BIOS760 HOMEWORK III SOLUTION

1. The result can be shown using two different ways.

Proof 1. Since $|X| I(|X| \leq n)$ increases to $|X|$, by the monotone convergence theorem,

$$
\lim _{n \rightarrow \infty} \int|X| I(|X| \leq n) d \mu=\int|X| d \mu
$$

Since $\int|X| d \mu<\infty$,

$$
\lim _{n \rightarrow \infty} \int|X| I(|X|>n) d \mu=0
$$

We can choose a large n such that

$$
\int|X| I(|X|>n) d \mu<\frac{\epsilon}{2}
$$

Note that for any A,

$$
\begin{gathered}
\int_{A}|X| d \mu=\int_{A}|X| I(|X| \leq n) d \mu+\int_{A}|X| I(|X|>n) d \mu \\
\leq n \int_{A} d \mu+\int|X| I(|X|>n) d \mu \leq n \mu(A)+\frac{\epsilon}{2}
\end{gathered}
$$

Thus, if $\mu(A)<\delta=\epsilon / 2 n$, then

$$
\int_{A}|X| d \mu<\epsilon
$$

Proof 2 . We prove by contradiction. If not, then there exists some $\epsilon>0$ such that for any $\delta>0$, we can always find some A such that $\mu(A)<\delta$ but $\int_{A}|X| d \mu \geq \epsilon$. Particularly, we choose $\delta=1 / 2^{n}$ and obtain A_{n} such that $\mu\left(A_{n}\right)<1 / 2^{n}$ and $\int_{A_{n}}|X| d \mu \geq \epsilon$. Let $A=\lim \sup _{n} A_{n}=\cap_{n=1}^{\infty} \cup_{m \geq n} A_{m}$. Then

$$
\mu(A) \leq \mu\left(\cup_{m \geq n} A_{m}\right) \leq \sum_{m=n}^{\infty} \mu\left(A_{m}\right)=\sum_{m=n}^{\infty} \frac{1}{2^{m}} \rightarrow 0, \quad n \rightarrow \infty .
$$

Thus, $\mu(A)=0$. However, since $I_{\cup_{m \geq n} A_{m}}|X|$ converges to $I_{A}|X|$ and they are bounded by $|X|$, by the dominant convergence theorem,

$$
\lim _{n \rightarrow \infty} \int_{\cup_{m \geq n} A_{m}}|X| d \mu=\int_{A}|X| d \mu=0
$$

However, for each n,

$$
\int_{\cup_{m \geq n} A_{m}}|X| d \mu \geq \int_{A_{n}}|X| d \mu \geq \epsilon
$$

We have the contradiction.
2. Let B be the set of all rational numbers then $\nu(B)>0$ but $\mu(B)=0$. Thus, ν is not dominated by μ. Let $B=\{x: x>1$ and x is irrational $\}$ then $\nu(B)=0$ but $\mu(B)>0$. Thus, μ is not dominated by ν. However, since whenever $(\mu+\nu)(B)=\mu(B)+\nu(B)=0$, it implies $\nu(B)=0, \nu \prec \prec(\mu+\nu)$. To calculate the Radon-Nikodym derivative of ν with respect to $(\mu+\nu)$, it is equivalent to find a non-negative and measurable function $f(x)$ such that for any Borel set B,

$$
\nu(B)=\int_{B} f(x) d(\mu+\nu)(x)
$$

Explicitly write out the above equation using the definition of ν. We obtain

$$
\int_{B} I(x \in[0,1]) d \mu(x)+\sum_{r_{i} \in B} 2^{-i}=\int_{B} f(x) d \mu+\int_{B} f(x) I(x \in[0,1]) d \mu(x)+\sum_{r_{i} \in B} f\left(r_{i}\right) 2^{-i} .
$$

That is,

$$
\int_{B}\{I(x \in[0,1])-(1+I(x \in[0,1])) f(x)\} d \mu(x)+\sum_{r_{i} \in B}\left(1-f\left(r_{i}\right)\right) 2^{-i}=0
$$

