:
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Theorem 11.17 Suppose the triangular array {fni} satisfies the condi-
tions of theorem 11.14 and the sequence {zi, i ≥ 1} satisfies condition (F)
above. Then the conclusions of Theorem 11.14 obtain, X̃n is asymptotically

measurable, and X̃n
P�
Z
X.

An interesting step in the proof of this theorem is verifying that manageabil-
ity of the triangular array z1fn1, . . . , zmnfnmn follows directly from man-
ageability of fn1, . . . , fnmn . We now demonstrate this. For vectors u ∈ Rmn ,
let |u| denote pointwise absolute value and sign(u) denote pointwise sign.
Now, for any nonnegative α ∈ Rmn ,

Dmn (x ‖α" |zn| " Fn(ω)‖ , α" zn "Fnω)
= Dmn (x ‖α̃" Fn(ω)‖ , α̃" sign(zn) "Fnω)
= Dmn (x ‖α̃" Fn(ω)‖ , α̃"Fnω) ,

where zn ≡ {z1, . . . , zmn}T , since the absolute value of the {zi} can be
absorbed into the α to make α̃ and since any coordinate change of sign
does not effect the geometry of Fnω. Thus the foregoing triangular array
is manageable with envelopes {|zi|Fni(ω)}. The remaining details of the
proofs of both theorems 11.16 and 11.17, which we omit here, can be found
in Kosorok (2003).

11.5 Function Classes Changing with n

We now return to the i.i.d. empirical process setting where the i.i.d. ob-
servations X1, X2, . . . are drawn from a measurable space {X ,A}, with
probability measure P . What is new, however, is that we allow the func-
tion class to depend on n. Specifically, we assume the function class has
the form Fn ≡ {fn,t : t ∈ T }, where the functions x �→ fn,t(x) are in-
dexed by a fixed T but are allowed to change with sample size n. Note
that this trivially includes the standard empirical process set-up with an
arbitrary but fixed function class F by setting T = F and fn,t = t for
all n ≥ 1 and t ∈ F . The approach we take is to specialize the results of
section 11.4 after replacing manageability with a bounded uniform entropy
integral condition. An alternative approach which can utilize either uni-
form or bracketing entropy is given in section 2.11.3 of VW, but we do not
pursue this second approach here.

Let Xn(t) ≡ n−1/2
∑n
i=1 (fn,t(Xi) − Pfn,t), for all t ∈ T , and let Fn be

an envelope for Fn. We say that the sequence Fn is AMS if for all n ≥ 1,
there exists a Suslin topological space Tn ⊂ T with Borel sets Bn such that

P∗
(

sup
t∈T

sup
s∈Tn

|fn,s(X1) − fn,t(X1)| > 0
)

= 0(11.7)
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and fn,· : X × Tn �→ R is A × Bn-measurable. Moreover, the sequence Fn
is said to be separable if, for all n ≥ 1, there exists a countable subset
Tn ⊂ T such that (11.7) holds. The arguments in the proof of lemma 11.13
verify that separability implies AMS as is true for the more general setting
of section 11.4.

We also require the following bounded uniform entropy integral condi-
tion:

lim sup
n→∞

sup
Q

∫ 1

0

√
logN (ε‖Fn‖Q,2,Fn, L2(Q))dε < ∞,(11.8)

where, for each n ≥ 1, supQ is the supremum taken over all finitely discrete
probability measures Q with ‖Fn‖Q,2 > 0. We are now ready to present
the following functional central limit theorem:

Theorem 11.18 Suppose Fn is AMS and the following hold:

(A) Fn satisfies (11.8) with envelop Fn;

(B) H(s, t) = limn→∞ EXn(s)Xn(t) for every s, t ∈ T ;

(C) lim supn→∞ E∗F 2
n <∞;

(D) limn→∞ E∗F 2
n1{Fn > ε

√
n} = 0, for each ε > 0;

(E) ρ(s, t) = limn→∞ ρn(s, t), where ρn(s, t) ≡
√

E|fn,s(X1) − fn,t(X2)|,
exists for every s, t ∈ T , and for all deterministic sequences {sn} and
{tn} in T , if ρ(sn, tn) → 0 then ρn(sn, tn) → 0.

Then

(i) T is totally bounded under the ρ pseudometric;

(ii) Xn converges weakly in �∞(T ) to a tight, mean zero Gaussian process
X concentrated on UC(T, ρ), with covariance H(s, t).

Proof. The proof consists in showing that the current setting is just
a special case of theorem 11.14. Specifically, we let fni(t) = fn,t(Xi) and
mn = n, and we study the array {fni(t), t ∈ T }. First, it is clear that Fn
being AMS implies that {fni(t), t ∈ T } is AMS. Now let

F̃n ≡ {[fn1(t), . . . , fnn(t)] ∈ Rn : t ∈ T }

and F̃n ≡
[
F̃n1, . . . , F̃nn

]
, where F̃ni ≡ Fn(Xi)/

√
n; and note that for any

α ∈ Rn,

Dn

(
ε‖α" F̃n‖, α" F̃n

)
≤ D (ε‖Fn‖Qα,2,Fn, L2(Qα)) ,
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whereQα ≡ (n‖α‖)−1
∑n
i=1 α

2
i δXi is a finitely discrete probability measure.

Thus, by the relationship between packing and covering numbers given in
section 8.1.2, we have that if we let

λ(x) = lim sup
n→∞

sup
Q
N (x‖Fn‖Q,2/2,Fn, L2(Q)) ,

where supQ is taken over all finitely discrete probability measures, then
condition 11.8 implies that

Dn

(
ε‖α" F̃n‖, α" F̃n

)
≤ λ(ε),

for all 0 < ε ≤ 1, all vectors α ∈ Rn of nonnegative weights, and all n ≥ 1;
and that

∫ 1

0

√
logλ(ε)dε < 0. Note that without loss of generality, we can

set Dn(·, ·) = 1 whenever ‖α " F̃n‖ = 0 and let λ(1) = 1, and thus the
foregoing arguments yield that condition (11.8) implies manageability of
the triangular array {fn1(t), . . . , fnn(t), t ∈ T }.

Now the remaining conditions of the theorem can easily be show to im-
ply conditions (B) through (E) of theorem 11.14 for the new triangular
array and envelope vector F̃n. Hence the desired results follow from theo-
rem 11.14.�

The following lemma gives us an important example of a sequence of
classes Fn that satisfies condition (11.8):

Lemma 11.19 For fixed index set T , let Fn = {fn,t : t ∈ T } be a VC
class of measurable functions with VC-index Vn and integrable envelope
Fn, for all n ≥ 1, and assume supn≥1 Vn = V < ∞. Then the sequence Fn
satisfies condition (11.8).

Proof. By theorem 9.3, there exists a universal constant K depending
only on V such that

N (ε‖Fn‖Q,2,Fn, L2(Q)) ≤ K

(
1
ε

)r(V−1)

,

for all 0 < ε ≤ 1. Note that we have extended the range of ε to include 1, but
this presents not difficulty since N(‖Fn‖Q,2,Fn, L2(Q)) = 1 always holds
by the definition of an envelope function. The desired result now follows
since Vn ≤ V for all n ≥ 1.�

As a simple example, let T ⊂ R and assume that fn,t(x) is always mono-
tone increasing in t. Then Fn always has VC-index 2 by lemma 9.10, and
hence lemma 11.19 applies. Thus (11.8) holds. This particular situation will
apply later in section 14.5.2 when we study the weak convergence of a cer-
tain monotone density estimator. This condition (11.8) is quite similar to
the BUEI condition for fixed function classes, and most of the preservation
results of section 9.1.2 will also apply. The following proposition, the proof
of which is saved as an exercise, is one such preservation result:
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Proposition 11.20 Let Gn and Hn be sequences of classes of mea-
surable functions with respective envelope sequences Gn and Hn, where
condition (11.8) is satisfied for the sequences (Fn, Fn) = (Gn, Gn) and
(Fn, Fn) = (Hn, Hn). Then condition (11.8) is also satisfied for the se-
quence of classes Fn = Gn ·Hn (consisting of all pairwise products) and the
envelope sequence Fn = GnHn.

We now present a weighted bootstrap result for this setting. Let Z ≡
{zi, i ≥ 1} be a sequence of random variables satisfying

(F) The {zi} are positive, i.i.d. random variables which are independent
of the data X1, X2, . . . and which have mean 0 < μ < ∞ and variance
0 < τ2 < ∞.

The weighted bootstrapped process we propose for use here is

X̂n(t) ≡ μ

τ
n−1/2

n∑
i=1

(
zi
z̄n

− 1
)
fn,t(Xi),

where z̄n ≡ n−1
∑n

i=1 zi. The following theorem tells us that this is a valid
bootstrap procedure:

Theorem 11.21 Suppose the class of functions Fn, with envelope Fn,
satisfies the conditions of theorem 11.18 and the sequence {zi, i ≥ 1} sat-
isfies condition (F) above. Then the conclusions of theorem 11.18 obtain,

X̂n is asymptotically measurable, and X̂n
P�
Z
X.

Proof. Note that

τ

μ
X̂n(t) = n−1/2

n∑
i=1

(
zi
z̄n

− 1
)

(fn,t(Xi) − Pfn,t)

= n−1/2
n∑
i=1

(
zi
μ

− 1
)

(fn,t(Xi) − Pfn,t)

+n−1/2

(
μ

z̄n
− 1

) n∑
i=1

(
zi
μ

− 1
)

(fn,t(Xi) − Pfn,t)

+n−1/2

(
μ

z̄n
− 1

) n∑
i=1

(fn,t(Xi) − Pfn,t)

= An(t) +Bn(t) + Cn(t).

By theorem 11.18, Gnfn,t = O∗T
P (1), where O∗T

P (1) denotes a term bounded
in outer probability uniformly over T . Since theorem 11.18 is really a special
case of theorem 11.14, we have by theorem 11.17 that n−1/2

∑n
i=1

μ
τ

(
zi

μ − 1
)

× (fn,t(Xi) − Pfn,t)
P�
Z
X , since μ

τ

(
z1
μ − 1

)
has mean zero and variance 1.
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Hence (μ/τ)An is asymptotically measurable and (μ/τ)An
P�
Z
X . Moreover,

since z̄n
as∗→ μ, we now have that both Bn = o∗TP (1) and Cn = o∗TP (1), where

o∗TP (1) denotes a term going to zero outer almost surely uniformly over T .
The desired results now follow.�

11.6 Dependent Observations

In the section, we will review a number of empirical process results for
dependent observations. A survey of recent results on this subject is Em-
pirical Process Techniques for Dependent Data, edited by Dehling, Mikosch
and Sørensen (2002); and a helpful general reference on theory for depen-
dent observations is Dependence in Probability and Statistics: A Survey of
Recent Results, edited by Eberlein and Taqqu (1986). Our focus here will
be on strongly mixing stationary sequences (see Bradley, 1986). For the
interested reader, a few results for non-stationary dependent sequences can
be found in Andrews (1991), while several results for long range dependent
sequences can be found in Dehling and Taqqu (1989), Yu (1994) and Wu
(2003), among other references.

Let X1, X2, . . . be a stationary sequence of possibly dependent random
variables on a probability space (Ω,D, Q), and let Mb

a be the σ-field gen-
erated by Xa, . . . , Xb. By stationary, we mean that for any set of positive
integers m1, . . . ,mk, the joint distribution of Xm1+j , Xm2+j , . . . , Xmk+j is
unchanging for all integers j ≥ −m1 + 1. The sequence {Xi, i ≥ 1} is
strongly mixing (also α-mixing) if

α(k) ≡ sup
m≥1

{
|P (A ∩B) − P (A)P (B)| : A ∈ Mm

1 , B ∈ M∞
m+k

}
→ 0,

as k → ∞, and it is absolutely regular (also β-mixing) if

β(k) ≡ E sup
m≥1

{
|P (B |Mm

1 ) − P (B)| : B ∈ M∞
m+k

}
→ 0,

as k → ∞. Other forms of mixing include ρ-mixing, φ-mixing, ψ-mixing
and ∗-mixing (see Definition 3.1 of Dehling and Philipp, 2002). Note that
the stronger notion of m-dependence, where observations more than m lags
apart are independent, implies that β(k) = 0 for all k > m and therefore
also implies absolute regularity. It is also known that absolute regularity
implies strong mixing (see section 3.1 of Dehling and Philipp, 2002). Here-
after, we will restrict our attention to β-mixing sequences since these will
be the most useful for our purposes.

We now present several empirical process Donsker and bootstrap results
for absolutely regular stationary sequences. Let the values of X1 lie in a
Polish space X with distribution P , and let Gn be the empirical measure for
the first n observations of the sequence, i.e., Gnf = n1/2

∑n
i=1(f(Xi)−Pf),
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for any measurable f : X �→ R. We now present the following bracketing
central limit theorem:

Theorem 11.22 Let X1, X2, . . . be a stationary sequence in a Polish
space with marginal distribution P , and let F be a class of functions in
L2(P ). Suppose there exists a 2 < p <∞ such that

(a)
∑∞

k=1 k
2/(p−2)β(k) <∞, and

(b) J[](∞,F , Lp(P )) <∞.

Then Gn � H in �∞(F), where H is a tight, mean zero Gaussian process
with covariance

Γ(f, g) ≡ lim
k→∞

∞∑
i=1

cov(f(Xk), g(Xi)), for all f, g ∈ F .(11.9)

Proof. The result follows through condition 2 of theorem 5.2 of Dedecker
and Louhichi (2002), after noting that their condition 2 can be shown to
be implied by conditions (a) and (b) above, via arguments contained in
section 4.3 of Dedecker and Louhichi (2002). We omit the details.�

We next present a result for VC classes F . In this case, we need to address
the issue of measurability with some care. For what follows, let B be the
σ-field of the measurable sets on X . The class of functions F is permissible
if it can be indexed by some set T , i.e., F = {f(·, t) : t ∈ T } (T could
potentially be F for this purpose), in such a way that the following holds:

(a) T is a Suslin metric space with Borel σ-field B(T ),

(b) f(·, ·) is a B × B(T )-measurable function from R × T to R.

Note that this definition is similar to the almost measurable Suslin condi-
tion of section 11.5. We now have the following theorem:

Theorem 11.23 Let X1, X2, . . . be a stationary sequence in a Polish
space with marginal distribution P , and let F be a class of functions in
L2(P ). Suppose there exists a 2 < p <∞ such that

(a) limk→∞ k2/(p−2)(log k)2(p−1)/(p−2)β(k) = 0, and

(b) F is permissible, VC, and has envelope F satisfying P ∗F p < ∞.

Then Gn � H in �∞(F), where H is as defined in theorem 11.22 above.

Proof. This theorem is essentially theorem 2.1 of Arcones and Yu (1994),
and the proof, under slightly different measurability conditions, can be
found therein. The measurability issues, including the sufficiency of the
permissibility condition, are addressed in the appendix of Yu (1994). We
omit the details.�
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Now we consider the bootstrap. A problem with the usual nonpara-
metric bootstrap is that samples of X1, X2, . . . randomly drawn with re-
placement will be independent and will loose the dependency structure
of the stationary sequence. Hence the usual bootstrap will generally not
work. A modified bootstrap, the moving blocks bootstrap (MBB), was in-
dependently introduce by Künsch (1989) and Liu and Singh (1992) to ad-
dress this problem. The method works as follows for a stationary sample
X1, . . . , Xn: For a chosen block length b ≤ n, extend the sample by defining
Xn+i, . . . , Xn+b−1 = X1, . . . , Xb and let k be the smallest integer such that
kb ≥ n. Now define blocks (as row vectors)Bi = (Xi, Xi+1, . . . , Xi+b−1), for
i = 1, . . . , n, and sample from the Bis with replacement to obtain k blocks
B∗

1 , B
∗
2 , . . . , B

∗
k. The bootstrapped sampleX∗

1 , . . . , X
∗
n consists of the first n

observations from the row vector (B∗
1 , . . . , B

∗
k). The bootstrapped empirical

measure indexed by the class F is then defined as

G∗
nf ≡ n−1/2

n∑
i=1

(f(X∗
i ) − Pnf),

for all f ∈ F , where Pnf ≡ n−1
∑n

i=1 f(Xi) is the usual empirical proba-
bility measure (except that the data are now potentially dependent).

For now, we will assume that X1, X2, . . . are real-valued, although the re-
sults probably could be extended to general Polish-valued random variables.
MBB bootstrap consistency has been established for bracketing entropy in
Bühlmann (1995), although the entropy requirements are much stronger
than those of theorem 11.22 above, and also for VC classes in Radulović
(1996). Other interesting, related references are Naik-Nimbalker and Ra-
jarshi (1994) and Peligrad (1998), among others. We conclude this section
by presenting Radulović’s (1996) theorem 1 (slightly modified to address
measurability) without proof:

Theorem 11.24 Let X1, X2, . . . be a stationary sequence of real random
variables with marginal distribution P , and let F be a class of functions in
L2(P ). Also assume that X∗

1 , . . . , X
∗
n are generated by the MBB procedure

with block size b(n) → ∞, as n → ∞, and that there exists 2 < p < ∞,
q > p/(p− 2), and 0 < ρ < (p− 2)/[2(p− 1)] such that

(a) lim supk→∞ kqβ(k) <∞,

(b) F is permissible, VC, and has envelope F satisfying P ∗F p < ∞, and

(c) lim supn→∞ n−ρb(n) < ∞.

Then G∗
n

P�
∗

H in �∞(F), where H is as defined in theorem 11.22 above.
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11.7 Proofs

Proofs of theorems 11.3 and 11.4. Consider the class F ′ ≡ 1/2 +
F/(2M), and note that all functions f ∈ F ′ satisfy 0 ≤ f ≤ 1. Moreover,
‖Gn‖F = 2M‖Gn‖F ′ . Thus, if we prove the results for F ′, we are done.

