BIOS760 HOMEWORK IV SOLUTION

1. If we can show

$$
\int_{\Omega} g^{+}(X(\omega)) d P(\omega)=\int_{F} g^{+}(x) d P_{X}(x)
$$

and

$$
\int_{\Omega} g^{-}(X(\omega)) d P(\omega)=\int_{F} g^{-}(x) d P_{X}(x),
$$

then the result holds due to the fact that $g(X)$ is integrable. Thus, it is sufficient to prove the result assuming $g \geq 0$. We first prove that the equality holds when g is a simple function: assume $g(x)=\sum_{i=1}^{n} x_{i} I\left(x \in B_{i}\right)$, where B_{1}, \ldots, B_{n} are disjoint Borel sets in \mathcal{B}. Then

$$
\begin{aligned}
& \int_{\Omega} g(X(\omega)) d P(\omega)=\sum_{i=1}^{n} x_{i} \int_{\Omega} I\left(\left\{\omega: X(\omega) \in B_{i}\right\}\right) d P(\omega) \\
& =\sum_{i=1}^{n} x_{i} P\left(X^{-1}\left(B_{i}\right)\right)=\sum_{i=1}^{n} x_{i} P_{X}\left(B_{i}\right)=\int_{R} g(x) d P_{X}(x) .
\end{aligned}
$$

For any non-negative measurable function g, we choose a sequence of simple functions, $0 \leq g_{n} \leq g$, and g_{n} increasing to g. Then

$$
\int_{\Omega} g(X(\omega)) d P(\omega)=\lim _{n} \int_{\Omega} g_{n}(X(\omega)) d P(\omega)=\lim _{n} \int_{R} g_{n}(x) d P_{X}(x)=\int_{R} g(x) d P_{X}(x) .
$$

2. (a) $F(x, y)=P(X \leq x, Y \leq y)=P(X \leq \min (x, y / 2))=\Phi(\min (x, y / 2))$ so it is continuous.
(b) Since $\lambda \times \lambda(\{(x, y): y=2 x\})=0$ but $P_{(X, Y)}(\{(x, y): y=2 x\})=1, P_{(X, Y)}$, equivalently, $F(x, y)$, is not absolutely continuous with respect to the Lebesgue measure.
3. (a) We first show the inequality in the hint:

$$
\begin{aligned}
& \int_{y}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \leq \frac{1}{\sqrt{2 \pi}} \int_{y}^{\infty} e^{-x^{2}(1-\delta) / 2} e^{-x^{2} \delta / 2} d x \\
& \quad \leq \frac{1}{\sqrt{2 \pi}} e^{-y^{2}(1-\delta) / 2} \int_{-\infty}^{\infty} e^{-x^{2} \delta / 2} d x=e^{-y^{2}(1-\delta) / 2} / \sqrt{\delta} \\
& \int_{y}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \geq \int_{y}^{(1+\delta) y} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \geq \frac{\delta}{\sqrt{2 \pi}} e^{-(1+\delta) y^{2} / 2} y .
\end{aligned}
$$

For any $\epsilon>0$, we can choose δ small enough so that

$$
(1+\epsilon)^{2}(1-\delta)>1, \quad(1-\epsilon)^{2}(1+\delta)<1
$$

Then
$P(N(0,1)>\sqrt{2 \log n}(1+\epsilon)) \leq \frac{1}{\sqrt{\delta}} \exp \left\{-2 \log n(1+\epsilon)^{2}(1-\delta) / 2\right\}=\frac{1}{\sqrt{\delta}} n^{-(1+\epsilon)^{2}(1-\delta)}$
SO

$$
\{P(N(0,1) \leq \sqrt{2 \log n}(1+\epsilon))\}^{n} \geq\left(1-n^{-(1+\epsilon)^{2}(1-\delta)} / \sqrt{\delta}\right)^{n} \rightarrow 1
$$

On the other hand,

$$
\begin{gathered}
P(N(0,1)<\sqrt{2 \log n}(1-\epsilon))=1-P(N(0,1) \geq \sqrt{2 \log n}(1-\epsilon)) \\
\leq 1-\frac{\delta}{\sqrt{2 \pi}} e^{-(1+\delta) \log n(1-\epsilon)^{2}} \sqrt{2 \log n}(1-\epsilon)=1-\frac{\delta(1-\epsilon)}{\sqrt{\pi}} \sqrt{\log n} n^{-(1+\delta)(1-\epsilon)^{2}}
\end{gathered}
$$

