
BIOS760 HOMEWORK III SOLUTION

1. The result can be shown using two different ways.

Proof 1. Since |X|I(|X| ≤ n) increases to |X|, by the monotone convergence theorem,

lim
n→∞

∫
|X|I(|X| ≤ n)dµ =

∫
|X|dµ.

Since
∫ |X|dµ < ∞,

lim
n→∞

∫
|X|I(|X| > n)dµ = 0.

We can choose a large n such that
∫
|X|I(|X| > n)dµ <

ε

2
.

Note that for any A,
∫

A
|X|dµ =

∫

A
|X|I(|X| ≤ n)dµ +

∫

A
|X|I(|X| > n)dµ

≤ n
∫

A
dµ +

∫
|X|I(|X| > n)dµ ≤ nµ(A) +

ε

2
.

Thus, if µ(A) < δ = ε/2n, then
∫

A
|X|dµ < ε.

Proof 2. We prove by contradiction. If not, then there exists some ε > 0 such that for any

δ > 0, we can always find some A such that µ(A) < δ but
∫
A |X|dµ ≥ ε. Particularly,

we choose δ = 1/2n and obtain An such that µ(An) < 1/2n and
∫
An
|X|dµ ≥ ε. Let

A = lim supnAn = ∩∞n=1 ∪m≥n Am. Then

µ(A) ≤ µ(∪m≥nAm) ≤
∞∑

m=n

µ(Am) =
∞∑

m=n

1

2m
→ 0, n →∞.

Thus, µ(A) = 0. However, since I∪m≥nAm|X| converges to IA|X| and they are

bounded by |X|, by the dominant convergence theorem,

lim
n→∞

∫

∪m≥nAm

|X|dµ =
∫

A
|X|dµ = 0.

However, for each n, ∫

∪m≥nAm

|X|dµ ≥
∫

An

|X|dµ ≥ ε.

We have the contradiction.
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2. Let B be the set of all rational numbers then ν(B) > 0 but µ(B) = 0. Thus, ν is not

dominated by µ. Let B = {x : x > 1 and x is irrational} then ν(B) = 0 but µ(B) > 0.

Thus, µ is not dominated by ν. However, since whenever (µ + ν)(B) = µ(B) + ν(B) = 0,

it implies ν(B) = 0, ν ≺≺ (µ + ν). To calculate the Radon-Nikodym derivative of ν with

respect to (µ + ν), it is equivalent to find a non-negative and measurable function f(x)

such that for any Borel set B,

ν(B) =
∫

B
f(x)d(µ + ν)(x).

Explicitly write out the above equation using the definition of ν. We obtain

∫

B
I(x ∈ [0, 1])dµ(x) +

∑

ri∈B

2−i =
∫

B
f(x)dµ +

∫

B
f(x)I(x ∈ [0, 1])dµ(x) +

∑

ri∈B

f(ri)2
−i.

That is,

∫

B
{I(x ∈ [0, 1])− (1 + I(x ∈ [0, 1]))f(x)} dµ(x) +

∑

ri∈B

(1− f(ri))2
−i = 0.

First, choose B = {ri} and we obtain

(1− f(ri))2
−i = 0 so f(ri) = 1.

Therefore, the forgoing equation becomes

∫

B
f(x)dµ +

∫

B
f(x)I(x ∈ [0, 1])dµ(x) =

∫

B∩Qc
f(x)(1 + I(x ∈ [0, 1]))dµ(x) = 0,

where Q denotes the set of all the rational numbers. Thus, we can let f(x)(1 + I(x ∈
[0, 1])) = 0 for x /∈ Q. That is, f(x) is given as

f(x) =

{
1, x rational
I(x ∈ [0, 1])/(1 + I(x ∈ [0, 1])) = I(x ∈ [0, 1])/2, x irrational

It is easy to check this function satisfies the above equation so by the uniqueness, f(x) is

the derivative.

3. Since E[X1|X(n)] is a measurable function of X(n), we denote it as g(X(n)). For any

x ∈ (0, 1), in the following equality

E[I(X(n) ≤ x)g(X(n))] = E[I(X(n) ≤ x)X1],

we obtain that the right-hand side is equal to

E[X1I(X1 ≤ x)I(X2 ≤ x, ..., Xn ≤ x)] = E[X1I(X1 ≤ x)]P (X2 ≤ x)n−1 = xn+1/2.
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However, since X(n) has a density function nxn−1I(0 ≤ x ≤ 1), the left-hand side of the

equation should be equal to
∫ x
0 g(z)nzn−1dz. We have

∫ x

0
g(z)nzn−1dz = xn+1/2.

Differentiate both sides with respect to x then g(x) = (n + 1)x/2n. That is,

E[X1|X(n)] =
n + 1

2n
X(n).

4. We first prove “ ⇒′′. Since in A ∩ Bc, g(y) = 0, PY (A ∩ Bc) =
∫
A∩Bc g(y)dλ(y) = 0. By

the absolutely continuity, PX(A ∩Bc) = 0. Since

A ∩Bc = ∪∞k=1 [{x : f(x) > 1/k} ∩Bc] ,

for any k,

0 = PX(A ∩Bc) ≥ PX({x : f(x) > 1/k} ∩Bc) =
∫

{x:f(x)>1/k}∩Bc
f(x)dλ(x)

≥ 1

k
λ({x : f(x) > 1/k} ∩Bc).

We obtain

λ({x : f(x) > 1/k} ∩Bc) = 0.

Thus, λ(A ∩Bc) = 0.

For the direction “ ⇐′′, suppose PY (C) = 0 for some Borel set C. Using the similar

argument as above, we can show λ(C∩B) = 0. Since λ(A∩Bc) = 0, we obtain λ(C∩A) =

0. Therefore,

PX(C) =
∫

C
f(x)dλ(x) =

∫

Ac∩C
f(x)dλ(x) +

∫

A∩C
f(x)dλ(x) = 0.

That is, PX ≺≺ PY .

The last statement is true since {x : φ(x) > 0} = R and
{
y : I[0,1](y) > 0

}
= [0, 1].
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