For theorem 11.3, the condition (11.1) is also satisfied if we replace F
with F ′. This can be done without changing W , although we may need to
change K to some K ′ <∞. Theorem 2.14.10 of VW now yields that

P∗(‖Gn‖F ′ > t) ≤ CeDt
U+δ

e−2t2 ,(11.10)

for every t > 0 and δ > 0, where U = W (6 −W )/(2 +W ) and C and D
depend only on K ′, W , and δ. Since 0 < W < 2, it can be shown that
0 < U < 2. Accordingly, choose a δ > 0 so that U + δ < 2. Now, it can be
shown that there exists a C∗ < ∞ and K∗ > 0 so that (11.10)≤ C∗e−K

∗t2 ,
for every t > 0. Theorem 11.3 now follows by lemma 8.1.

For theorem 11.4, the condition (11.2) implies the existence of a K ′ so
that N[](ε,F ′, L2(P )) ≤ (K ′/ε)V , for all 0 < ε < K ′, where V is the one
in (11.2). Now theorem 2.14.9 of VW yields that

P∗(‖Gn‖F ′ > t) ≤ CtV e−2t2 ,(11.11)

for every t > 0, where the constant C depends only on K ′ and V . Thus
there exists a C∗ < ∞ and K∗ > 0 such that (11.11)≤ C∗e−K

∗t2 , for every
t > 0. The desired result now follows.�

Proof of theorem 11.8. For the proof of result (i), note that the cosines
are bounded, and thus the series defining F1 is automatically pointwise
convergent by the discussion prior to theorem 11.8. Now, the Cramér-von
Mises statistic is the square of the L2[0, 1] norm of the function t �→ Gn(t) ≡
Gn1{X ≤ t}. Since the functions {gi ≡

√
2 sinπjt : j = 1, 2, . . .} form an

orthonormal basis for L2[0, 1], Parseval’s formula tells us that the integral
of the square of any function in L2[0, 1] can be replaces by the sum of the
squares of the Fourier coefficients. This yields:

∫ 1

0

G2
n(t)dt =

∞∑
i=1

[∫ 1

0

Gn(t)gi(t)dt
]2

=
∞∑
i=1

[
Gn

∫ X

0

gi(t)dt

]2

.(11.12)

But since
∫ x
0 gi(t)dt = −(πi)−1

√
2 cosπix, the last term in (11.12) becomes∑∞

i=1 G2
n(

√
2 cosπiX)/(πi)2. Standard methods can now be used to estab-

lish that this converges weakly to the appropriate limiting distribution. An
alternative proof can be obtained via the relation (11.3) and the fact that
F1 is an elliptical class and hence Donsker. Now (i) follows.

For result (ii), note that the orthonormalized Legendre polynomials can
be obtained by applying the Gram-Schmidt procedure to the functions
1, u, u2, . . .. By problem 2.13.1 of VW, the orthonormalized Legendre
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polynomials satisfy the differential equations (1 − u2)p′′j (u) − 2up′j(u) =
−j(j+1)pj(u), for all u ∈ [−1, 1] and integers j ≥ 1. By change of variables,
followed by partial integration and use of this differential identity, we obtain

2
∫ 1

0

p′i(2t− 1)p′j(2t− 1)t(1 − t)dt

=
1
4

∫ 1

−1

p′i(u)p′j(u)(1 − u2)du

= −1
4

∫ 1

−1

pi(u)
[
p′′j (u)(1 − u2) − 2up′j(u)

]
du

=
1
4
j(j + 1)1{i = j}.

Thus the functions 2
√

2p′j(2t−1)
√
t(1 − t)/

√
j(j + 1), with j ranging over

the positive integers, form an orthonormal basis for L2[0, 1]. By Parseval’s
formula, we obtain∫ 1

0

G2
n(t)

t(1 − t)
dt =

∞∑
j=1

[∫ 1

0

Gn(t)p′i(2t− 1)dt
]2

8
j(j + 1)

=
∞∑
j=1

2
j(j + 1)

G2
n (pj(2t− 1)) .

By arguments similar to those used to establish (i), we can now verify
that (ii) follows.�

Proof of corollary 11.9. By transforming the data using the trans-
form x �→ F0(x), we can, without loss of generality, assume that the data
are all i.i.d. uniform and reduce the interval of integration to [0, 1]. Now
proposition 7.27 yields that T̂1 �

∫ 1

0 G2(t)dt, where G(t) is a standard
Brownian bridge. Now Parseval’s formula and arguments used in the proof
of theorem 11.8 yield that∫ 1

0

G2(t)dt =
∞∑
i=1

G2(
√

2 cosπx)/(πi)2 ≡ T ∗
1 ,

where now G is a mean zero Gaussian Brownian bridge random measure,
where the covariance between G(f) and G(g), where f, g : [0, 1] �→ R, is∫ 1

0
f(s)g(s)ds −

∫ 1

0
f(s)ds

∫ 1

0
g(s)ds. The fact that T ∗

1 is tight combined
with the covariance structure of G yields that T ∗

1 has the same distribution
as T1, and the desired weak convergence result for T̂1 follows.

For T̂2, apply the same transformation as above so that, without loss of
generality, we can again assume that the data are i.i.d. uniform and that
the interval of integration is [0, 1]. Let

G̃n ≡
√

n1n2

n1 + n2

(
F̂n,1 − F̂n,2

)
,
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and fix ε ∈ (0, 1/2). We can now apply proposition 7.27 to verify that

∫ 1−ε

ε

G̃2
n(s)

F̂n,0(s)
[
1 − F̂n,0(s)

]dF̂n,0(s)�
∫ 1−ε

ε

G2(s)
s(1 − s)

ds.

Note also that Fubini’s theorem yields that both E
{∫ ε

0 G2(s)/[s(1 − s)]ds
}

=

ε and E
{∫ 1

1−ε G2(s)/[s(1 − s)]ds
}

= ε.

We will now work towards bounding
∫ ε
0

(
G̃n(s)/

{
F̂n,0(s)[1 − F̂n,0(s)]

})
ds.

Fix s ∈ (0, ε) and note that, under the null hypothesis, the conditional dis-
tribution of G̃n(s) given F̂n,0(s) = m has the form√

n1n2

n1 + n2

(
A

n1
− m−A

n2

)
,

where A is hypergeometric with density

P(A = a) =
(
n1

a

)(
n1

m− a

)
/

(
n
m

)
,

where a is any integer between (m− n2) ∨ 0 and m ∧ n1. Hence

E
[
G̃2
n(s)

∣∣∣ F̂n,0(s) = m
]

=
n1 + n2

n1n2
var(A)

=
n

n1n2

(
m
n1n2(n−m)
n2(n− 1)

)

=
n

n− 1

[
m(n−m)

n2

]
.

Thus

E

[∫ ε

0

G̃2
n(s)

F̂n,0(s)[1 − F̂n,0(s)]
ds

]
=

n

n− 1
EF̂n,0(ε) ≤ 2ε,

for all n ≥ 2. Similar arguments verify that

E

[∫ 1

1−ε

G̃2
n(s)

F̂n,0(s)[1 − F̂n,0(s)]
ds

]
≤ 2ε,

for all n ≥ 2. Since ε was arbitrary, we now have that

T̂2 �
∫ 1

0

G2(s)
s(1 − s)

ds ≡ T ∗
2 ,

where G is the same Brownian bridge process used in defining T ∗
1 . Now we

can again use arguments from the proof of theorem 11.8 to obtain that T ∗
2

has the same distribution as T2.�
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11.8 Exercises

11.8.1. Verify that F ∗ in the proof of theorem 11.5 is continuous.

11.8.2. Show that when Pn and P satisfy (11.4), we have that Pnh → Ph,
as n → ∞, for all bounded and measurable h.

11.8.3. Prove proposition 11.20. Hint: Consider the arguments used in
the proof of theorem 9.15.

11.9 Notes

Theorems 11.3 and 11.4 are inspired by theorem 2.14.9 of VW, and the-
orem 11.6 is derived from theorem 2.13.1 of VW. Theorem 11.7 is the-
orem 2.13.2 of VW, while theorem 11.8 is derived from examples 2.13.3
and 2.13.5 of VW. Much of the structure of section 11.4 comes from Kosorok
(2003), although theorem 11.15 was derived from material in section 5 of
Pollard (1990). Lemma 11.13 and theorems 11.14, 11.16 and 11.17, are
lemma 2 and theorems 1 (with a minor modification), 3 and 2, respec-
tively, of Kosorok (2003).
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12
The Functional Delta Method

In this chapter, we build on the presentation of the functional delta method
given in section 2.2.4. Recall the concept of Hadamard differentiability in-
troduced in this section and also defined more precisely in section 6.3. The
key result of section 2.2.4 is that the delta method and its bootstrap coun-
terpart work provided the map φ is Hadamard differentiable tangentially to
a suitable set D0. We first present in section 12.1 clarifications and proofs of
the two main theorems given in section 2.2.4, the functional delta method
for Hadamard differentiable maps (theorem 2.8) and the conditional ana-
log for the bootstrap (theorem 2.9). We then give in section 12.2 several
important examples of Hadamard differentiable maps of use in statistics,
along with specific illustrations of how those maps are utilized.

12.1 Main Results and Proofs

In this section, we first prove the functional delta method theorem (theo-
rem 2.8) and then restate and prove theorem 2.9. Before proceeding, recall
that Xn in the statement of theorem 2.8 is a random quantity that takes
its values in a normed space D.

Proof of theorem 2.8. Consider the map h �→ rn(φ(θ+r−1
n h)−φ(θ)) ≡

gn(h), and note that it is defined on the domain Dn ≡ {h : θ+ r−1
n h ∈ Dφ}

and satisfies gn(hn) → φ′θ(h) for every hn → h ∈ D0 with hn ∈ Dn. Thus
the conditions of the extended continuous mapping theorem (theorem 7.24)
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are satisfied by g(·) = φ′θ(·). Hence conclusion (i) of that theorem implies
gn(rn(Xn − θ))� φ′θ(X).�

We now restate and prove theorem 2.9. The restatement clarifies the
measurability condition. Before proceeding, recall the definitions of Xn and
X̂n in the statement of theorem 2.9. Specifically, Xn(Xn) is a sequence of
random elements in a normed space D based on the data sequence {Xn, n ≥
1}, while X̂n(Xn,Wn) is a bootstrapped version of Xn based on both the
data sequence and a sequence of weights W = {Wn, n ≥ 1}. Note that the
proof of this theorem utilizes the bootstrap continuous mapping theorem
(theorem 10.8). Here is the restated version of theorem 2.9:

Theorem 12.1 For normed spaces D and E, let φ : Dφ ⊂ D �→ E be
Hadamard-differentiable at μ tangentially to D0 ⊂ D, with derivative φ′μ.
Let Xn and X̂n have values in Dφ, with rn(Xn − μ)� X, where X is tight
and takes its values in D0 for some sequence of constants 0 < rn → ∞,
the maps Wn �→ h(X̂n) are measurable for every h ∈ Cb(D) outer almost

surely, and where rnc(X̂n − Xn)
P�
W

X, for a constant 0 < c < ∞. Then

rnc(φ(X̂n) − φ(Xn))
P�
W
φ′μ(X).

Proof. We can, without loss of generality, assume that D0 is complete
and separable (since X is tight), that D and E are both complete, and
that φ′μ : D �→ E is continuous on all of D, although it is permitted to
not be bounded or linear off of D0. To accomplish this, one can apply the
Dugundji extension theorem (theorem 10.9) which extends any continuous
operator defined on a closed subset to the entire space. It may be necessary
to replace E with its closed linear span to accomplish this.

We can now use arguments nearly identical to those used in the proof
given in section 10.1 of theorem 10.4 to verify that, unconditionally, both
Ûn ≡ rn(X̂n−Xn)� c−1X and rn(X̂n−μ)� Z, where Z is a tight random
element. Fix some h ∈ BL1(D), define Un ≡ rn(Xn − μ), and let X̃1 and
X̃2 be two independent copies of X. We now have that∣∣∣E∗h(Ûn + Un) − Eh(c−1X̃1 + X̃2)

∣∣∣
≤

∣∣∣EXnEWnh(Ûn + Un)∗ − E∗EWnh(Ûn + Un)
∣∣∣

+E∗
∣∣∣EWnh(Ûn + Un) − E

X̃1
h(c−1X̃1 + Un)

∣∣∣
+

∣∣∣E∗E
X̃1
h(c−1X̃1 + Un) − E

X̃2
E

X̃1
h(c−1X̃1 + X̃2)

∣∣∣ ,
where EWn , E

X̃1
and E

X̃2
are expectations taken over the bootstrap weights,

X̃1 and X̃2, respectively. The first term on the right in the above expression
goes to zero by the asymptotic measurability of Ûn + Un = rn(X̂n − μ).

The second term goes to zero by the fact that Ûn
P�
W
c−1X combined with
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the fact that the map x �→ h(x+Un) is Lipschitz continuous with Lipschitz
constant 1 outer almost surely. The second term goes to zero since Un � X

and the map x �→ E
X̃1
h(X̃1 +x) is also Lipschitz continuous with Lipschitz

constant 1. Since h was arbitrary, we have by the Portmanteau theorem
that, unconditionally,

rn

(
X̂n − μ
Xn − μ

)
�

(
c−1X̃1 + X̃2

X̃2

)
.

Now the functional delta method (theorem 2.8) yields

rn

⎛
⎜⎜⎝

φ(X̂n) − φ(μ)
φ(Xn) − φ(μ)

X̂n − μ
Xn − μ

⎞
⎟⎟⎠�

⎛
⎜⎜⎝

φ′μ(c−1X̃1 + X2)
φ′μ(X2)

c−1X̃1 + X2

X2

⎞
⎟⎟⎠ ,

since the map (x, y) �→ (φ(x), φ(y), x, y) is Hadamard differentiable at (μ, μ)
tangentially to D0. This implies two things. First,

rnc

(
φ(X̂n) − φ(Xn)

X̂n − Xn

)
�

(
φ′μ(X)

X

)
,

since φ′μ is linear on D0. Second, the usual continuous mapping theorem
now yields that, unconditionally,

rnc(φ(X̂n) − φ(Xn)) − φ′μ(rnc(X̂n − Xn))
P→ 0,(12.1)

since the map (x, y) �→ x− φ′μ(y) is continuous on all of E × D.
Now for any map h ∈ Cb(D), the map x �→ h(rnc(x − Xn)) is continu-

ous and bounded for all x ∈ D outer almost surely. Thus the maps Wn �→
h(rnc(X̂n − Xn)) are measurable for every h ∈ Cb(D) outer almost surely.
Hence the bootstrap continuous mapping theorem, theorem 10.8, yields

that φ′μ(rnc(X̂n−Xn))
P�
W
φ′μ(X). The desired result now follows from (12.1).�

12.2 Examples

We now give several important examples of Hadamard differentiable maps,
along with illustrations of how these maps are utilized in statistical appli-
cations.

12.2.1 Composition

Recall from section 2.2.4 the map φ : Dφ �→ D[0, 1], where φ(f) = 1/f and
Dφ = {f ∈ D[0, 1] : |f | > 0}. In that section, we established that φ was
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Hadamard differentiable, tangentially to D[0, 1], with derivative at θ ∈ Dφ
equal to h �→ −h/θ2. This is a simple example of the following general
composition result:

Lemma 12.2 Let g : B ⊂ R̄ ≡ [−∞,∞] �→ R be differentiable with
derivative continuous on all closed subsets of B, and let Dφ = {A ∈ �∞(X ) :
{R(A)}δ ⊂ B for some δ > 0}, where X is a set, R(C) denotes the range
of the function C ∈ �∞(X ), and Dδ is the δ-enlargement of the set D.
Then A �→ g ◦ A is Hadamard-differentiable as a map from Dφ ⊂ �∞(X )
to �∞(X ), at every A ∈ Dφ. The derivative is given by φ′A(α) = g′(A)α,
where g′ is the derivative of g.

Before giving the proof, we briefly return to our simple example of the
reciprocal map A �→ 1/A. The differentiability of this map easily generalizes
from D[0, 1] to �∞(X ), for arbitrary X , provided we restrict the domain of
the reciprocal map to Dφ = {A ∈ �∞(X ) : infx∈X |A(x)| > 0}. This follows
after applying lemma 12.2 to the set B = [−∞, 0) ∪ (0,∞].

Proof of lemma 12.2. Note that D = �∞(X ) in this case, and that
the tangent set for the derivative is all of D. Let tn be any real sequence
with tn → 0, let {hn} ∈ �∞(X ) be any sequence converging to α ∈ �∞(X )
uniformly, and define An = A + tnhn. Then, by the conditions of the
theorem, there exists a closed B1 ⊂ B such that {R(A) ∪ R(An)}δ ⊂ B1

for some δ > 0 and all n large enough. Hence

sup
x∈X

∣∣∣∣g(A(x) + tnhn(x)) − g(A(x))
tn

− g′(A(x))α(x)
∣∣∣∣ → 0,

as n → ∞, since continuous functions on closed sets are bounded and thus
g′ is uniformly continuous on B1.�

12.2.2 Integration

For an M < ∞ and an interval [a, b] ∈ R̄, let BVM [a, b] be the set of all
functions A ∈ D[a, b] with total variation

∫
(a,b]

|dA(s)| ≤ M . In this section,
we consider, for given functions A ∈ D[a, b] and B ∈ BVM [a, b] and domain
DM ≡ D[a, b] × BVM [a, b], the maps φ : DM �→ R and ψ : DM �→ D[a, b]
defined by

φ(A,B) =
∫

(a,b]

A(s)dB(s) and ψ(A,B)(t) =
∫

(a,t]

A(s)dB(s).(12.2)

The following lemma verifies that these two maps are Hadamard differen-
tiable:

Lemma 12.3 For each fixed M < ∞, the maps φ : DM �→ R and
ψ : DM �→ D[a, b] defined in (12.2) are Hadamard differentiable at each
(A,B) ∈ DM with

∫
(a,b]

|dA| < ∞. The derivatives are given by
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φ′A,B(α, β) =
∫

(a,b]

Adβ +
∫

(a,b]

αdB, and

ψ′
A,B(α, β)(t) =

∫
(a,t]

Adβ +
∫

(a,t]

αdB.

Note that in the above lemma we define
∫
(a,t]

Adβ = A(t)β(t)−A(a)β(a)−∫
(a,t]

β(s−)dA(s) so that the integral is well defined even when β does not
have bounded variation. We will present the proof of this lemma at the end
of this section.