So

$$
\{P(N(0,1)<\sqrt{2 \log n}(1-\epsilon))\}^{n} \leq\left\{1-\frac{\delta(1-\epsilon)}{\sqrt{\pi}} \sqrt{\log n} n^{-(1+\delta)(1-\epsilon)^{2}}\right\}^{n} \rightarrow 0
$$

Therefore,

$$
\begin{aligned}
& P\left(\left|X_{(n)} / \sqrt{2 \log n}-1\right|>\epsilon\right)=P\left(X_{(n)}>\sqrt{2 \log n}(1+\epsilon)\right)+P\left(X_{(n)}<\sqrt{2 \log n}(1-\epsilon)\right) \\
& \quad=1-(P(N(0,1) \leq \sqrt{2 \log n}(1+\epsilon)))^{n}+P(N(0,1)<\sqrt{2 \log n}(1-\epsilon))^{n} \rightarrow 0
\end{aligned}
$$

That is, $X_{(n)} / \sqrt{2 \log n} \rightarrow_{p} 1$.
(b) For any $x \leq 0, P\left(n\left(1-X_{(n)}\right) \leq x\right)=0$. For any $x>0$,

$$
\begin{aligned}
P\left(n\left(1-X_{(n)}\right) \leq x\right) & =P\left(X_{(n)} \geq(1-x / n)\right)=1-P\left(X_{(n)}<1-x / n\right) \\
& =1-(1-x / n)^{n} \rightarrow 1-e^{-x}
\end{aligned}
$$

Thus, $n\left(1-X_{(n)}\right) \rightarrow{ }_{d} \operatorname{Exp}(1)$.
4. (a) $X_{n} \rightarrow_{a . s} 0$ is clear since X_{n} 's support shrinks to zero. $E\left[X_{n}\right]=1 / \log (n+1) \rightarrow 0$.
(b) We can not. If $Y \geq\left|X_{n}\right|$, then Y is at least $n^{\alpha} / \log (n+1)$ when U is in $((n+$ $\left.1)^{-\alpha}, n^{-\alpha}\right]$. Thus,

$$
\begin{aligned}
E[Y] \geq & \sum_{n=1}^{\infty} \frac{n^{\alpha}}{\log (n+1)} E\left[I\left(U \in\left((n+1)^{-\alpha}, n^{\alpha}\right]\right)\right] \geq \sum_{n=1}^{\infty} \frac{n^{\alpha}}{\log (n+1)}\left\{\frac{1}{n^{\alpha}}-\frac{1}{(n+1)^{\alpha}}\right\} \\
& \geq \sum_{n=1}^{\infty} \frac{(n+1)^{\alpha} / 2^{\alpha}}{2(\log n+1)}\left\{\frac{1}{n^{\alpha}}-\frac{1}{(n+1)^{\alpha}}\right\} \\
& \geq \sum_{n=1}^{\infty} \int_{(n+1)^{-\alpha}}^{n^{-\alpha}} \frac{1 /\left(2^{\alpha} x\right)}{2\left(\log x^{-1 / \alpha}+1\right)} d x=\frac{\alpha}{2^{\alpha+1}} \int_{0}^{1} \frac{1}{-x(\log x-\alpha)} d x=\infty
\end{aligned}
$$

(c) For fixed M, when n is large enough, $\left|X_{n}\right| I_{\left|X_{n}\right| \geq M}=X_{n}$. Thus, for any $\alpha>0$, the uniform integrability condition holds.
5. (a) $f_{n}(x)=1+\cos 2 \pi n x$ does not converge at any $x \in(0,1)$. However, the corresponding $\mathrm{CDF} F_{n}(x)=x+\frac{\sin 2 \pi n x}{2 \pi n} \rightarrow x$.
(b) $S_{n}=X_{1}+\ldots+X_{n}$, where $X_{1}, . ., X_{n}$ are i.i.d $N(0,1)$. Thus, S_{n} / n has a continuous density but $S_{n} / n \rightarrow{ }_{d} 0$.
(c) $S_{n}=X_{1}+\ldots+X_{n}$, where X_{1}, \ldots, X_{n} are i.i.d $\operatorname{Bernoulli}(p) . S_{n}$ is discrete but

$$
\sqrt{n}\left(S_{n} / n-p\right) \rightarrow_{d} N(0,1) .
$$