First, choose $B=\left\{r_{i}\right\}$ and we obtain

$$
\left(1-f\left(r_{i}\right)\right) 2^{-i}=0 \quad \text { so } \quad f\left(r_{i}\right)=1
$$

Therefore, the forgoing equation becomes

$$
\int_{B} f(x) d \mu+\int_{B} f(x) I(x \in[0,1]) d \mu(x)=\int_{B \cap Q^{c}} f(x)(1+I(x \in[0,1])) d \mu(x)=0
$$

where Q denotes the set of all the rational numbers. Thus, we can let $f(x)(1+I(x \in$ $[0,1]))=0$ for $x \notin Q$. That is, $f(x)$ is given as

$$
f(x)= \begin{cases}1, & x \text { rational } \\ I(x \in[0,1]) /(1+I(x \in[0,1]))=I(x \in[0,1]) / 2, & x \text { irrational }\end{cases}
$$

It is easy to check this function satisfies the above equation so by the uniqueness, $f(x)$ is the derivative.
3. Since $E\left[X_{1} \mid X_{(n)}\right]$ is a measurable function of $X_{(n)}$, we denote it as $g\left(X_{(n)}\right)$. For any $x \in(0,1)$, in the following equality

$$
E\left[I\left(X_{(n)} \leq x\right) g\left(X_{(n)}\right)\right]=E\left[I\left(X_{(n)} \leq x\right) X_{1}\right]
$$

we obtain that the right-hand side is equal to

$$
E\left[X_{1} I\left(X_{1} \leq x\right) I\left(X_{2} \leq x, \ldots, X_{n} \leq x\right)\right]=E\left[X_{1} I\left(X_{1} \leq x\right)\right] P\left(X_{2} \leq x\right)^{n-1}=x^{n+1} / 2
$$

However, since $X_{(n)}$ has a density function $n x^{n-1} I(0 \leq x \leq 1)$, the left-hand side of the equation should be equal to $\int_{0}^{x} g(z) n z^{n-1} d z$. We have

$$
\int_{0}^{x} g(z) n z^{n-1} d z=x^{n+1} / 2
$$

Differentiate both sides with respect to x then $g(x)=(n+1) x / 2 n$. That is,

$$
E\left[X_{1} \mid X_{(n)}\right]=\frac{n+1}{2 n} X_{(n)} .
$$

4. We first prove " $\Rightarrow^{\prime \prime}$. Since in $A \cap B^{c}, g(y)=0, P_{Y}\left(A \cap B^{c}\right)=\int_{A \cap B^{c}} g(y) d \lambda(y)=0$. By the absolutely continuity, $P_{X}\left(A \cap B^{c}\right)=0$. Since

$$
A \cap B^{c}=\cup_{k=1}^{\infty}\left[\{x: f(x)>1 / k\} \cap B^{c}\right],
$$

for any k,

$$
\begin{aligned}
& 0=P_{X}\left(A \cap B^{c}\right) \geq P_{X}(\left.\{x: f(x)>1 / k\} \cap B^{c}\right)=\int_{\{x: f(x)>1 / k\} \cap B^{c}} f(x) d \lambda(x) \\
& \geq \frac{1}{k} \lambda\left(\{x: f(x)>1 / k\} \cap B^{c}\right) .
\end{aligned}
$$

We obtain

$$
\lambda\left(\{x: f(x)>1 / k\} \cap B^{c}\right)=0 .
$$

Thus, $\lambda\left(A \cap B^{c}\right)=0$.
For the direction " \Leftarrow ", suppose $P_{Y}(C)=0$ for some Borel set C. Using the similar argument as above, we can show $\lambda(C \cap B)=0$. Since $\lambda\left(A \cap B^{c}\right)=0$, we obtain $\lambda(C \cap A)=$ 0 . Therefore,

$$
P_{X}(C)=\int_{C} f(x) d \lambda(x)=\int_{A^{c} \cap C} f(x) d \lambda(x)+\int_{A \cap C} f(x) d \lambda(x)=0 .
$$

That is, $P_{X} \prec \prec P_{Y}$.
The last statement is true since $\{x: \phi(x)>0\}=R$ and $\left\{y: I_{[0,1]}(y)>0\right\}=[0,1]$.