We now look at two statistical applications of lemma 12.3, the two-sample
Wilcoxon rank sum statistic, and the Nelson-Aalen integrated hazard esti-
mator. Consider first the Wilcoxon statistic. Let X1, . . . , Xm and Y1, . . . , Yn
be independent samples from distributions F and G on the reals. If Fm and
Gn are the respective empirical distribution functions, the Wilcoxon rank
sum statistic for comparing F and G has the form

T1 = m

∫
R

(mFm(x) + nGn(x))dFm(x).

If we temporarily assume that F and G are continuous, then

T1 = mn

∫
R

Gn(x)dFm(x) +m2

∫
R

Fm(x)dFm(x)

= mn

∫
R

Gn(x)dFm(x) +
m2 +m

2

≡ mnT2 +
m2 +m

2
,

where T2 is the Mann-Whitney statistic. When F orG have atoms, the rela-
tionship between the Wilcoxon and Mann-Whitney statistics is more com-
plex. We will now study the asymptotic properties of the Mann-Whitney
version of the rank sum statistic, T2.

For arbitraryF andG, T2 = φ(Gn,Fm), where φ is as defined in lemma 12.3.
Note that F , G, Fm and Gn all have total variation ≤ 1. Thus lemma 12.3
applies, and we obtain that the Hadamard derivative of φ at (A,B) =
(G,F ) is the map φ′G,F (α, β) =

∫
R
Gdβ +

∫
R
αdF , which is continuous and

linear over α, β ∈ D[−∞,∞]. If we assume that m/(m + n) → λ ∈ [0, 1],
as m ∧ n → ∞, then√

mn

m+ n

(
Gn −G
Fm − F

)
�

( √
λB1(G)√

1 − λB2(F )

)
,

where B1 and B2 are independent standard Brownian bridges. Hence GG(·) ≡
B1(G(·)) and GF (·) ≡ B2(F (·)) both live in D[−∞,∞]. Now theorem 2.8
yields
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T2 �
√
λ

∫
R

GdGF +
√

1 − λ

∫
R

GFdG,

as m ∧ n → ∞. When F = G and F is continuous, this limiting distribu-
tion is mean zero normal with variance 1/12. The delta method bootstrap,
theorem 12.1, is also applicable and can be used to obtain an estimate of
the limiting distribution under more general hypotheses on F and G.

We now shift our attention to the Nelson-Aalen estimator under right
censoring. In the right censored survival data setting, an observation con-
sists of the pair (X, δ), where X = T ∧ C is the minimum of a failure
time T and censoring time C, and δ = 1{T ≤ C}. T and C are assumed
to be independent. Let F be the distribution function for T , and define
the integrated baseline hazard for F to be Λ(t) =

∫ t
0
dF (s)/S(s−), where

S ≡ 1−F is the survival function. The Nelson-Aalen estimator for Λ, based
on the i.i.d. sample (X1, δ1), . . . , (Xn, δn), is

Λ̂n(t) ≡
∫

[0,t]

dN̂n(s)
Ŷn(s)

,

where N̂n(t) ≡ n−1
∑n
i=1 δi1{Xi ≤ t} and Ŷn(t) ≡ n−1

∑n
i=1 1{Xi ≥ t}. It

is easy to verify that the classes {δ1{X ≤ t}, t ≥ 0} and {1{X ≥ t} : t ≥ 0}
are both Donsker and hence that

√
n

(
N̂n −N0

Ŷn − Y0

)
�

(
G1

G2

)
,(12.3)

where N0(t) ≡ P (T ≤ t, C ≥ T ), Y0(t) ≡ P (X ≥ t), and G1 and
G2 are tight Gaussian processes with respective covariances N0(s ∧ t) −
N0(s)N0(t) and Y0(s ∨ t) − Y0(s)Y0(t) and with cross-covariance 1{s ≥
t} [N0(s) −N0(t−)]−N0(s)Y0(t). Note that while we have already seen this
survival set-up several times (eg., sections 2.2.5 and 4.2.2), we are choosing
to use slightly different notation than previously used to emphasize certain
features of the underlying empirical processes.

The Nelson-Aalen estimator depends on the pair (N̂n, Ŷn) through the
two maps

(A,B) �→
(
A,

1
B

)
�→

∫
[0,t]

1
B
dA.

From section 12.1.1, lemma 12.3, and the chain rule (lemma 6.19), it is
easy to see that this composition map is Hadamard differentiable on a
domain of the type {(A,B) :

∫
[0,τ ] |dA(t)| ≤ M, inft∈[0,τ ] |B(t)| ≥ ε} for

a given M < ∞ and ε > 0, at every point (A,B) such that 1/B has
bounded variation. Note that the interval of integration we are using, [0, τ ],
is left-closed rather than left-open as in the definition of ψ given in (12.2).
However, if we pick some η > 0, then in fact integrals over [0, t], for any
t > 0, of functions which have zero variation over (−∞, 0) are unchanged if
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we replace the interval of integration with (−η, t]. Thus we will still be able
to utilize lemma 12.3 in our current set-up. In this case, the point (A,B) of
interest is A = N0 and B = Y0. Thus if t is restricted to the interval [0, τ ],
where τ satisfied Y0(τ) > 0, then it is easy to see that the pair (N̂n, Ŷn)
is contained in the given domain with probability tending to 1 as n → ∞.
The derivative of the composition map is given by

(α, β) �→
(
α,

−β
Y 2

0

)
�→

∫
[0,t]

dα

Y0
−

∫
[0,t]

βdN0

Y 2
0

.

Thus from (12.3), we obtain via theorem 2.8 that

√
n(Λ̂n − Λ) �

∫
[0,(·)]

dG1

Y0
−

∫
[0,(·)]

G2dN0

Y 2
0

.(12.4)

The Gaussian process on the right side of (12.4) is equal to
∫
[0,(·)] dM/Y0,

where M(t) ≡ G1(t) −
∫
[0,t]

G2dΛ can be shown to be a Gaussian mar-
tingale with independent increments and covariance

∫
[0,s∧t](1 − ΔΛ)dΛ,

where ΔA(t) ≡ A(t) − A(t−) is the mass at t of a signed-measure A.
This means that the Gaussian process on the right side of (12.4) is also
a Gaussian martingale with independent increments but with covariance∫
[0,s∧t](1 − ΔΛ)dΛ/Y0. A useful discussion of continuous time martingales

arising in right censored survival data can be found in Fleming and Har-
rington (1991).

The delta method bootstrap, theorem 12.1, is also applicable here and
can be used to obtain an estimate of the limiting distribution. However,
when Λ is continuous over [0, τ ], the independent increments structure im-
plies that the limiting distribution is time-transformed Brownian motion.
More precisely, the limiting process can be expressed as W(v(t)), where
W is standard Brownian motion on [0,∞) and v(t) ≡

∫
(0,t]

dΛ/Y0. As dis-
cussed in chapter 7 of Fleming and Harrington (1991), this fact can be used
to compute asymptotically exact simultaneous confidence bands for Λ.

Proof of lemma 12.3. For sequences tn → 0, αn → α, and βn → β,
define An ≡ A+tnαn and Bn ≡ B+tnβn. Since we require that (An, Bn) ∈
DM , we know that the total variation of Bn is bounded by M . Consider
first the derivative of ψ, and note that∫

(0,t]
AndBn −

∫
(0,t]

AdB

tn
− ψ′

A,B(αn, βn) =(12.5) ∫
(0,t]

αd(Bn −B) +
∫

(0,t]

(αn − α)d(Bn −B).

Since it is easy to verify that the map (α, β) �→ ψ′
A,B(α, β) is continuous

and linear, the desired Hadamard differentiability of ψ will follow provided
the right side of (12.5) goes to zero. To begin with, the second term on the
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right side goes to zero uniformly over t ∈ (a, b], since both Bn and B have
total variation bounded by M .

Now, for the first term on the right side of (12.5), fix ε > 0. Since α
is cadlag, there exists a partition a = t0 < t1 < · · · < tm = b such that
α varies less than ε over each interval [ti−1, ti), 1 ≤ i ≤ m, and m < ∞.
Now define the function α̃ to be equal to α(ti−1) over the interval [ti−1, ti),
1 ≤ i ≤ m, with α̃(b) = α(b). Thus∥∥∥∥∥
∫

(0,t]

αd(Bn −B)

∥∥∥∥∥
∞

≤
∥∥∥∥∥
∫

(0,t]

(α− α̃)d(Bn −B)

∥∥∥∥∥
∞

+

∥∥∥∥∥
∫

(0,t]

α̃d(Bn −B)

∥∥∥∥∥
∞

≤ ‖α− α̃‖∞2M +
m∑
i=1

|α(ti−1)| × |(Bn −B)(ti) − (Bn −B)(ti−1)|

+|α(b)| × |(Bn −B)(b)|
≤ ε2M + (2m+ 1)‖Bn −B‖∞‖α‖∞
→ ε2M,

as n→ ∞. Since ε was arbitrary, we have that the first term on the right side
of (12.5) goes to zero, as n → ∞, and the desired Hadamard differentiability
of ψ follows.

Now the desired Hadamard differentiability of φ follows from the trivial
but useful lemma 12.4 below, by taking the extraction map f : D[a, b] �→ R

defined by f(x) = x(b), noting that φ = f(ψ), and then applying the chain
rule for Hadamard derivatives (lemma 6.19).�

Lemma 12.4 Let T be a set and fix T0 ⊂ T . Define the extraction map
f : �∞(T ) �→ �∞(T0) as f(x) = {x(t) : t ∈ T0}. Then f is Hadamard
differentiable at all x ∈ �∞(T ) with derivative f ′

x(h) = {h(t) : t ∈ T0}.

Proof. Let tn be any real sequence with tn → 0, and let {hn} ∈ �∞(T ) be
any sequence converging to h ∈ �∞(T ). The desired conclusion follows after
noting that t−1

n [f(x + tnhn) − f(x)] = {hn(t) : t ∈ T0} → {h(t) : t ∈ T0},
as n → ∞.�

12.2.3 Product Integration

For a function A ∈ D(0, b], let Ac(t) ≡ A(t)−
∑

0<s≤t ΔA(s), where ΔA is
as defined in the previous section, be the continuous part of A. We define
the product integral to be the map A �→ φ(A), where

φ(A)(t) ≡
∏

0<s≤t
(1 + dA(s)) = exp(Ac(t))

∏
0<s≤t

(1 − ΔA(s)).
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The first product is merely notation, but it is motivated by the mathemat-
ical definition of the product integral:

φ(A)(t) = lim
maxi |ti−ti−1|→0

∏
i

{1 + [A(ti) −A(ti−1)]} ,

where the limit is over partitions 0 = t0 < t1 < · · · tm = t with maximum
separation decreasing to zero. We will also use the notation

φ(A)(s, t] =
∏

s<u≤t
(1 + dA(u)) ≡ φ(A)(t)

φ(A)(s)
,

for all 0 ≤ s < t. The two terms on the left are defined by the far right
term. Three alternative definitions of the product integral, as solutions of
two different Volterra integral equations and as a “Peano series,” are given
in exercise 12.3.2.

The following lemma verifies that product integration is Hadamard dif-
ferentiable:

Lemma 12.5 For fixed constants 0 < b,M < ∞, the product integral
map φ : BVM [0, b] ⊂ D[0, b] �→ D[0, b] is Hadamard differentiable with
derivative

φ′A(α)(t) =
∫

(0,t]

φ(A)(0, u)φ(A)(u, t]dα(u).

When α ∈ D[0, b] has unbounded variation, the above quantity is well-
defined by integration by parts.

We give the proof later on in this section, after first discussing an im-
portant statistical application. From the discussion of the Nelson-Aalen
estimator Λ̂n in section 12.2.2, it is not hard to verify that in the right-
censored survival analysis setting S(t) = φ(−Λ)(t), where φ is the product
integration map. Moreover, it is easily verified that the Kaplan-Meier esti-
mator Ŝn discussed in sections 2.2.5 and 4.3 satisfies Ŝn(t) = φ(−Λ̂n)(t).

We can now use lemma 12.5 to derive the asymptotic limiting distribution
of

√
n(Ŝn − S). As in section 12.2.2, we will restrict our time domain to

[0, τ ], where P (X > τ) > 0. Under these circumstances, there exists an
M < ∞, such that Λ(τ) < M and Λ̂n(τ) < M with probability tending
to 1 as n → ∞. Now lemma 12.5, combined with (12.4) and the discussion
immediately following, yields

√
n(Ŝn − S) � −

∫
(0,(·)]

φ(−Λ)(0, u)φ(−Λ)(u, t]
dM

Y0

= −S(t)
∫

(0,(·)]

dM

(1 − ΔΛ)Y0
,

where M is a Gaussian martingale with independent increments and covari-
ance

∫
(0,s∧t](1 − ΔΛ)dΛ/Y0. Thus

√
n(Ŝn − S)/S is asymptotically time-

transformed Brownian motion W(w(t)), where W is standard Brownian
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motion on [0,∞) and where w(t) ≡
∫
(0,t]

[(1−ΔΛ)Y0]−1dΛ. Along the lines
discussed in the Nelson-Aalen example of section 12.2.2, the form of the
limiting distribution can be used to obtain asymptotically exact simulta-
neous confidence bands for S. The delta method bootstrap, theorem 12.1,
can also be used for inference on S.

Before giving the proof of lemma 12.5, we present the following lemma
which we will need and which includes the important Duhamel equation for
the difference between two product integrals:

Lemma 12.6 For A,B ∈ D(0, b], we have for all 0 ≤ s < t ≤ b the
following, where M is the sum of the total variation of A and B:

(i) (the Duhamel equation)

(φ(B) − φ(A))(s, t] =
∫

(s,t]

φ(A)(0, u)φ(B)(u, t](B − A)(du).

(ii) ‖φ(A) − φ(B)‖(s,t] ≤ eM (1 +M)2‖A−B‖(s,t].

Proof. For any u ∈ (s, t], consider the function Cu ∈ D(s, t] defined as

Cu(x) =

⎧⎨
⎩

A(x) −A(s), for s ≤ x < u,
A(u−) −A(s), for x = u,
A(u−) −A(s) +B(x) −B(u), for u < x ≤ t.

Using the Peano series expansion of exercise 12.3.2, part (b), we obtain:

φ(A)(s, u)φ(B)(u, t] = φ(Cu)(s, t] = 1

+
∑

m,n≥0:m+n≥1

∫
s<t1<···<tm<u<tm+1<···<tm+n≤t

A(dt1) · · ·A(dtm)

×B(dtm+1) · · ·B(dtm+n).

Thus∫
(s,t]

φ(A)(s, u)φ(B)(u, t](B −A)(du)

=
∑
n≥1

∫
s<x1<···<xn≤t

⎡
⎣1 +

∑
m≥1

∫
s<t1<···<tm<x1

A(dt1) · · ·A(dtm)

⎤
⎦

×B(dx1) · · ·B(dxn)

−
∑
n≥1

∫
s<t1<···<tn≤t

⎡
⎣1 +

∑
m≥1

∫
tn<x1<···<xm≤t

B(dx1) · · ·B(dxn)

⎤
⎦

×A(dt1) · · ·A(dtn)
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=
∑
n≥1

∫
s<x1<···<xn≤t

B(dx1) · · ·B(dxn)

−
∑
n≥1

∫
s<t1<···tn≤t

A(dt1) · · ·A(dtn)

= φ(B)(s, t] − φ(A)(s, t].

This proves part (i).
For part (ii), we need to derive an integration by parts formula for the

Duhamel equation. Define G = B − A and H(u) ≡
∫ u
0
φ(B)(v, t]G(dv).

Now integration by parts gives us∫
(s,t]

φ(A)(0, u)φ(B)(u, t]G(du)(12.6)

= φ(A)(t)H(t) − φ(A)(s)H(s) −
∫

(s,t]

H(u)φ(A)(du).

From the backwards integral equation (part (c) of exercise 12.3.2), we know
that φ(B)(dv, t] = −φ(B)(v, t]B(dv), and thus, by integration by parts, we
obtain

H(u) = G(u)φ(B)(u, t] +
∫

(0,u]

G(v−)φ(B)(v, t]B(dv).

Combining this with (12.6) and the fact that φ(A)(du) = φ(A)(u−)A(du),
we get ∫

(s,t]

φ(A)(0, u)φ(B)(u, t]G(du)(12.7)

= φ(A)(t)
∫

(0,t]

G(u−)φ(B)(u, t]B(du)

−φ(A)(s)φ(B)(s, t]G(s)

−φ(A)(s)
∫

(0,s]

G(u−)φ(B)(u, t]B(du)

−
∫

(s,t]

G(u)φ(B)(u, t]φ(A)(u−)A(du)

−
∫

(s,t]

∫
(0,u]

G(v−)φ(B)(v, t]B(dv)φ(A)(u−)A(du).

From exercise 12.3.3, we know that φ(A) and φ(B) are bounded by the ex-
ponentiation of the respective total variations of A and B. Now the desired
result follows.�

Proof of lemma 12.5. Set An = A + tnαn for a sequence αn → α
with the total variation of both A and An bounded by M . In view of the
Duhamel equation (part (i) of lemma 12.6 above), it suffices to show that
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(0,t]

φ(A)(0, u)φ(An)(u, t]dαn(u) →
∫

(0,t]

φ(A)(0, u)φ(A)(u, t]dα(u),

uniformly in 0 ≤ t ≤ b. Fix ε > 0. Since α ∈ D[0, b], there exists a function
α̃ with total variation V <∞ such that ‖α− α̃‖∞ ≤ ε.

Now recall that the derivation of the integration by parts formula (12.7)
from the proof of lemma 12.6 did not depend on the definition of G, other
than the necessity of G being right-continuous. If we replace G with α− α̃,
we obtain from (12.7) that∥∥∥∥∥

∫
(0,(·)]

φ(A)(0, u)φ(An)(u, t]d(αn − α̃)(u)

∥∥∥∥∥
∞

≤ e2M (1 + 2M)2‖αn − α̃‖∞
→ e2M (1 + 2M)2ε,

as n → ∞, since ‖αn − α‖∞ → 0. Moreover,∥∥∥∥∥
∫

(0,(·)]
φ(A)(0, u) [φ(An) − φ(A)] (u, t]dα̃(u)

∥∥∥∥∥
∞

≤ ‖φ(An) − φ(A)‖∞‖φ(A)‖∞V
→ 0,

as n → ∞. Now using again the integration by parts formula (12.7), but
with G = α̃− α, we obtain∥∥∥∥∥

∫
0,(·)]

φ(A)(0, u)φ(A)(u, t]d(α̃ − α)(u)

∥∥∥∥∥
∞

≤ e2M (1 + 2M)2ε.

