1. (a) S_{n} has the Poisson distribution with parameter n. Thus,

$$
E\left[\left\{\left(S_{n}-n\right) / \sqrt{n}\right\}^{-}\right]=\sum_{k=0}^{n} \frac{n-k}{\sqrt{n}} \frac{n^{k} e^{-n}}{k!}=\sqrt{n} e^{-n}\left\{\sum_{k=0}^{n} \frac{n^{k}}{k!}-\sum_{k=1}^{n} \frac{n^{k-1}}{(k-1)!}\right\}=\sqrt{n} e^{-n} \frac{n^{n}}{n!} .
$$

(b) By the CLT, $\left(S_{n}-n\right) / \sqrt{n} \rightarrow_{d} Z$. Since $g(x)=\max (-x, 0)$ is continuous, by continuous mapping theorem

$$
\left\{\left(S_{n}-n\right) / \sqrt{n}\right\}^{-} \rightarrow_{d} Z^{-}
$$

(c) Since

$$
E\left[\left|\left\{\left(S_{n}-n\right) / \sqrt{n}\right\}^{-}\right|^{2}\right] \leq E\left[\left(S_{n}-n\right)^{2} / n\right]=1,
$$

$\left\{\left(S_{n}-n\right) / \sqrt{n}\right\}^{-}$satisfies the uniform integrability condition from the Liaponov condition. Note that the Vitali's theorem also holds for $X_{n} \rightarrow{ }_{d} X$ (use the Skorohod's representation). We obtain the result.
(d) Note $P\left(Z^{-} \leq x\right)=0$ if $x<0$ and $1-\Phi(-x)$ if $x \geq 0$. Then $E\left[Z^{-}\right]=0 \times 1 / 2-$ $\int_{-\infty}^{0} x \phi(x) d x=1 / \sqrt{2 \pi}$. Thus, (a) and (b) imply that

$$
\sqrt{n} e^{-n} \frac{n^{n}}{n!} \rightarrow 1 / \sqrt{2 \pi}
$$

i.e., $n!\sim \sqrt{2 \pi} n^{n+1 / 2} e^{-n}$.
2. (a)

$$
\begin{aligned}
& \left|E\left[e^{i\left(t_{1} X_{n}+t_{2} Y_{n}\right)}\right]-E\left[e^{i\left(t_{1} X+t_{2} y\right)}\right]\right| \\
\leq & \left|E\left[e^{i t_{1} X_{n}}\left(e^{i t_{2} Y_{n}}-e^{i t_{2} y}\right)\right]\right|+\left|E\left[e^{i t_{2} y} e^{i t_{1} X_{n}}\right]-E\left[e^{i t_{2} y} e^{i t_{1} X}\right]\right| \\
\leq & E\left[\left|e^{i t_{2} Y_{n}}-e^{i t_{2} y}\right|\right]+\left|E\left[e^{i t_{1} X_{n}}\right]-E\left[e^{i t_{1} X}\right]\right| .
\end{aligned}
$$

Since $Y_{n} \rightarrow_{p} y$, $\left|e^{i t_{2} Y_{n}}-e^{i t_{2} y}\right| \rightarrow_{p} 0$. By the DCT, the first term converges to zero. The second term vanishes as $n \rightarrow \infty$ since $X_{n} \rightarrow{ }_{d} X$. We obtain that the characteristic function of $\left(X_{n}, Y_{n}\right)^{\prime}$ converges to the characteristic function of $(X, y)^{\prime}$. Thus $\left(X_{n}, Y_{n}\right)^{\prime} \rightarrow_{d}(X, y)^{\prime}$.
(b) Since $X_{n} \rightarrow_{d} X$ and $Z_{n} \rightarrow_{d} z$, from (a), $\left(X_{n}, Z_{n}\right)^{\prime} \rightarrow_{d}\left(X_{n}, z\right)^{\prime} . g(x, z)=x z$ is a continuous function on R^{2}. By the continuous mapping theorem,

$$
Z_{n} X_{n} \rightarrow_{d} z X
$$

Moreover, since $Y_{n} \rightarrow_{p} y,\left(Z_{n} X_{n}, Y_{n}\right)^{\prime} \rightarrow_{d}(z X, y)^{\prime}$. Since $g(x, y)=x+y$ is continuous, we obtain

$$
Z_{n} X_{n}+Y_{n} \rightarrow_{d} z X+y
$$

3. For any open set G, it suffices to show that

$$
\liminf _{n} P\left(X_{n} \in G\right) \geq P(X \in G)
$$

For any constant M, consider $O=G \cap(-M, M)$. As in proving (c) of the Portmanteau Theorem, we construct a function

$$
g(x)=1-\frac{\epsilon}{\epsilon+d\left(x, O^{c}\right)}
$$

Then $g(x)$ is bounded continuous and $0 \leq g(x) \leq 1$. Additionally, $g(x)=0$ when $x \in O^{c}$. Since O^{c} contains the complement of $(-M, M), g$ has a bounded support. Thus, from the condition, we obtain $E\left[g\left(X_{n}\right)\right] \rightarrow E[g(X)]$. As a result,

$$
\begin{gathered}
\liminf _{n} P\left(X_{n} \in G\right) \geq \liminf _{n} P\left(X_{n} \in O\right) \\
\geq \lim \inf _{n} E\left[g\left(X_{n}\right)\right]=E[g(X)]=E\left[1-\frac{\epsilon}{\epsilon+d\left(X, O^{c}\right)}\right] .
\end{gathered}
$$

Let ϵ decrease to zero. Note the right-hand side increases to $E[I(X \in O)]$. We have

$$
\liminf _{n} P\left(X_{n} \in G\right) \geq P(X \in G \cap(-M, M))
$$

Let $M \rightarrow \infty$ then $\liminf _{n} P\left(X_{n} \in G\right) \geq P(X \in G)$.
4. (a) $P\left(M_{n}-\alpha^{-1} \log n \leq x\right)=P\left(X_{1} \leq x+\alpha^{-1} \log n\right)^{n}=(1-\exp \{-\alpha x-\log n\})^{n} I(x>$ $\left.-\alpha^{-1} \log n\right) \rightarrow \exp \left\{-e^{-\alpha x}\right\}$.
(b) $P\left(n^{-1 / \alpha} M_{n} \leq x\right)=G\left(n^{1 / \alpha} x\right)^{n}$. When $x \leq 0, n^{1 / \alpha} x \leq 1$, the probability is zero. When $x>0, n^{1 / \alpha} x \geq 1$ eventually. Then the probability is equal to $\left(1-n^{-1} x^{-\alpha}\right)^{n} \rightarrow$ $\exp \left\{-x^{-\alpha}\right\}$. Thus,

$$
P\left(n^{-1 / \alpha} M_{n} \leq x\right) \rightarrow \exp \left\{-x^{-\alpha}\right\} I(x>0) .
$$

(c) When n is large,

$$
P\left(n^{1 / \alpha}\left(M_{n}-1\right) \leq x\right)=G\left(1+n^{-1 / \alpha} x\right)^{n}= \begin{cases}1 & \text { if } x \geq 0 \\ \left(1-n^{-1}(-x)^{\alpha}\right)^{n} & \text { if } x<0\end{cases}
$$

Thus,

$$
P\left(n^{1 / \alpha}\left(M_{n}-1\right) \leq x\right) \rightarrow \exp \left\{-(-x)^{\alpha}\right\} I(x<0)+I(x \geq 0) .
$$