Thus the desired result follows since ε was arbitrary.�

12.2.4 Inversion

Recall the derivation given in the paragraphs following theorem 2.8 of the
Hadamard derivative of the inverse of a distribution function F . Note that
this derivation did not depend on F being a distribution function per se.
In fact, the derivation will carry through unchanged if we replace the dis-
tribution function F with any nondecreasing, cadlag function A satisfying
mild regularity conditions. For a non-decreasing function B ∈ D(−∞,∞),
define the left-continuous inverse r �→ B−1(r) ≡ inf{x : B(x) ≥ r}. We will
hereafter use the notation D̃[u, v] to denote all left-continuous functions
with right-hand limits (caglad) on [u, v] and D1[u, v] to denote the restric-
tion of all non-decreasing functions in D(−∞,∞) to the interval [u, v].
Here is a precise statement of the general Hadamard differentiation result
for non-decreasing functions:
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Lemma 12.7 Let −∞ < p ≤ q < ∞, and let the non-decreasing func-
tion A ∈ D(−∞,∞) be continuously differentiable on the interval [u, v] ≡
[A−1(p) − ε, A−1(q) + ε], for some ε > 0, with derivative A′ being strictly
positive and bounded over [u, v]. Then the inverse map B �→ B−1 as a map
D1[u, v] ⊂ D[u, v] �→ D̃[p, q] is Hadamard differentiable at A tangentially
to C[u, v], with derivative α �→ −(α/A′) ◦A−1.

We will give the proof of lemma 12.7 at the end of this section. We
now restrict ourselves to the setting where A is a distribution function
which we will now denote by F . The following lemma provides two results
similar to lemma 12.7 but which utilize knowledge about the support of the
distribution function F . Let D2[u, v] be the subset of distribution functions
in D1[u, v] with support only on [u,∞), and let D3[u, v] be the subset of
distribution functions in D2[u, v] which have support only on [u, v].

Lemma 12.8 Let F be a distribution function. We have the following:

(i) Let F ∈ D2[u,∞), for finite u, and let q ∈ (0, 1). Assume F is
continuously differentiable on the interval [u, v] = [u, F−1(q) + ε], for
some ε > 0, with derivative f being strictly positive and bounded over
[u, v]. Then the inverse map G �→ G−1 as a map D2[u, v] ⊂ D[u, v] �→
D̃(0, q] is Hadamard differentiable at F tangentially to C[u, v].

(ii) Let F ∈ D3[u, v], for [u, v] compact, and assume that F is con-
tinuously differentiable on [u, v] with derivative f strictly positive
and bounded over [u, v]. Then the inverse map G �→ G−1 as a map
D3[u, v] ⊂ D[u, v] �→ D̃(0, 1) is Hadamard differentiable at F tangen-
tially to C[u, v].

In either case, the derivative is the map α �→ −(α/f) ◦ F−1.

Before giving the proof of the above two lemmas, we will discuss some im-
portant statistical applications. As discussed in section 2.2.4, an important
application of these results is to estimation and inference for the quantile
function p �→ F−1(p) based on the usual empirical distribution function for
i.i.d. data. Lemma 12.8 is useful when some information is available on the
support of F , since it allows the range of p to extend as far as possible.
These results are applicable to other estimators of the distribution func-
tion F besides the usual empirical distribution, provided the standardized
estimators converge to a tight limiting process over the necessary intervals.
Several examples of such estimators include the Kaplan-Meier estimator,
the self-consistent estimator of Chang (1990) for doubly-censored data, and
certain estimators from dependent data as mentioned in Kosorok (1999).

We now apply lemma 12.8 to the construction of quantile processes based
on the Kaplan-Meier estimator discussed in section 12.2.3 above. Since
it is known that the support of a survival function is on [0,∞), we can
utilize part (i) of this lemma. Define the Kaplan-Meier quantile process
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{ξ̂(p) ≡ F̂−1
n (p), 0 < p ≤ q}, where F̂n = 1 − Ŝn, Ŝn is the Kaplan-

Meier estimator, and where 0 < q < F (τ) for τ as defined in the previous
section. Assume that F is continuously differentiable on [0, τ ] with density
f bounded below by zero and finite. Combining the results of the previous
section with part (i) of lemma 12.8 and theorem 2.8, we obtain

√
n(ξ̂ − ξ)(·)� S(ξ(·))

f(ξ(·))

∫
(0,ξ(·)]

dM

(1 − ΔΛ)Y0
,

in D̃(0, q], where ξ(p) ≡ ξp and M is the Gaussian martingale described
in the previous section. Thus

√
n(ξ̂ − ξ)f(ξ)/S(ξ) is asymptotically time-

transformed Brownian motion with time-transform w(ξ), where w is as
defined in the previous section, over the interval (0, q]. As described in
Kosorok (1999), one can construct kernel estimators for f—which can be
shown to be uniformly consistent—to facilitate inference. An alternative
approach is the bootstrap which can be shown to be valid in this setting
based on theorem 12.1.

Proof of lemma 12.7. The arguments are essentially identical to those
used in the paragraphs following theorem 2.8, except that the distribution
function F is replaced by a more general, non-decreasing function A.�

Proof of lemma 12.8. To prove part (i), let αn → α uniformly in
D[u, v] and tn → 0, where α is continuous and F + tnαn is contained in
D2[u, v] for all n ≥ 1. Abbreviate F−1(p) and (F + tnαn)−1(p) to ξp and
ξpn, respectively. Since F and F + tnαn have domains (u,∞) (the lower
bound by assumption), we have that ξp, ξpn > u for all 0 < p ≤ q. Moreover,
ξp, ξpn ≤ v for all n large enough. Thus the numbers εpn ≡ t2n ∧ (ξpn − u)
are positive for all 0 < p ≤ q, for all n large enough. Hence, by definition,
we have for all p ∈ (0, q] that

(F + tnαn)(ξpn − εpn) ≤ p ≤ (F + tnαn)(ξpn),(12.8)

for all sufficiently large n.
By the smoothness of F , we have F (ξp) = p and F (ξpn−εpn) = F (ξpn)+

O(εpn), uniformly over p ∈ (0, q]. Thus from (12.8) we obtain

−tnα(ξpn) + o(tn) ≤ F (ξpn) − F (ξp) ≤ −tnα(ξpn − εpn) + o(tn),(12.9)

where the o(tn) terms are uniform over 0 < p ≤ q. Both the far left and far
right sides are O(tn), while the middle term is bounded above and below
by constants times |ξpn − ξp|, for all 0 < p ≤ q. Hence |ξpn − ξp| = O(tn),
uniformly over 0 < p ≤ q. The part (i) result now follows from (12.9), since
F (ξpn)−F (ξp) = −f(ξp)(ξpn−ξp)+En, where En = o(sup0<p≤q |ξpn−ξp|)
by the uniform differentiability of F over (u, v].

Note that part (ii) of this lemma is precisely part (ii) of lemma 3.9.23 of
VW, and the details of the proof (which are quite similar to the proof of
part (i)) can be found therein.�
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12.2.5 Other Mappings

We now mention briefly a few additional interesting examples. The first
example is the copula map. For a bivariate distribution function H , with
marginals FH(x) ≡ H(x,∞) and GH(y) ≡ H(∞, y), the copula map is
the map φ from bivariate distributions on R2 to bivariate distributions on
[0, 1]2 defined as follows:

H �→ φ(H)(u, v) = H(F−1
H (u), G−1

H (v)), (u, v) ∈ [0, 1]2,

where the inverse functions are the left-continuous quantile functions de-
fined in the previous section. Section 3.9.4.4 of VW verifies that this map is
Hadamard differentiable in a manner which permits developing inferential
procedures for the copula function based on i.i.d. bivariate data.

The second example is multivariate trimming. Let P be a given proba-
bility distribution on Rd, fix α ∈ (0, 1/2], and define H to be the collection
of all closed half-spaces in Rd. The set KP ≡ ∩{H ∈ H : P (H) ≥ 1 − α}
can be easily shown to be compact and convex (see exercise 12.3.4). The
α-trimmed mean is the quantity

T (P ) ≡ 1
λ(KP )

∫
KP

xdλ(x),

where λ is the Lebesgue measure on Rd. Using non-trivial arguments, sec-
tion 3.9.4.6 of VW shows how P �→ T (P ) can be formulated as a Hadamard
differentiable functional of P and how this formulation can be applied to
develop inference for T (P ) based on i.i.d. data from P .

There are many other important examples in statistics, some of which we
will explore later on in this book, including a delta method formulation of
Z-estimator theory which we will describe in the next chapter (chapter 13)
and several other examples in the case studies of chapter 15.

12.3 Exercises

12.3.1. In the Wilcoxon statistic example of section 12.2.2, verify explic-
itly that every hypothesis of theorem 2.8 is satisfied.

12.3.2. Show that the product integral of A, φ(A)(s, t], is equivalent to
the following:

(a) The unique solution B of the following Volterra integral equation:

B(s, t] = 1 +
∫

(s,t]

B(s, u)A(du).



242 12. The Functional Delta Method

(b) The following Peano series representation:

φ(A)(s, t] = 1 +
∞∑
m=1

∫
s<t1<···<tm≤t

A(dt1) · · ·A(dtm),

where the signed-measure interpretation of A is being used. Hint: Use
the uniqueness from part (a).

(c) The unique solution B of the “backward” Volterra integral equation:

B(s, t] = 1 +
∫

(s,t]

B(u, t]A(du).

Hint: Start at t and go backwards in time to s.

12.3.3. Let φ be the product integral map of section 12.2.3. Show that if
the total variation of A over the interval (s, t] is M , then |φ(A)(s, t]| ≤ eM .
Hint: Recall that log(1 + x) ≤ x for all x > 0.

12.3.4. Show that the set KP ⊂ Rd defined in section 12.2.5 is compact
and convex.

12.4 Notes

Much of the material of this chapter is inspired by chapter 3.9 of VW,
although there is some new material and the method of presentation is
different. Section 12.1 contains results from sections 3.9.1 and 3.9.3 of VW,
although our results are specialized to Banach spaces (rather than the
more general topological vector spaces). The examples of sections 12.2.1
through 12.2.4 are modified versions of the examples of sections 3.9.4.3,
3.9.4.1, 3.9.4.5 and 3.9.4.2, respectively, of VW. The order has be changed
to emphasize a natural progression leading up to quantile inference based on
the Kaplan-Meier estimator. Lemma 12.2 is a generalization of lemma 3.9.25
of VW, while lemmas 12.3 and 12.5 correspond to lemmas 3.9.17 and 3.9.30
of VW. Lemma 12.7 is a generalization of part (i) of lemma 3.9.23 of VW,
while part (ii) of lemma 12.8 corresponds to part (ii) of lemma 3.9.23 of
VW. Exercise 12.3.2 is based on exercises 3.9.5 and 3.9.6 of VW.
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13
Z-Estimators

Recall from section 2.2.5 that Z-estimators are approximate zeros of data-
dependent functions. These data-dependent functions, denoted Ψn, are
maps between a possibly infinite dimensional normed parameter space Θ
and a normed space L, where the respective norms are ‖ · ‖ and ‖ · ‖L.
The Ψn are frequently called estimating equations. A quantity θ̂n ∈ Θ is
a Z-estimator if ‖Ψn(θ̂n)‖L

P→ 0. In this chapter, we extend and prove the
results of section 2.2.5. As part of this, we extend the Z-estimator master
theorem, theorem 10.16, to the infinite dimensional case, although we divide
the result into two parts, one for consistency and one for weak convergence.

We first discuss consistency and present a Z-estimator master theorem
for consistency. We then discuss weak convergence and examine closely
the special case of Z-estimators which are empirical measures of Donsker
classes. We then use this structure to develop a Z-estimator master theorem
for weak convergence. Both master theorems, the one for consistency and
the one for weak convergence, will include results for the bootstrap. Finally,
we demonstrate how Z-estimators can be viewed as Hadamard differentiable
functionals of the involved estimating equations and how this structure
enables use of a modified delta method to obtain very general results for Z-
estimators. Recall from section 2.2.5 that the Kaplan-Meier estimator is an
important and instructive example of a Z-estimator. A more sophisticated
example, which will be presented later in the case studies of chapter 15,
is the nonparametric maximum likelihood estimator for the proportional
odds survival model.
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13.1 Consistency

The main consistency result we have already presented in theorem 2.10
of section 2.2.5, and the proof of this theorem was given as an exercise
(exercise 2.4.2). We will now extend this result to the bootstrapped Z-
estimator. First, we restate the identifiability condition of theorem 2.10:
The map Ψ : Θ �→ L is identifiable at θ0 ∈ Θ if

‖Ψ(θn)‖L → 0 implies ‖θn − θ0‖ for any {θn} ∈ Θ.(13.1)

Note that there are alternative identifiability conditions that will also work,
including the stronger condition that both Ψ(θ0) = 0 and Ψ : Θ �→ L be
one-to-one. Nevertheless, condition (13.1) seems to be the most efficient for
our purposes.

In what follows, we will use the bootstrap-weighted empirical process P◦
n

to denote either the nonparametric bootstrapped empirical process (with
multinomial weights) or the multiplier bootstrapped empirical process de-
fined by f �→ P◦

nf = n−1
∑n
i=1(ξi/ξ̄)f(Xi), where ξ1, . . . , ξn are i.i.d. posi-

tive weights with 0 < μ = Eξ1 < ∞ and ξ̄ = n−1
∑n
i=1 ξi. Note that this is

a special case of the weighted bootstrap introduced in theorem 10.13 but
with the addition of ξ̄ in the denominator. We leave it as an exercise (exer-
cise 13.4.1) to verify that the conclusions of theorem 10.13 are not affected
by this addition. Let Xn ≡ {X1, . . . , Xn} as given in theorem 10.13. The
following is the main result of this section:

Theorem 13.1 (Master Z-estimator theorem for consistency) Let θ �→
Ψ(θ) = Pψθ, θ �→ Ψn(θ) = Pnψθ and θ �→ Ψ◦

n(θ) = P◦
nψθ, where Ψ

satisfies (13.1) and the class {ψθ : θ ∈ Θ} is P -Glivenko-Cantelli. Then,
provided ‖Ψn(θ̂n)‖L = oP (1) and

P
(
‖Ψ◦

n(θ̂
◦
n)‖L > η

∣∣∣Xn) = oP (1) for every η > 0,(13.2)

we have both ‖θ̂n − θ0‖ = oP (1) and P
(
‖θ̂◦n − θ0‖ > η

∣∣∣Xn) = oP (1) for
every η > 0.

Note in (13.2) the absence of an outer probability on the left side. This is
because, as argued in section 2.2.3, a Lipschitz continuous map of either of
these bootstrapped empirical processes is measurable with respect to the
random weights conditional on the data.

Proof of theorem 13.1. The result that ‖θ̂n− θ0‖ = oP (1) is a conclu-
sion from theorem 2.10. For the conditional bootstrap result, (13.2) implies
that for some sequence ηn ↓ 0, P

(
‖Ψ(θ̂◦n)‖L > ηn

∣∣∣Xn) = oP (1), since

P

(
sup
θ∈Θ

‖Ψ◦
n(θ) − Ψ(θ)‖ > η

∣∣∣∣Xn
)

= oP (1)
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for all η > 0, by theorems 10.13 and 10.15. Thus, for any ε > 0,

P
(
‖θ̂◦n − θ0‖ > ε

∣∣∣Xn) ≤ P
(
‖θ̂◦n − θ0‖ > ε, ‖Ψ(θ̂◦n)‖L ≤ ηn

∣∣∣Xn)
+P

(
‖Ψ(θ̂◦n)‖L > ηn

∣∣∣Xn)
P→ 0,

since the identifiability condition (13.1) implies that for all δ > 0 there
exists an η > 0 such that ‖Ψ(θ)‖L < η implies ‖θ − θ0‖ < δ. Hence it
is impossible for there to exist any θ ∈ Θ such that both ‖θ − θ0‖ > ε
and ‖Ψ(θ)‖L < ηn for all n ≥ 1. The conclusion now follows since ε was
arbitrary.�

Note that we might have worked toward obtaining outer almost sure re-
sults since we are making a strong Glivenko-Cantelli assumption for the
class of functions involved. However, we only need convergence in probabil-
ity for statistical applications. Notice also that we only assumed ‖Ψ◦

n(θ̂
◦
n)‖

goes to zero conditionally rather than unconditionally as done in theo-
rem 10.16. However, it seems to be easier to check the conditional version
in practice. Moreover, the unconditional version is actually stronger than
the conditional version, since

E∗P
(
‖Ψ◦

n(θ̂
◦
n)‖L > η

∣∣∣Xn) ≤ P∗
(
‖Ψ◦

n(θ̂
◦
n)‖L > η

)
by the version of Fubini’s theorem given as theorem 6.14. It is unclear how
to extend this argument to the outer almost sure setting. This is another
reason for restricting our attention to the convergence in probability results.
Nevertheless, we still need the strong Glivenko-Cantelli assumption since
this enables the use of theorems 10.13 and 10.15.

13.2 Weak Convergence

In this section, we first provide general results for Z-estimators which may
not be based on i.i.d. data. We then present sufficient conditions for the
i.i.d. case when the estimating equation is an empirical measure ranging
over a Donsker class. Finally, we give a master theorem for Z-estimators
based on i.i.d. data which includes bootstrap validity.

13.2.1 The General Setting

We now prove theorem 2.11 and give a method of weakening the differentia-
bility requirement for Ψ. An important thing to note is that no assumptions
about the data being i.i.d. are required. The proof follows closely the proof
of theorem 3.3.1 given in VW.
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Proof of theorem 2.11. By the definitions of θ̂n and θ0,

√
n
(
Ψ(θ̂n) − Ψ(θ0)

)
= −

√
n
(
Ψn(θ̂n) − Ψ(θ̂n)

)
+ oP (1)(13.3)

= −
√
n(Ψn − Ψ)(θ0) + oP (1 +

√
n‖θ̂n − θ0‖),

by assumption (2.12). Note the error terms throughout this theorem are
with respect to the norms of the spaces, e.g. Θ or L, involved. Since Ψ̇θ0 is
continuously invertible, we have by part (i) of lemma 6.16 that there exists
a constant c > 0 such that ‖Ψ̇θ0(θ − θ0)‖ ≥ c‖θ − θ0‖ for all θ and θ0 in
lin Θ. Combining this with the differentiability of Ψ yields ‖Ψ(θ)−Ψ(θ0)‖ ≥
c‖θ − θ0‖ + o(‖θ − θ0‖). Combining this with (13.3), we obtain

√
n‖θ̂n − θ0‖(c+ oP (1)) ≤ OP (1) + oP (1 +

√
n‖θ̂n − θ0‖).

We now have that θ̂n is
√
n-consistent for θ0 with respect to ‖ · ‖. By the

differentiability of Ψ, the left side of (13.3) can be replaced by
√
nΨ̇θ0(θ̂n−

θ0) + oP (1 +
√
n‖θ̂n − θ0‖). This last error term is now oP (1) as also is

the error term on the right side of (13.3). Now the result (2.13) follows.
Next the continuity of Ψ̇−1

θ0
and the continuous mapping theorem yield

√
nθ̂n − θ0)� −Ψ̇−1

θ0
(Z) as desired.�

The following lemma allows us to weaken the Fréchet differentiabil-
ity requirement to Hadamard differentiability when it is also known that√
n(θ̂n − θ0) is asymptotically tight:

Lemma 13.2 Assume the conditions of theorem 2.11 except that consis-
tency of θ̂n is strengthened to asymptotic tightness of

√
n(θ̂n − θ0) and the

Fréchet differentiability of Ψ is weakened to Hadamard differentiability at
θ0. Then the results of theorem 2.11 still hold.

Proof. The asymptotic tightness of
√
n(θ̂n−θ0) enables expression (13.3)

to imply
√
n
(
Ψ(θ̂n) − Ψ(θ0)

)
= −√

n(Ψn−Ψ)(θ0)+oP (1). The Hadamard

differentiability of Ψ yields
√
n
(
Ψ(θ̂n) − Ψ(θ0)

)
=

√
nΨ̇θ0(θ̂n−θ0)+oP (1).

Combining, we now have
√
nΨ̇θ0(θ̂n − θ0) = −

√
n(Ψn − Ψ)(θ0) + oP (1),

and all of the results of the theorem follow.�

13.2.2 Using Donsker Classes

We now consider the special case where the data involved are i.i.d., i.e.,
Ψn(θ)(h) = Pnψθ,h and Ψ(θ)(h) = Pψθ,h, for measurable functions ψθ,h,
where h ranges over an index set H. The following lemma gives us reason-
ably verifiable sufficient conditions for (2.12) to hold:

Lemma 13.3 Suppose the class of functions

{ψθ,h − ψθ0,h : ‖θ − θ0‖ < δ, h ∈ H}(13.4)
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is P -Donsker for some δ > 0 and

sup
h∈H

P (ψθ,h − ψθ0,h)
2 → 0, as θ → θ0.(13.5)

Then if Ψn(θ̂n) = oP (n−1/2) and θ̂n
P→ θ0,

√
n(Ψn − Ψ)(θ̂n) −

√
n(Ψn −

Ψ)(θ0) = oP (1).

Before giving the proof of this lemma, we make the somewhat trivial
observation that the conclusion of this lemma implies (2.12).

Proof of lemma 13.3. Let Θδ ≡ {θ : ‖θ − θ0‖ < δ} and define the
extraction function f : �∞(Θδ ×H) × Θδ �→ �∞(H) as f(z, θ)(h) ≡ z(θ, h),
where z ∈ �∞(Θδ × H). Note that f is continuous at every point (z, θ1)
such that suph∈H |z(θ, h) − z(θ1, h)| → 0 as θ → θ1. Define the stochas-
tic process Zn(θ, h) ≡ Gn(ψθ,h − ψθ0,h) indexed by Θδ × H. As assumed,
the process Zn converges weakly in �∞(Θδ × H) to a tight Gaussian pro-
cess Z0 with continuous sample paths with respect to the metric ρ de-
fined by ρ2((θ1, h1), (θ2, h2)) = P (ψθ1,h1 −ψθ0,h1 −ψθ2,h2 +ψθ0,h2)

2. Since,
suph∈H ρ((θ, h), (θ0, h)) → 0 by assumption, we have that f is continuous
at almost all sample paths of Z0. By Slutksy’s theorem (theorem 7.15),
(Zn, θ̂n) � (Z0, θ0). The continuous mapping theorem (theorem 7.7) now
implies that Zn(θ̂n) = f(Zn, θ̂n)� f(Z0, θ0) = 0.�

If, in addition to the assumptions of lemma 13.3, we are willing to assume

{ψθ0,h : h ∈ H}(13.6)

is P -Donsker, then
√
n(Ψn − Ψ)(θ0)� Z, and all of the weak convergence

assumptions of theorem 2.11 are satisfied. Alternatively, we could just as-
sume that

Fδ ≡ {ψθ,h : ‖θ − θ0‖ < δ, h ∈ H}(13.7)

is P -Donsker for some δ > 0, then both (13.4) and (13.6) are P -Donsker
for some δ > 0. We are now well poised for a Z-estimator master theorem
for weak convergence.

13.2.3 A Master Theorem and the Bootstrap

In this section, we augment the results of the previous section to achieve a
general Z-estimator master theorem that includes both weak convergence
and validity of the bootstrap. Here we consider the two bootstrapped Z-
estimators described in section 13.1, except that for the multiplier boot-
strap we make the additional requirements that 0 < τ2 = var(ξ1) <∞ and

‖ξ1‖2,1 < ∞. We use P�
◦

to denote either
P�
ξ

or
P�
W

depending on which

bootstrap is being used, and we let the constant k0 = τ/μ for the multi-
plier bootstrap and k0 = 1 for the multinomial bootstrap. Here is the main
result:
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Theorem 13.4 Assume Ψ(θ0) = 0 and the following hold:

(A) θ �→ Ψ(θ) satisfies (13.1);

(B) The class {ψθ,h; θ ∈ Θ, h ∈ H} is P -Glivenko-Cantelli;

(C) The class Fδ in (13.7) is P -Donsker for some δ > 0;

(D) Condition (13.5) holds;

(E) ‖Ψn(θ̂n)‖L = oP (n−1/2) and P
(√

n‖Ψ◦
n(θ̂

◦
n)‖L > η

∣∣∣ Xn
)

= oP (1) for
every η > 0;

(F) θ �→ Ψ(θ) is Fréchet-differentiable at θ0 with continuously invertible
derivative Ψ̇θ0 .

Then
√
n(θ̂n − θ0) � −Ψ̇−1

θ0
Z, where Z ∈ �∞(H) is the tight, mean zero

Gaussian limiting distribution of
√
n(Ψn−Ψ)(θ0), and

√
n(θ̂◦n− θ̂n)

P�
◦
k0Z.

Condition (A) is identifiability. Conditions (B) and (C) are consistency
and asymptotic normality conditions for the estimating equation. Condi-
tion (D) is an asymptotic equicontinuity condition for the estimating equa-
tion at θ0. Condition (E) simply states that the estimators are approximate
zeros of the estimating equation, while condition (F) specifies the smooth-
ness and invertibility requirements of the derivative of Ψ. Except for the
last half of condition (E), all of the conditions are requirements for asymp-
totic normality of

√
n(θ̂n − θ0). What is perhaps surprising is how little

additional assumptions are needed to obtain bootstrap validity. Only an
assurance that the bootstrapped estimator is an approximate zero of the
bootstrapped estimating equation is required. Thus bootstrap validity is
almost an automatic consequence of asymptotic normality.

Proof of theorem 13.4. The consistency of θ̂n and weak convergence
of

√
n(θ̂n − θ0) follow from theorems 13.1 and 13.4 and lemma 13.3. Theo-

rem 13.1 also yields that there exists a decreasing sequence 0 < ηn ↓ 0 such
that

P
(
‖θ̂◦n − θ0‖ > ηn

∣∣∣Xn) = oP (1).

Now we can use the same arguments used in the proof of lemma 13.3, in
combination with theorem 2.6, to obtain that

√
n(Ψ◦

n−Ψ)(θ̂◦n)−
√
n(Ψ◦

n−
Ψ)(θ0) = En, where P(En > η|Xn) = oP (1) for all η > 0. Combining
this with arguments used in the proof of theorem 2.11, we can deduce that√
n(θ̂◦n−θ0) = −Ψ̇−1

θ0

√
n(Ψ◦

n−Ψ)(θ0)+E′
n, where P(E′

n > η|Xn) = oP (1) for
all η > 0. Combining this with the conclusion of theorem 2.11, we obtain√
n(θ̂◦n − θ̂n) = −Ψ̇−1

θ0

√
n(Ψ◦

n − Ψn)(θ0) + E′′
n, where P(E′′

n > η|Xn) =
oP (1) for all η > 0. The final conclusion now follows from reapplication of
theorem 2.6.�
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13.3 Using the Delta Method

There is an alternative approach to Z-estimators which may be more effec-
tive for more general data settings, including non-i.i.d. and dependent data
settings. The idea is to view the extraction of the zero from the estimating
equation as a continuous mapping. Our approach is closely related to the
approach in section 3.9.4.7 of VW but with some important modifications
which simplify the required assumptions. We require Θ to be the subset of
a Banach space and L to be a Banach space. Let �∞(Θ,L) be the Banach
space of all uniformly norm-bounded functions z : Θ �→ L. Let Z(Θ,L) be
the subset consisting of all maps with at least one zero, and let Φ(Θ,L) be
the collection of all maps (or algorithms) φ : Z(Θ,L) �→ Θ that for each
element z ∈ Z(Θ,L) extract one of its zeros φ(z). This structure allows for
multiple zeros.

The following lemma gives us a kind of uniform Hadamard differentia-
bility of members of Φ(Θ,L) which we will be able to use to obtain a delta
method result for Z-estimators θ̂n that satisfy Ψn(θ̂n) = oP (r−1

n ) for some
sequence rn → ∞ for which Xn(θ) ≡ rn(Ψn − Ψ)(θ) converges weakly to
a tight, random element in X ∈ �∞(Θ0,L), where Θ0 ⊂ Θ is an open
neighborhood of θ0 and ‖X(θ)−X(θ0)‖L → 0 as θ → θ0 almost surely, i.e.,
X has continuous sample paths in θ. Define �∞0 (Θ,L) to be the elements
x ∈ �∞(Θ,L) for which ‖x(θ) − x(θ0)‖L → 0 as θ → θ0.

Theorem 13.5 Assume Ψ : Θ �→ L is uniformly norm-bounded over Θ,
Ψ(θ0) = 0, and condition (13.1) holds. Let Ψ also be Fréchet differentiable
at θ0 with continuously invertible derivative Ψ̇θ0 . Then the continuous lin-
ear operator φ′Ψ : �∞0 (Θ,L) �→ linΘ defined by z �→ φ′Ψ(z) ≡ −Ψ̇−1

θ0
(z(θ0))

satisfies:

sup
φ∈Φ(Θ,L)

∥∥∥∥φ(Ψ + tnzn) − φ(Ψ)
tn

− φ′Ψ(z(θ0))
∥∥∥∥ → 0,

as n → ∞, for any sequences (tn, zn) ∈ (0,∞)× �∞(Θ,L) such that tn ↓ 0,
Ψ + tnzn ∈ Z(Θ,L), and zn → z ∈ �∞0 (Θ,L).

Proof. Let 0 < tn ↓ 0 and zn → z ∈ �∞0 (Θ,L) such that Ψ + tnzn ∈
Z(Θ,L). Choose any sequence {φn} ∈ Φ(Θ,L), and note that θn ≡ φn(Ψ+
tnZn) satisfies Ψ(θn) + tnzn = 0 by construction. Hence Ψ(θn) = O(tn).
By condition (13.1), θn → θ0. By the Fréchet differentiability of Ψ,

lim inf
n→∞

‖Ψ(θn) − Ψ(θ0)‖L

‖θn − θ0‖
≥ lim inf

n→∞

‖Ψ̇θ0(θn − θ0)‖L

‖θn − θ0‖
≥ inf

‖g‖=1
‖Ψ̇θ0(g)‖L,

where g ranges over lin Θ. Since the inverse of Ψ̇θ0 is continuous, the right
side of the above is positive. Thus there exists a universal constant c <
∞ (depending only on Ψ̇θ0 and lin Θ) for which ‖θn − θ0‖ < c‖Ψ(θn) −
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Ψ(θ0)‖L = c‖tnzn(θn)‖L for all n large enough. Hence ‖θn − θ0‖ = O(tn).
By Fréchet differentiability, Ψ(θn) − Ψ(θ0) = Ψ̇θ0(θn − θ0) + o(‖θn − θ0‖),
where Ψ̇θ0 is linear and continuous on lin Θ. The remainder term is o(tn)
by previous arguments. Combining this with the fact that t−1

n (Ψ(θn) −
Ψ(θ0)) = −zn(θn) → z(θ0), we obtain

θn − θ0
tn

= Ψ̇−1
θ0

(
Ψ(θn) − Ψ(θ0)

tn
+ o(1)

)
→ −Ψ̇−1

θ0
(z(θ0)).

The conclusion now follows since the sequence φn was arbitrary.�
The following simple corollary allows the delta method to be applied

to Z-estimators. Let φ̃ : �∞(Θ,L) �→ Θ be a map such that for each x ∈
�∞(Θ,L), φ̃(x) = θ1 �= θ0 when x �∈ Z(Θ,L) and φ̃(x) = φ(x) for some
φ ∈ Φ(Θ,L) otherwise.

Corollary 13.6 Suppose Ψ satisfies the conditions of theorem 13.5,
θ̂n = φ̃(Ψn), and Ψn has at least one zero for all n large enough, outer
almost surely. Suppose also that rn(Ψn − Ψ) � X in �∞(Θ,L), with X

tight and ‖X(θ)‖L → 0 as θ → θ0 almost surely. Then rn(θ̂n − θ0) �
−Ψ̇−1

θ0
X(θ0).

Proof. Since Ψn has a zero for all n large enough, outer almost surely,
we can, without loss of generality, assume that Ψn has a zero for all n.
Thus we can assume that φ̃ ∈ Φ(Θ,L). By theorem 13.5, we know that φ̃ is
Hadamard differentiable tangentially to �∞0 (Θ,L), which, by assumption,
contains X with probability 1. Thus theorem 2.8 applies, and the desired
result follows.�

We leave it as an exercise (see exercise 13.4.2 below) to develop a corollary
which utilizes φ̃ to obtain a bootstrap result for Z-estimators. A drawback
with this approach is that root finding algorithms in practice are seldom
exact, and room needs to be allowed for computational error. The following
corollary of theorem 13.5 yields a very general Z-estimator result based on
a modified delta method. We make the fairly realistic assumption that the
Z-estimator θ̂n is computed from Ψn using a deterministic algorithm (e.g.,
a computer program) that is allowed to depend on n and which is not
required to yield an exact root of Ψn.

Corollary 13.7 Suppose Ψ satisfies the conditions of theorem 13.5,
and θ̂n = An(Ψn) for some sequence of deterministic algorithms An :
�∞(Θ,L) �→ Θ and random sequence Ψn : Θ �→ L of estimating equations
such that Ψn

P→ Ψ in �∞(Θ,L) and Ψn(θ̂n) = oP (r−1
n ), where 0 < rn → ∞

is a sequence of constants for which rn(Ψn−Ψ)� X in �∞(Θ0,L) for some
closed Θ0 ⊂ Θ containing an open neighborhood of θ0, with X tight and
‖X(θ)‖L → 0 as θ → θ0 almost surely. Then rn(θ̂n − θ0)� −Ψ̇−1

θ0
X(θ0).

Proof. Let Xn ≡ rn(Ψn − Ψ). By theorem 7.26, there exists a new
probability space (Ω̃, Ã, P̃ ) on which: E∗f(Ψ̃n) = E∗f(Ψn) for all bounded
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f : �∞(Θ,L) �→ R and all n ≥ 1; Ψ̃n
as∗→ Ψ in �∞(Θ,L); rn(Ψ̃n−Ψ) as∗→ X̃ in

�∞(Θ0,L); X̃ and X have the same distributions; and rn(An(Ψ̃n)−θ0) and
rn(An(Ψn) − θ0) have the same distributions. Note that for any bounded
f , Ψ̃n �→ f(Ψ̃n(An(Ψ̃n))) = g(Ψ̃n) for some bounded g. Thus Ψ̃n(θ̃n) =
oP̃ (r−1

n ) for θ̃n ≡ An(Ψ̃n).
Hence for any subsequence n′ there exists a further subsequence n′′

such that Ψ̃n′′
as∗→ Ψ in �∞(Θ,L), rn′′(Ψ̃n′′ − Ψ) as∗→ X̃ in �∞(Θ0,L), and

Ψ̃n′′(θ̃n′′) as∗→ 0 in L. Thus also Ψ(θ̃n′′) as∗→ 0, which implies θ̃n′′
as∗→ 0. Note

that θ̃n′′ is a zero of Ψ̃n′′(θ) − Ψ̃(θ̃n′′) by definition and is contained in
Θ0 for all n large enough. Hence, for all n large enough, rn′′(θ̃n′′ − θ0) =
rn′′

(
φn′′

(
Ψ̃n′′ − Ψ̃n′′(θ̃n′′)

)
− φn′′ (Ψ)

)
for some sequence φn ∈ Φ(Θ0,L)

possibly dependent on sample realization ω̃ ∈ Ω̃. This implies that for all
n large enough,∥∥∥rn′′(θ̃n′′ − θ0) − φ′Ψ(X̃)

∥∥∥
≤ sup

φ∈Φ(Θ0,L)

∣∣∣rn′′
(
φ
(
Ψ̃n′′ − Ψ̃n′′(θ̃n′′)

)
− φ(Ψ)

)
− φ′Ψ(X̃)

∣∣∣
as∗→ 0,

by theorem 13.5 (with Θ0 replacing Θ). This implies
∥∥∥rn′′(An′′ (Ψ̃n′′) − θ0)

−φ′Ψ(X̃)
∥∥∥ as∗→ 0. Since this holds for every subsequence, we have rn(An(Ψ̃n)−

θ0)� φ′Ψ(X̃). This of course implies rn(An(Ψn) − θ0)� φ′Ψ(X).�
The following corollary extends the previous result to generalized boot-

strapped processes. Let Ψ◦
n be a bootstrapped version of Ψn based on both

the data sequence Xn (the data used in Ψn) and a sequence of weights
W = {Wn, n ≥ 1}.

Corollary 13.8 Assume the conditions of corollary 13.7 and, in addi-
tion, that θ̂◦n = An(Ψ◦

n) for a sequence of bootstrapped estimating equations

Ψ◦
n(Xn,Wn), with Ψ◦

n − Ψ
P�
W

0 and rnΨ◦
n(θ̂◦n)

P�
W

0 in �∞(Θ,L), and

with rnc(Ψ◦
n − Ψn)

P�
W

X in �∞(Θ0,L) for some 0 < c < ∞, where the
maps Wn �→ h(Ψ◦

n) are measurable for every h ∈ Cb(�∞(Θ,L) outer almost

surely. Then rnc(θ̂◦n − θ̂n)
P�
W

φ′Ψ(X).

Proof. This proof shares many similarities with the proof of theorem 12.1.
To begin with, by using the same arguments used in the beginning of that
proof, we can obtain that, unconditionally,

rn

(
Ψ◦
n − Ψ

Ψn − Ψ

)
�

(
c−1X ′

1 +X ′
2

X ′
2

)

in �∞(Θ0,L), where X ′
1 and X ′

2 are two independent copies of X . We can
also obtain that Ψ◦

n
P→ Ψ in �∞(Θ,L) unconditionally. Combining this with
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a minor adaptation of the above corollary 13.7 (see exercise 13.4.3 below)
we obtain unconditionally that

rn

⎛
⎜⎜⎝

θ̂◦n − θ0
θ̂n − θ0

Ψ◦
n(θ0) − Ψ(θ0)

Ψn(θ0) − Ψ(θ0)

⎞
⎟⎟⎠�

⎛
⎜⎜⎝

φ′Ψ(c−1X ′
1 +X ′

2)
φ′Ψ(X ′

2)
c−1X ′

1(θ0) +X ′
2(θ0)

X ′
2(θ0)

⎞
⎟⎟⎠ .

This implies two things. First,

rnc

(
θ̂◦n − θ̂n

(Ψ◦
n − Ψn)(θ0)

)
�

(
φ′Ψ(X)
X(θ0)

)

unconditionally, since φ′Ψ is linear on L. Second, the usual continuous map-
ping theorem now yields unconditionally that

rnc(θ̂◦n − θ̂n) + Ψ̇−1
θ0

(rnc(Ψ◦
n − Ψn)(θ0))

P→ 0,(13.8)

since the map (x, y) �→ x+ Ψ̇−1
θ0

(y) is continuous on all of lin Θ × L (recall
that x �→ φ′Ψ(x) = −Ψ̇−1

θ0
(x(θ0))).

Now for any map h ∈ Cb(L), the map x �→ h(rnc(x − Ψn(θ0))) is con-
tinuous and bounded for all x ∈ L outer almost surely. Thus the maps
Wn �→ h(rnc(Ψ◦

n − Ψn)(θ0)) are measurable for every h ∈ Cb(L) outer
almost surely. Hence the bootstrap continuous mapping theorem, theo-

rem 10.8, yields that Ψ̇−1
θ0

(rnc(Ψ̂◦
n − Ψn)(θ0))

P�
W

Ψ̇−1
θ0

(X). The desired
result now follows from (13.8).�

An interesting application of the above results is to estimating equations
for empirical processes from dependent data as discussed in section 11.6.
Specifically, suppose Ψn(θ)(h) = Pnψθ,h, where the stationary sample data
X1, X2, . . . and F = {ψθ,h : θ ∈ Θ, h ∈ H} satisfy the conditions of theo-
rem 11.22 with marginal distribution P , and let Ψ(θ)(h) = Pψθ,h. Then the
conclusion of theorem 11.22 is that

√
n(Ψn−Ψ)� H in �∞(Θ×H), where H

is a tight, mean zero Gaussian process. Provided Ψ satisfies the conditions
of theorem 13.1, and provided a few other conditions hold, corollary 13.7
will give us weak convergence of the standardized Z-estimators

√
n(θ̂n−θ0)

based on Ψn. Under certain regularity conditions, a moving blocks boot-
strapped estimation equation Ψ◦

n can be shown by theorem 11.24 to satisfy
the requirements of corollary 13.8. This enables valid bootstrap estima-
tion of the limiting distribution of

√
n(θ̂n − θ0). These results can also be

extended to stationary sequences with long range dependence, where the
normalizing rate rn may differ from

√
n.
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13.4 Exercises

13.4.1. Show that the addition of ξ̄ in the denominator of the weights
in the weighted bootstrap introduced in theorem 10.13, as discussed in
section 13.1, does not affect the conclusions of that theorem.

13.4.2. Develop a bootstrap central limit theorem for Z-estimators based
theorem 12.1 which utilizes the Hadamard differentiability of the zero-
extraction map φ̃ used in corollary 13.6.

13.4.3. Verify the validity of the “minor adaptation” of corollary 13.7
used in the proof of corollary 13.8.

13.5 Notes

Theorem 2.11 and lemma 13.2 are essentially a decomposition of theo-
rem 3.3.1 of VW into two parts. Lemma 13.3 is lemma 3.3.5 of VW.
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14
M-Estimators

M-estimators, as introduced in section 2.2.6, are approximate maximizers
of objective functions computed from data. Note the estimators based on
minimizing objective functions are trivially also M-estimators after taking
the negative of the objective function. In some ways, M-estimators are more
basic than Z-estimators since Z-estimators can always be expressed as M-
estimators. The reverse is not true, however, since there are M-estimators
which cannot be effectively formulated as Z-estimators. Nevertheless, Z-
estimator theory is usually much easier to use whenever it can be applied.
The focus, then, of this chapter is on M-estimator settings for which it
is not practical to directly use Z-estimator theory. The usual issues for M-
estimation theory are to establish consistency, determine the correct rate of
convergence, establish weak convergence, and, finally, to conduct inference.

We first present a key result central to M-estimation theory, the argmax
theorem, which permits deriving weak limits of M-estimators as the the
argmax of the limiting process. This is useful for both consistency, which
we discuss next, and weak convergence. The section on consistency includes
a proof of theorem 2.12. We then discuss how to determine the correct
rate of convergence which is necessary for establishing weak convergence
based on the argmax theorem. We then present general results for “regular
estimators,” i.e., estimators whose rate of convergence is

√
n. We then

give several examples which illustrate M-estimation theory for non-regular
estimators which have rates distinct from

√
n. Much of the content of this

chapter is inspired by chapter 3.2 of VW.
The M-estimators in both the regular and non-regular examples we

present will be i.i.d. empirical processes of the form Mn(θ) = Pnmθ for
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a class of measurable, real valued functions M = {mθ : θ ∈ Θ}, where
the parameter space Θ is usually a subset of a semimetric space. The en-
tropy of the class M plays a crucial role in determining the proper rate of
convergence. The aspect of the rate of convergence determining process is
often the most difficult part technically in M-estimation theory and usu-
ally requires fairly precise bounds on moments of the empirical processes
involved, such as those described in section 11.1. We note that our presen-
tation involves only a small amount of the useful results in the area. Much
more of these kinds of results can be found in chapter 3.4 of VW and in
van de Geer (2000).

Inference for M-estimators is more challenging than it is for Z-estimators
because the bootstrap is not in general automatically valid, especially when
the convergence rate is not

√
n. On the other hand, subsampling m out of n

observations (see Politis and Romano, 1994) can be shown to be universally
valid, provided m → ∞ and m/n → 0. However, even this result is not
entirely satisfactory because it requires n to be quite large since m must
also be large yet small relative to n. Bootstrapping and other methods of
inference for M-estimators is currently an area of active research, but we
do not pursue it further in this chapter.

14.1 The Argmax Theorem

We now consider a sequence {Mn(h) : h ∈ H} of stochastic processes in-
dexed by a metric space H . Let ĥn denote an M-estimator obtained by
nearly-maximizing Mn. The idea of the argmax theorem presented be-
low is that under reasonable regularity conditions, when Mn � M , where
M is another stochastic process in �∞(H), that ĥn � ĥ, where ĥ is the
argmax of M . If we know that the rate of convergence of an M-estimator
θ̂n is rn (a nondecreasing, positive sequence), where θ̂n is the argmax of
θ �→ Mn(θ), then ĥn = rn(θ̂n − θ0) can be expressed as the argmax of
h �→ M̃n(h) ≡ rn [Mn(θ0 + h/rn) −Mn(θ0)]. Provided M̃n � M , and the
regularity conditions of the argmax theorem apply, ĥn = rn(θ̂n − θ0)� ĥ,
where ĥ is the argmax of M . Consistency results will follow for the choice
rn = 1 for all n ≥ 1.

Note that in the theorem, we require the sequence ĥn to be uniformly
tight. This is stronger than asymptotic tightness, as pointed out in lemma 7.10,
but is also quite easy to establish for Euclidean parameters which will be
our main focus in this chapter. For finite Euclidean estimators that are mea-
surable, uniform tightness follows automatically from asymptotic tightness
(see exercise 14.6.1). This is a reasonable restriction, since, in practice,
most infinite-dimensional estimators that converge weakly can usually be
expressed as Z-estimators. Our consistency results that we present later on
will not require uniform tightness and will thus be more readily applicable
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to infinite dimensional estimators. Returning to the theorem at hand, most
weak convergence results for non-regular estimators apply to finite dimen-
sional parameters, and thus the theorem below will be applicable. We also
note that it is not hard to modify these results for applicability to spe-
cific settings, including some infinite dimensional settings. For interesting
examples in this direction, see Ma and Kosorok (2005) and Kosorok and
Song (2006). We now present the argmax theorem, which utilizes upper
semicontinuity as defined in section 6.1:

Theorem 14.1 (Argmax theorem) Let Mn,M be stochastic processes in-
dexed by a metric space H such that Mn �M in �∞(K) for every compact
K ⊂ H. Suppose also that almost all sample paths h �→ M(h) are upper
semicontinuous and possess a unique maximum at a (random) point ĥ,
which as a random map in H is tight. If the sequence ĥn is uniformly tight
and satisfies Mn(ĥn) ≥ suph∈HMn(h) − oP (1), then ĥn � ĥ in H.

Proof. Fix ε > 0. By uniform tightness of ĥn and tightness of ĥ, there
exists a compact set K ⊂ H such that lim supn→∞ P∗(ĥn ∈ K) ≥ 1 − ε

and P(ĥ ∈ K) ≥ 1 − ε. Then almost surely

M(ĥ) > sup
h �∈G,h∈K

M(h),

for every open G # ĥ, by upper semicontinuity of M . To see this, suppose
it were not true. Then by the compactness of K, there would exist a con-
vergent sequence hm ∈ Gc ∩ K, for some open G # ĥ, with hm → h and
M(hm) → M(ĥ). The upper semicontinuity forces M(h) ≥ M(ĥ) which
contradicts the uniqueness of the maximum.

Now apply lemma 14.2 below for the sets A = B = K, to obtain

lim sup
n→∞

P∗(ĥn ∈ F ) ≤ lim sup
n→∞

P∗(ĥn ∈ F ∩K) + lim sup
n→∞

P∗(ĥn �∈ K)

≤ P(ĥ ∈ F ∪Kc) + ε

≤ P(ĥ ∈ F ) + P(ĥ ∈ Kc) + ε

≤ P(ĥ ∈ F ) + 2ε.

The desired result now follows from the Portmanteau theorem since ε was
arbitrary.�

Lemma 14.2 Let Mn,M be stochastic processes indexed by a metric
space H, and let A,B ⊂ H be arbitrary. Suppose there exists a random
element ĥ such that almost surely

M(ĥ) > sup
h �∈G,A∈K

M(h), for every open G # ĥ.(14.1)

Suppose the sequence ĥn satisfies Mn(ĥn) ≥ suph∈HMn(h)− oP (1). Then,
if Mn �M in �∞(A ∪B), we have for every closed set F ,
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lim sup
n→∞

P∗(ĥn ∈ F ∩A) ≤ P(ĥ ∈ F ∪Bc).

Proof. By the continuous mapping theorem,

sup
h∈F∩A

Mn(h) − sup
h∈B

Mn(h) � sup
h∈F∩A

M(h) − sup
h∈B

M(h),

and thus

lim sup
n→∞

P∗(ĥn ∈ F ∩A)

≤ lim sup
n→∞

P∗
(

sup
h∈F∩A

Mn(h) ≥ sup
h∈H

Mn(h) − oP (1)
)

≤ lim sup
n→∞

P∗
(

sup
h∈F∩A

Mn(h) ≥ sup
h∈B

Mn(h) − oP (1)
)

≤ P
(

sup
h∈F∩A

M(h) ≥ sup
h∈B

M(h)
)
,

by Slutsky’s theorem (to get rid of the oP (1) part) followed by the Portman-
teau theorem. Note that the event E in the last probability can’t happen
when ĥ ∈ F c∩B because of assumption (14.1) and the fact that F c is open.
Thus E is contained in the set {ĥ ∈ F} ∪ {ĥ �∈ B}, and the conclusion of
the lemma follows.�

14.2 Consistency

We can obtain a consistency result by specializing the argmax theorem
to the setting where M is fixed. This will not yield as general a result as
theorem 2.12 because of the uniform tightness requirement. The primary
goal of this section is to prove theorem 2.12. Before giving the proof, we
want to present a result comparing a few different ways of establishing
identifiability. We assume throughout this section that (Θ, d) is a metric
space. In the following lemma, the condition given in (i) is the identifiability
condition assumed in theorem 2.12, while the condition (ii) is often called
the “well-separated maximum” condition:

Lemma 14.3 Let M : Θ �→ R be a map and θ0 ∈ Θ a point. The following
conditions are equivalent:

(i) For any sequence {θn} ∈ Θ, lim infn→∞M(θn) ≥ M(θ0) implies
d(θn, θ0) → 0.

(ii) For every open G # θ0, M(θ0) > supθ �∈GM(θ).

The following condition implies both (i) and (ii):
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(iii) M is upper semicontinuous with a unique maximum at θ0.

Proof. Suppose (i) is true but (ii) is not. Then there exists an open
G # θ0 such that supθ �∈G ≥M(θ0). This implies the existence of a sequence
θn with both lim infn→∞M(θn) ≥ M(θ0) and d(θn, θ0) → τ > 0. Which
is a contradiction. Thus (i) implies (ii). Now assume (ii) is true but (i) is
not. Then there exists a sequence with lim infn→∞M(θn) ≥ M(θ0) but
with θn �∈ G for all n large enough and some open G # θ0. Of course,
this contradicts (ii), and thus (ii) implies (i). Now suppose M is upper
semicontinuous with a unique maximum at θ0 but (ii) does not hold. Then
there exists an open G # θ0 for which supθ �∈GM(θ) ≥ M(θ0). But this
implies that the set {θ : M(θ) ≥ M(θ0)} contains at least one point in
addition to θ0 since Gc is closed. This contradiction completes the proof.�

Any one of the three identifiability conditions given in the above lemma
are sufficient for theorem 2.12. The most convenient condition in practice
will depend on the setting. Here is the awaited proof:

Proof of theorem 2.12. Since lim infn→∞M(θn) ≥ M(θ0) implies
d(θn, θ0) → 0 for any sequence {θn} ∈ Θ, we know that there exists a non-
decreasing cadlag function f : [0,∞] �→ [0,∞] that satisfies both f(0) = 0
and d(θ, θ0) ≤ f(|M(θ)−M(θ0)|) for all θ ∈ Θ. The details for constructing
such an f are left as an exercise (see exercise 14.6.2).

For part (i), note that M(θ0) ≥ M(θ̂n) ≥ Mn(θ̂n) − ‖Mn − M‖Θ ≥
Mn(θ0) − oP (1) ≥ M(θ0) − oP (1). By the previous paragraph, this implies
d(θ̂n, θ0) ≤ f(|M(θ̂n) −M(θ0)|) P→ 0. An almost identical argument yields
part (ii).�

14.3 Rate of Convergence

In this section, we relax the requirement that (Θ, d) be a metric space to
only requiring that it to be a semimetric space. If θ �→ M(θ) is two times
differentiable at a point of maximum θ0, then the first derivative of M
at θ0 must vanish while the second derivative should be negative definite.
Thus it is not unreasonable to require that M(θ) −M(θ0) ≤ −cd2(θ, θ0)
for all θ in a neighborhood of θ0 and some c > 0. The following theorem
shows that an upper bound for the rate of convergence of a near-maximizer
of a random objection function Mn can be obtained from the modulus of
continuity of Mn−M at θ0. In practice, one may need to try several rates
that satisfy the conditions of this theorem before finding the right rn for
which the weak limit of rn(θ̂n − θ0) is nontrivial.

Theorem 14.4 (Rate of convergence) Let Mn be a sequence of stochas-
tic processes indexed by a semimetric space (Θ, d) and M : Θ �→ R a
deterministic function such that for every θ in a neighborhood of θ0, there
exists a c1 > 0 such that
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M(θ) −M(θ0) ≤ −c1d̃2(θ, θ0),(14.2)

where d̃ : Θ × Θ �→ [0,∞) satisfies d̃(θn, θ0) → 0 whenever d(θn, θ0) → 0.
Suppose that for all n large enough and sufficiently small δ, the centered
process Mn −M satisfies

E∗ sup
d̃(θ,θ0)<δ

√
n |(Mn −M)(θ) − (Mn −M)(θ0)| ≤ c2φn(δ),(14.3)

for c2 < ∞ and functions φn such that δ �→ φn(δ)/δα is decreasing for
some α < 2 not depending on n. Let

r2nφn(r−1
n ) ≤ c3

√
n, for every n and some c3 <∞.(14.4)

If the sequence θ̂n satisfies Mn(θ̂n) ≥ supθ∈ΘMn(θ) − OP (r−2
n ) and con-

verges in outer probability to θ0, then rnd̃(θ̂n, θ0) = OP (1).

Proof. We will use a modified “peeling device” (see, for example, sec-
tion 5.3 of van de Geer, 2000) for the proof. For every η > 0, let η′ > 0
be a number for which d̃(θ, θ0) ≤ η whenever θ ∈ Θ satisfies d(θ, θ0) ≤ η′

and also d̃(θ, θ0) ≤ η/2 whenever θ ∈ Θ satisfies d(θ, θ0) ≤ η′/2. Such an η′

always exists for each η by the assumed relationship between d and d̃. Note
also that Mn(θ̂n) ≥ supθ∈ΘMn(θ)−OP (r−2

n ) ≥ Mn(θ0)−OP (r−2
n ). Now fix

ε > 0, and chooseK < ∞ such that the probability thatMn(θ̂n)−Mn(θ0) <
−Kr−2

n is ≤ ε.
For each n, the parameter space minus the point θ0 can be partitioned

into “peels” Sj,n = {θ : 2j−1 < rnd̃(θ, θ0) ≤ 2j} with j ranging over
the integers. Assume that Mn(θ̂n) − Mn(θ0) ≥ −Kr−2

n , and note that
if rnd̃(θ̂n, θ0) is > 2M for a given integer M , then θ̂n is in one of the
peels Sj,n, with j > M . In that situation, the supremum of the map θ �→
Mn(θ) −Mn(θ0) + Kr−2

n is nonnegative by the property of θ̂n. Conclude
that for every η > 0,

P∗
(
rnd̃(θ̂n, θ0) > 2M

)
(14.5)

≤
∑

j≥M,2j≤ηrn

P∗

(
sup
θ∈Sj,n

[
Mn(θ) −Mn(θ0) +Kr−2

n

]
≥ 0

)

+P∗
(
2d(θ̂n, θ0) ≥ η′

)
+ P∗

(
Mn(θ̂n) −Mn(θ0) < −Kr−2

n

)
.

The lim supn→∞ of the sum of the two probabilities after the summation
on the right side is ≤ ε by the consistency of θ̂n and the choice of K. Now
choose η small enough so that (14.2) holds for all d(θ, θ0) ≤ η′ and (14.3)
holds for all δ ≤ η. Then for every j involved in the sum, we have for every
θ ∈ Sj,n, M(θ) − M(θ0) ≤ −c1d̃(θ, θ0) ≤ −c122j−2r−2

n . In terms of the
centered process Wn ≡Mn−M , the summation on the right side of (14.5)
may be bounded by
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∑
j≥M,2j≤ηrn

P∗
(
‖Wn(θ) −Wn(θ0)‖Sj,n ≥ c122j−2 −K

r2n

)

≤
∑
j≥M

c2φn(2j/rn)r2n√
n(c122j−2 −K)

≤
∑
j≥M

c2c32jα

(c122j−2 −K)
,

by Markov’s inequality, the conditions on rn, and the fact that φn(cδ) ≤
cαφn(δ) for every c > 1 as a consequence of the assumptions on φn. It is
not difficult to show that this last sum goes to zero as M → ∞ (verifying
this is saved as an exercise). Thus we can choose an M < ∞ such that the
lim supn→∞ of the left side of (14.5) is ≤ 2ε. The desired result now follows
since ε was arbitrary.�

Consider the i.i.d. setting with criterion functions of the form Mn(θ) =
Pnmθ and M(θ) = Pmθ. The scaled and centered process

√
n(Mn−M) =

Gnmθ equals the empirical process at mθ. The assertion (14.3) involves
assessing the suprema of the empirical process by classes of functions Mδ ≡
{mθ−mθ0 : d̃(θ, θ0) < δ}. Taking this view, establishing (14.3) will require
fairly precise—but not unreasonably precise—knowledge of the involved
empirical process. The moment results in section 11.1 will be useful here,
and we will illustrate this with several examples later on in this chapter.
We note that the problems we address in this book represent only a small
subset of the scope and capabilities of empirical process techniques for
determining rates of M-estimators. We close this section with the following
corollary which essentially specializes theorem 14.4 to the i.i.d. setting.
Because the specialization is straightforward, we omit the somewhat trivial
proof. Recall that the relation a � b means that a is less than or equal b
times a universal finite and positive constant.

Corollary 14.5 In the i.i.d. setting, assume that for every θ in a
neighborhood of θ0, P (mθ −mθ0) � −d̃2(θ, θ0), where d̃ satisfies the condi-
tions given in theorem 14.4. Assume moreover that there exists a function
φ such that δ �→ φ(δ)/δα is decreasing for some α < 2 and, for every n,
E∗‖Gn‖Mδ

� φ(δ). If the sequence θ̂n satisfies Pnmθ̂n
≥ supθ∈Θ Pnmθ −

OP (r−2
n ) and converges in outer probability to θ0, then rnd̃(θ̂n, θ0) = OP (1)

for every sequence rn for which r2nφ(1/rn) � √
n for all n ≥ 1.

14.4 Regular Euclidean M-Estimators

A general result for Euclidean M-estimators based on i.i.d. data was given in
theorem 2.13 of section 2.2.6. We now prove this theorem. In section 2.2.6,
the theorem was used to establish asymptotic normality of a least-absolute-
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deviation regression estimator. Establishing asymptotic normality in this
situation is quite difficult without empirical process methods.

Proof of theorem 2.13. We first utilize corollary 14.5 to verify that
√
n

is the correct rate of convergence. We will use Euclidean distance as both
the discrepancy measure and distance through, i.e. d̃(θ1, θ2) = d(θ1, θ2) =
‖θ1−θ2‖. Condition (2.18) of the theorem indicates that Mδ in this instance
is a Lipschitz class, and thus theorem 9.22 implies that

N[](2ε‖Fδ‖P,2,Mδ, L2(P )) � ε−p,(14.6)

where Fδ ≡ δṁ is an envelope for Mδ. To see this, it may be helpful to
rewrite condition (2.18) as

|mθ1(x) −mθ2(x)| ≤
‖θ1 − θ2‖

δ
Fδ(x).

Now (14.6) can be utilized in theorem 11.2 to obtain

E∗‖Gn‖Mδ
� ‖Fδ‖P,2 � δ.

Hence the modulus of continuity condition in corollary 14.5 is satisfied for
φ(δ) = δ. Combining condition (2.19), the maximality of θ0, and the fact
that the second derivative matrix V is nonsingular and continuous, yields
that M(θ) −M(θ0) � −‖θ − θ0‖2. Since φ(δ)/δα = δ1−α is decreasing for
any α ∈ (1, 2) and nφ(1/

√
n) = n/

√
n =

√
n, the remaining conditions of

corollary 14.5 are satisfied for rn =
√
n, and thus

√
n(θ̂n − θ0) = OP (1).

The next step is to apply the argmax theorem (theorem 14.1) to the
process h �→ Un(h) ≡ n(Mn(θ0 + h/

√
n) − Mn(θ0)). Now fix a compact

K ⊂ Rp, and note that

Un(h) = Gn

[√
n
(
mθ0+h/

√
n −mθ0

)
− hT ṁθ0

]
+hTGnṁθ0 + n(M(θ0 + h/

√
n) −M(θ0))

≡ En(h) + hTGnṁθ0 +
1
2
hTV h+ o(1),

where o(1) denotes a quantity going to zero uniformly over K. Note that
ĥn ≡

√
n(θ̂n−θ0) satisfies Un(ĥn) ≥ suph∈Rp Un(h)−oP (1). Thus, provided

we can establish that ‖En‖K = oP (1), the argmax theorem will yield that
ĥn � ĥ, where ĥ is the argmax of h �→ U(h) ≡ hTZ + (1/2)hTV h, where
Z is the Gaussian limiting distribution of Gnṁθ0 . Hence ĥ = −V −1Z and
the desired result will follow.

We now prove ‖En‖K = oP (1) for all compact K ⊂ Rp. let unh(x) ≡√
n(mθ0+h/

√
n(x) −mθ0(x)) − hT ṁθ0(x), and note that by (2.18),

|unh1
(x) − unh2

(x)| ≤ (ṁ(x) + ‖ṁθ0(x)‖)‖h1 − h2‖,

for all h1, h2 ∈ Rp and all n ≥ 1. Fix a compact K ⊂ Rp, and let Fn ≡
{unh : h ∈ K}. Applying theorem 9.22 once again, but with ‖ · ‖ = ‖ · ‖Q,2
(for any probability measure Q on X ) instead of ‖ · ‖P,2, we obtain



14.5 Non-Regular Examples 263

N[](2ε‖Fn‖Q,2,Fn, L2(Q)) ≤ kε−p,

where the envelope Fn ≡ (ṁ + ‖ṁθ0‖)‖h‖K and k < ∞ does not depend
on K or n. Lemma 9.18 in chapter 9 now yields that

sup
n≥1

sup
Q
N(ε‖Fn‖Q,2,Fn, L2(Q)) ≤ k

(
2
ε

)p
,

where the second supremum is taken over all finitely discrete probability
measures on X . This implies that condition (A) of theorem 11.18 holds
for Fn and Fn. In addition, condition (2.19) implies that condition (B) of
theorem 11.18 also holds with H(s, t) = 0 for all s, t ∈ K. It is not difficult
to verify that all of the remaining conditions of theorem 11.18 also hold (we
save this as an exercise), and thus Gnu

n
h � 0 in �∞(K). This, of course, is

the desired result.�

14.5 Non-Regular Examples

We now present two examples in detail that illustrate the techniques pre-
sented in this chapter for parameter estimation with non-regular rates of
convergence. The first example considers a simple change-point model with
three parameters wherein two of the parameter estimates converge at the
regular rate while one of the parameter estimates converges at the n-rate,
i.e., it converges faster than

√
n. The second example is monotone den-

sity estimation based on the Grenander estimator which is shown to yield
convergence at the cube-root rate.

14.5.1 A Change-Point Model

For this model, we observe i.i.d. realizations of X = (Y, Z), where Y =
α1{Z ≤ ζ} + β1{Z > ζ} + ε, Z and ε are independent with ε continuous,
Eε = 0 and σ2 ≡ Eε2 < ∞, γ ≡ (α, β) ∈ R2 and ζ is known to lie
in a bounded interval [a, b]. The unknown parameters can be collected as
θ = (γ, ζ), and the subscript zero will be used to denote the true parameter
values. We make the very important assumption that α0 �= β0 and also
assume that Z has a strictly bounded and positive density f over [a, b]
with P(Z < a) > 0 and P(Z > b) > 0. Our goal is two estimate θ through
least squares. This is the same as maximizing Mn(θ) = Pnmθ, where

mθ(x) ≡ − (y − α1{z ≤ ζ} − β1{z > ζ})2 .

Let θ̂n be maximizers of Mn(θ), where θ̂n ≡ (γ̂n, ζ̂n) and γ̂n ≡ (α̂n, β̂n).
Since we are not assuming that γ is bounded, we first need to prove

the existence of γ̂n, i.e., we need to prove that ‖γ̂n‖ = OP (1). We then
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need to provide consistency of all parameters and then establish the rates
of convergence for the parameters. Finally, we need to obtain the joint
limiting distribution of the parameter estimates.

Existence.

Note that the covariate Z and parameter ζ can be partitioned into four
mutually exclusive sets: {Z ≤ ζ ∧ ζ0}, {ζ < Z ≤ ζ0}, {ζ0 < Z ≤ ζ} and
{Z > ζ ∨ ζ0}. Since also 1{Z < a} ≤ 1{Z ≤ ζ ∧ ζ0} and 1{Z > b} ≤ 1{Z >

ζ ∨ ζ0} by assumption, we obtain −Pnε
2 = Mn(θ0) ≤ Mn(θ̂n)

≤ −Pn

[
(ε− α̂n + α0)21{Z < a} + (ε− β̂n + β0)21{Z > b}

]
.

By decomposing the squares, we now have

(α̂n − α0)2Pn[ε21{Z < a}] + (β̂n − β0)2Pn[ε21{Z > b}]
≤ Pn[ε21{a ≤ z ≤ b}]

+2|α̂n − α0|Pn[ε1{Z < a}] + 2|β̂n − β0|Pn[ε1{Z > b}]
≤ Op(1) + oP (1)‖γ̂n − γ0‖.

Since P(Z < a) ∧ P(Z > b) > 0, the above now implies that ‖γ̂n − γ0‖2 =
OP (1+ ‖γ̂n− γ0‖) and hence that ‖γ̂n− γ0‖ = OP (1). Thus all the param-
eters are bounded in probability and therefore exist.

Consistency.

Our approach to establishing consistency will be to utilize the argmax
theorem (theorem 14.1). We first need to establish that Mn �M in �∞(K)
for all compact K ⊂ H ≡ R2 × [a, b], where M(θ) ≡ Pmθ. We then need to
show that θ �→ M(θ) is upper semicontinuous with a unique maximum at
θ0. We already know from the previous paragraph that θ̂n is asymptotically
tight (i.e., ‖θ̂n‖ = OP (1). The argmax theorem will then yield that θ̂n � θ0
as desired.

Fix a compact K ⊂ H . We now verify that FK ≡ {mθ : θ ∈ K} is
Glivenko-Cantelli. Note that

mθ(X) = −(ε− α+ α0)21{Z ≤ ζ ∧ ζ0} − (ε− β + α0)21{ζ < Z ≤ ζ0}
−(ε− α+ β0)21{ζ0 < Z ≤ ζ} − (ε− β + β0)21{Z > ζ ∨ ζ0}.

It is not difficult to verify that {(ε− α+ α0)2 : θ ∈ K} and 1{Z ≤ ζ ∧ ζ0 :
θ ∈ K} are separately Glivenko-Cantelli classes. Thus the product of the
two class is also Glivenko-Cantelli by corollary 9.26 since the product of the
two envelopes is integrable. Similar arguments reveal that the remaining
components of the sum are also Glivenko-Cantelli, and reapplication of
corollary 9.26 yields that FK itself is Glivenko-Cantelli. Thus Mn �M in
�∞(K) for all compact K.
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We now establish upper semicontinuity of θ �→ M(θ) and uniqueness of
the maximum. Using the decomposition of the sets for (Z, ζ) used in the
Existence paragraph above, we have

M(θ) = −Pε2 − (α− α0)2P(Z ≤ ζ ∧ ζ0) − (β − α0)2P(ζ < Z ≤ ζ0)
−(α− β0)2P(ζ0 < Z ≤ ζ) − (β − β0)2P(Z > ζ ∨ ζ0)

≤ −Pε2 = M(θ0).

Because Z has a bounded density on [a, b], we obtain that M is continuous.
It is also clear that M has a unique maximum at θ0 because the density
of Z is bounded below and α0 �= β0 (see exercise 14.6.5 below). Now the
conditions of the argmax theorem are met, and the desired consistency
follows.

Rate of convergence.

We will utilize corollary 14.5 to obtain the convergence rates via the discrep-
ancy function d̃(θ, θ0) ≡ ‖γ− γ0‖+

√
|ζ − ζ0|. Note that this is not a norm

since it does not satisfy the triangle inequality. Nevertheless, d̃(θ, θ0) → 0 if
an only if ‖θ− θ0‖ → 0. Moreover, from the Consistency paragraph above,
we have that

M(θ) −M(θ0) = −P{Z ≤ ζ ∧ ζ0}(α− α0)2 − P{Z > ζ ∨ ζ0}(β − β0)2

−P{ζ < Z ≤ ζ0}}(β − α0)2

−P{ζ0 < Z ≤ ζ}(α− β0)2

≤ −P{Z < a}(α− α0)2 − P{Z > b}(β − β0)2

−k1(1 − o(1))|ζ − ζ0|
≤ −(k1 ∧ δ1 − o(1))d̃2(θ, θ0),

where the first inequality follows from the fact that the product of the
density of Z and (α0 − β0)2 is bounded below by some k1 > 0, and the
second inequality follows from both P(Z < a) and P(Z > b) being bounded
below by some δ1 > 0. Thus M(θ) −M(θ0) � −d̃2(θ, θ0) for all ‖θ − θ0‖
small enough, as desired.

Consider now the class of functions Mδ ≡ {mθ − mθ0 : d̃(θ, θ0) < δ}.
Using previous calculations, we have

(14.7)
mθ −mθ0 = 2(α− α0)ε1{Z ≤ ζ ∧ ζ0} + 2(β − β0)ε1{Z > ζ ∨ ζ0}

+2(β − α0)ε1{ζ < Z ≤ ζ0} + 2(α− β0)ε1{ζ0 < Z ≤ ζ}
−(α− α0)21{Z ≤ ζ ∧ ζ0} − (β − β0)21{Z > ζ ∨ ζ0}
−(β − α0)21{ζ < Z ≤ ζ0} − (α− β0)21{ζ0 < Z ≤ ζ}

≡ A1(θ) +A2(θ) +B1(θ) +B2(θ)
−C1(θ) − C2(θ) −D1(θ) −D2(θ).
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Consider first A1. Since {1{Z ≤ t} : t ∈ [a, b]} is a VC class, it is easy to
compute that

E∗ sup
d̃(θ,θ0)<δ

|GnA1(θ)| � δ,

as a consequence of lemma 8.17. Similar calculations apply to A2. Similar
calculations also apply to C1 and C2, except that the upper bounds will
be � δ2 instead of � δ. Now we consider B1. An envelope for the class
F = {B1(θ) : d̃(θ, θ0) < δ} is F = 2(|β0 − α0| + δ)|ε|1{ζ0 − δ2 < Z ≤ ζ0}.
It is not hard to verify that

logN[](η‖F‖P,2,F , L2(P )) � log(1/η)(14.8)

(see exercise 14.6.6). Now theorem 11.4 yields that

E∗ sup
d̃(θ,θ0)<δ

|GnB1(θ)| = E∗‖Gn‖F � ‖F‖P,2 � δ.

Similar calculations apply also to B2, D1 and D2. Combining all of these
results with the fact that O(δ2) = O(δ), we obtain E∗‖Gn‖Mδ

� δ.
Now when δ �→ φ(δ) = δ, φ(δ)/δα is decreasing for any α ∈ (1, 2).

Thus the conditions of corollary 14.5 are satisfied with φ(δ) = δ. Since
r2nφ(1/rn) = rn, we obtain that

√
nd̃(θ̂n, θ0) = OP (1). By the form of d̃,

this now implies that
√
n‖γ̂n − γ0‖ = OP (1) and n|ζ̂n − ζ0| = OP (1).

Weak convergence.

We will utilize a minor modification of the argmax theorem and the rate re-
sult above to obtain the limiting distribution of ĥn = (

√
n(γ̂n− γ0), n(ζ̂n−

ζ0)). From the rate result, we know that ĥn is uniformly tight and is
the smallest argmax of h �→ Qn(h) ≡ nPn(mθn,h

− mθ0), where θn,h ≡
θ0 + (h1/

√
n, h2/

√
n, h3/n) and h ≡ (h1, h2, h3) ∈ R3 ≡ H . Note that we

have qualified ĥn as being the smallest argmax, which is interpreted com-
ponentwise since H is three dimensional. This is because if we hold (h1, h2)
fixed,Mn(θn,h) does not vary in h3 over the interval n[Z(j)−ζ0, Z(j+1)−ζ0),
for j = 1, . . . , n, where Z(1), . . . , Z(n) are the order statistics for Z1, . . . , Zn,
Z(0) ≡ −∞, and Z(n+1) ≡ ∞. Because P(Z < a) > 0, we only need to con-
sider h3 at the values n(Z(j) −ζ0), j = 1, . . . , n, provided n is large enough.

Let DK be the space of functions q : K ⊂ H �→ R, that are continu-
ous in the first two arguments (h1, h2) and right-continuous and piecewise
constant in the third argument h3. For each q ∈ DK , let h3 �→ Jq(h3)
be the cadlag counting process with Jq(0−) = 0, jumps of size positive 1
at each jump point in q(·, ·, h3) for h3 ≥ 0, and with h3 �→ Jq(−h3) also
having jumps of size positive 1 (but left-continuous) at each jump point
in q(·, ·, h3) for h3 < 0 (the left-continuity comes from the reversed time
scale). Thus Jq(h3) is decreasing for h3 < 0 and increasing for h3 ≥ 0. For
q1, q2 ∈ DK , define the distance dK(q1, q2) to be the sum of the uniform
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distance ‖q1 − q2‖K and the Skorohod distance between Jq1 and Jq2 . Now
it is not difficult to see that the smallest argmax function is continuous on
DK with respect to dK . We will argue that Qn(h)� Q(h) in (DK , dK), for
some limiting process Q, and for each compact K ⊂ H . By the continuous
mapping theorem, the smallest argmax of the restriction of Qn to K will
converge weakly to the smallest argmax of the restriction of Q to K. Since
ĥn is uniformly tight, we obtain ĥn � ĥ, where ĥ is the smallest argmax
of Q.

All that remains is to establish the specified weak convergence and to
characterize Q. We first argue that Qn− Q̃n = oKP (1) in (DK , dK) for each
compact K ⊂ H , where

Q̃n(h) ≡ 2h1

√
nPn[ε1{Z ≤ ζ0}] − h2

1P(Z ≤ ζ0)
+2h2

√
nPn[ε1{Z > ζ0}] − h2

2P(Z > ζ0)
+nPn[−2(α0 − β0)ε− (α0 − β0)2]1{ζ0 + h3/n < Z ≤ ζ0}
+nPn[2(α0 − β0)ε− (α0 − β0)2]1{ζ0 < Z ≤ ζ0 + h3/n}

≡ Ãn(h1) + B̃n(h2) + C̃n(h3) + D̃n(h3).

The superscript K in oKP (1) indicates that the error is in terms of dk. Fix a
compact K ⊂ H . Note that by (14.7), Ãn(h1) = nPn[A1(θn,h)−C1(θn,h)−
A1(θ0) + C1(θ0)] + Ẽn(h), where

Ẽn(h) = 2h1Gn [1{Z ≤ (ζ0 + h3/n) ∧ ζ0} − 1{Z ≤ ζ0}]
−h2

1 [Pn1{Z ≤ (ζ0 + h3/n) ∧ ζ0} − P(Z ≤ ζ0)]
→ 0

in probability, as n → ∞, uniformly over h ∈ K. A similar analysis reveals
the uniform equivalence of B̃n(h2) and nPn[A2(θn,h −C2(θn,h) −A2(θ0) +
C2(θ0)]. It is fairly easy to see that C̃n(h3) and nPn[B1(θn,h)−D1(θn,h)−
B1(θ0) +D1(θ0)] are asymptotically uniformly equivalent in probability as
also D̃n(h3) and nPn[B2(θn,h)−D2(θn,h)−B2(θ0)+C2(θ0)]. Thus Qn−Q̃n
goes to zero, in probability, uniformly over h ∈ K. Note that the potential
jump points in h3 for Qn and Q̃n remain the same, and thus Qn − Q̃n =
oKP (1) as desired.

Lemma 14.6 below shows that Q̃n � Q ≡ 2h1Z1 − h2
1P(Z ≤ ζ0) +

2h2Z2 − h2
2P(Z > ζ0) + Q+(h3) + Q−(h3)1{h3 < 0} in (DK , dK), where

Z1, Z2, Q+ and Q− are all independent and Z1 and Z2 are mean zero
Gaussian with respective variances σ2P(Z ≤ ζ0) and σ2P(Z > ζ0). Let
s �→ ν+(s) be a right-continuous homogeneous Poisson process on [0,∞)
with intensity parameter f(ζ0) (recall that f is the density of ε), and let
s �→ ν−(s) be another Poisson process, independent of ν+, on [−∞, 0)
which is left-continuous and goes backward in time with intensity f(ζ0). Let
(V +
k )k≥1 and (V −

k )k≥1 be independent sequences of i.i.d. random variables
with V +

1 being a realization of 2(α0 − β0)ε − (α0 − β0)2 and V −
1 being



268 14. M-Estimators

a realization of −2(α0 − β0)ε − (α0 − β0)2. Also define V +
0 = V −

0 = 0
for convenience. Then h3 �→ Q+(h3) ≡ 1{h3 > 0}

∑
0≤k≤ν+(h3)

V +
k and

h3 �→ Q−(h3) ≡ 1{h3 < 0}
∑

0≤k≤ν−(h3)
V −
k .

Putting this all together, we conclude that ĥ = (ĥ1, ĥ2, ĥ3), where all
three components are mutually independent, ĥ1 and ĥ2 are both mean
zero Gaussian with respective variances σ2/P(Z ≤ ζ0) and σ2/P(Z > ζ0),
and where ĥ3 is the smallest argmax of h3 �→ Q+(h3) +Q−(h3). Note that
the expected value of both V +

1 and V −
1 is −(α0 − β0)2. Thus Q+ + Q−

will be zero at h3 = 0 and eventually always negative for all h3 far enough
away from zero. This means that the smallest argmax of Q+ +Q− will be
bounded in probability as desired.

Lemma 14.6 For each compact K ⊂ H, Q̃n � Q in (DK , dK).

Proof. The details of the proof of weak convergence in the uniform norm
follow very closely the proof of theorem 5 in Kosorok and Song (2006), and
we omit the details. The required convergence of the jump locations follows
from the assumed continuity of ε which ensures that the jump sizes will
never be tied combined with the joint independence of ν+, ν−, (V +

k )k≥1

and (V −
k )k≥1.�

14.5.2 Monotone Density Estimation

This example is a special case of the cube root asymptotic results of Kim
and Pollard (1990) which was analyzed in detail in section 3.2.14 of VW.
Let X1, . . . , Xn be a sample of size n from a Lebesgue density f on [0,∞)
that is known to be decreasing. The maximum likelihood estimator f̂n of f
is the non-increasing step function equal to the left derivative of the least
concave majorant of the empirical distribution function Fn. This f̂n is the
celebrated Grenander estimator (Grenander, 1956). For a fixed value of
t > 0, we will study the properties of f̂n(t) under the assumption that f
is differentiable at t with derivative −∞ < f ′(t) < 0. Specifically, we will
establish consistency of f̂n(t), verify that the rate of convergence of f̂n is
n1/3, and derive weak convergence of n1/3(f̂n(t) − f(t)). Existence of f̂n
will be verified automatically as a consequence of consistency.

Consistency.

Let F̂n denote the least concave majorant of Fn. In general, the least con-
cave majorant of a function g is the smallest concave function h such that
h ≥ g. One can construct F̂n by imagining a a string tied at (x, y) = (0, 0)
which is pulled tight over the top of the function graph (x, y = Fn(x)). The
slope of each of the piecewise linear segments will be non-increasing, and
the string (F̂n) will touch Fn at two or points (xj , yj), j = 0, . . . , k, where
k ≥ 1, (x0, y0) ≡ (0, 0) and xk is the last observation in the sample. For all
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x > xk, we set F̂n(x) = 1. Note also that F̂n is continuous. We leave it as an
exercise to verify that this algorithm does indeed produce the least concave
majorant of Fn. The following lemma (Marshall’s lemma) yields that F̂n is
uniformly consistent for F . We save the proof as another exercise.

Lemma 14.7 (Marshall’s lemma) Under the give conditions, supt≥0 |F̂n(t)−
F (t)| ≤ supt≥0 |Fn(t) − F (t)|.

Now fix 0 < δ < t, and note that by definition of f̂n,

F̂n(t+ δ) − F̂n(t)
δ

≤ f̂n(t) ≤ F̂n(t) − F̂n(t− δ)
δ

.

By Marshall’s lemma, the upper and lower bounds converge almost surely
to δ−1(F (t) − F (t − δ)) and δ−1(F (t + δ) − F (t)), respectively. By the
assumptions on F and the arbitrariness of δ, we obtain f̂n(t)

as∗→ f(t).

Rate of convergence.

To determine the rate of convergence, we need to perform an interesting
inverse transformation of the problem that will also be useful for obtaining
the weak limiting distribution. Define the stochastic process {ŝn(a) : a > 0}
by ŝn(a) = argmaxs≥0{Fn(s) − as}, where the largest value is selected
when multiple maximizers exist. The function ŝn is a sort of inverse of
the function f̂n in the sense that f̂n(t) ≤ a if and only if ŝn(a) ≤ t for
every t ≥ 0 and a > 0. To see this, first assume that f̂n(t) ≤ a. This
means that the left derivative of F̂n is ≤ a at t. Hence a line of slope a
which is moved down vertically from +∞ will first touch F̂n at a point
s0 to the left of (or equal to) t. That point is also the point at which F̂n
is furthest away from the line s �→ as passing through the origin. Thus
s0 = argmaxs≥0{Fn(s)−as}, and hence ŝn(a) ≤ t. Now suppose ŝn(a) ≤ t.
Then the argument can be taken in reverse to see that the slope of the line
that touches F̂n at ŝn(a) is less than or equal to the left derivative of F̂n
at t, and thus f̂n(t) ≤ a. Hence,

P(n1/3(f̂n(t) − f(t)) ≤ x) = P(ŝn(f(t) + xn−1/3) ≤ t),(14.9)

and the desired rate and weak convergence result can be deduced from the
argmax values of x �→ ŝn(f(t) + xn−1/3). Applying the change of variable
s �→ t+ g in the definition of ŝn, we obtain

ŝn(f(t) +xn−1/3)− t = argmax{g>−t}{Fn(t+ g)− (f(t) + xn−1/3)(t+ g)}.

In this manner, the probability on the left side of (14.9) is precisely P(ĝn ≤
0), where ĝn is the argmax above.

Now, by the previous argmax expression combined with the fact that the
location of the maximum of a function does not change when the function
is shifted vertically, we have ĝn ≡ argmax{g>−t}{Mn(g) ≡ Fn(t + g) −
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Fn(t) − f(t)g − xgn−1/3}. It is not hard to see that ĝn = OP (1) and that
Mn(g)

P→ M(g) ≡ F (t+ g)−F (t)− f(t)g uniformly on compacts, and thus
ĝn = oP (1). We now utilize theorem 14.4 to obtain the rate for ĝn, with
the metric d(θ1, θ2) = |θ1 − θ2|, θ = g, θ0 = 0 and d̃ = d. Note the fact that
Mn(0) = M(0) = 0 will simplify the calculations. It is now easy to see that
M(g) � −g2, and by using theorem 11.2, that

E∗ sup
|g|<δ

√
n |Mn(g) −M(g)| ≤ E∗ sup

|g|<δ
|Gn(1{X ≤ t+ g} − 1{X ≤ t})|

+O(
√
nδn−1/3)

� φn(δ) ≡ δ1/2 +
√
nδn−1/3.

Clearly, φn(δ)/δα is decreasing in δ for α = 3/2. Since n2/3φn(n−1/3) =
n1/2+n1/6n−1/3 = O(n1/2), theorem 14.4 yields n1/3ĝn = OP (1). We show
in the next section how this enables weak convergence of n1/3(f̂(t)− f(t)).

Weak convergence.

Let ĥn = n1/3ĝn, and note that since the maximum of a function does not
change when the function is multiplied by a constant, we have that ĥn is
the argmax of the process

h �→ n2/3Mn(n−1/3h)(14.10)

= n2/3(Pn − P )
(
1{X ≤ t+ hn−1/3} − 1{X ≤ t}

)
+n2/3

[
F (t+ hn−1/3) − F (t) − f(t)hn−1/3

]
− xh.

Fix 0 < K < ∞, and apply theorem 11.18 to the sequence of classes Fn =
{n1/6

(
1{X ≤ t+ hn−1/3} − 1{X ≤ t}

)
: −K ≤ h ≤ K} with envelope

sequence Fn = n1/61{t−Kn−1/3 ≤ X ≤ t +Kn−1/3}, to obtain that the
process on the right side of (14.10) converges in �∞(−K,K) to

h �→ H(h) ≡
√
f(t)Z(h) +

1
2
f ′(t)h2 − xh,

where Z is a two-sided Brownian motion originating at zero (two indepen-
dent Brownian motions starting at zero, one going to the right of zero and
the other going to the left). From the previous paragraph, we know that
ĥn = OP (1). Since it is not hard to verify that H is continuous with a
unique maximum, the argmax theorem now yields by the arbitrariness of
K that ĥn � ĥ, where ĥ = argmaxH. By exercise 14.6.9 below, we can
simplify the form of ĥ to |4f ′(t)f(t)|1/3argmaxh{Z(h)−h2}. Thus by (14.9),
we obtain that

n1/3(f̂n(t) − f(t))� |f ′(t)f(t)|1/3C,

where the random variable C ≡ argmaxh{Z(h)−h2} has Chernoff’s distri-
bution (see Groeneboom, 1989).
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14.6 Exercises

14.6.1. Show that for a sequence Xn of measurable, Euclidean random
variables which are finite almost surely, measurability plus asymptotic
tightness implies uniform tightness.

14.6.2. For a metric space (D, d), let H : D �→ [0,∞] be a function such
that H(x0) = 0 for a point x0 ∈ D and H(xn) → 0 implies d(xn, x0) → 0
for any sequence {xn} ∈ D. Show that there exists a non-decreasing cadlag
function f : [0,∞] �→ [0,∞] that satisfies both f(0) = 0 and d(x, x0) ≤
f(|H(x)|) for all x ∈ H . Hint: Use the fact that the given conditions on H
imply the existence of a decreasing sequence 0 < τn ↓ 0 such thatH(x) < τn
implies d(x, x0) < 1/n, and note that it is permissible to have f(u) = ∞
for all u ≥ τ1.

14.6.3. In the proof of theorem 14.4, verify that for fixed c < ∞ and
α < 2, ∑

j≥M

2jα

22j − c
→ 0,

as M → ∞.

14.6.4. In the context of the last paragraph of the proof of theorem 2.13,
given in section 14.4, complete the verification of the conditions of theo-
rem 11.18.

14.6.5. Consider the function θ �→ M(θ) defined in section 14.5.1. Show
that it has a unique maximum over R2×[a, b]. Also show that the maximum
is not unique if α0 = β0.

14.6.6. Verify (14.8).

14.6.7. Verify that the algorithm described in the second paragraph of
section 14.5.2 does indeed generate the least concave majorant of Fn.

14.6.8. The goal of this exercise is to prove Marshall’s lemma given in
section 14.5.2. Denoting An(t) ≡ F̂n(t) − F (t) and Bn(t) ≡ Fn(t) − F (t),
the proof can be broken into the following steps:

(a) Show that 0 ≥ inft≥0 An(t) ≥ inft≥0Bn(t).

(b) Show that

i. supt≥0An(t) ≥ 0 and supt≥0Bn(t) ≥ 0.

ii. If supt≥0Bn(t) = 0, then supt≥0An(t) = 0.

iii. If supt≥0Bn(t) > 0, then supt≥0An(t) ≤ supt≥0Bn(t) (this last
step is tricky).
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Now verify that 0 ≤ supt≥0An(t) ≤ supt≥0Bn(t).

(c) Now complete the proof.

14.6.9. Let {Z(h) : h ∈ R} be a standard two-sided Brownian motion
with Z(0) = 0. (The process is zero-mean Gaussian and the increment
Z(g)−Z(h) has variance |g−h|.) Then argmaxh{aZ(h)−bh2−ch} is equal
in distribution to (a/b)2/3argmaxg{Z(g) − g2} − c/(2b), where a, b, c > 0.
Hint: The process h �→ Z(σh − μ) is equal in distribution to the process
h �→ √

σZ(g)−Z(μ), where σ ≥ 0 and μ ∈ R. Apply the change of variable
h = (a/b)2/3g − c/(2b) and note that the location of a maximum does not
change by multiplication by a positive constant or a vertical shift.

14.7 Notes

Theorem 14.1 and lemma 14.2 are theorem 3.2.2 and lemma 3.2.1, respec-
tively, of VW, while theorem 14.4 and corollary 14.5 are modified versions
of theorem 3.2.5 and corollary 3.2.6 of VW. The monotone density esti-
mation example in section 14.5.2 is a variation of example 3.2.14 of VW.
The limiting behavior of the Grenander estimator of this example was ob-
tained by Prakasa Rao (1969). Exercise 14.6.8 is an expanded version of
exercise 24.5 of van der Vaart (1998) and exercise 14.6.9 is an expanded
version of exercise 3.2.5 of VW.
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