Solution to Midterm Exam I

1. (a) Since

$$
\operatorname{Var}\left(Y-\gamma^{T} X\right)=\Sigma_{11}+\gamma^{T} \Sigma_{22} \gamma-2 \Sigma_{12} \gamma
$$

the γ minimizing this expression is

$$
\gamma_{m}=\Sigma_{22}^{-1} \Sigma_{12}
$$

and the minimal variance $\sigma_{m}^{2}=\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$.
(b) Note $\operatorname{Cov}\left(Y-\gamma_{m}^{T} X, X\right)=0$. Moreover, $\left(Y-\gamma_{m}^{T} X\right)^{2} / \sigma^{2} \sim \chi_{2}(1)$ and $X^{T} \Sigma_{22}^{-1} X^{T} \sim$ $\chi_{2}(k)$. Thus, the distribution of the ratio is $F_{1, k} / k$.
2. (a) Since for any Borel set $B, B_{1}, B_{2}, \ldots, Y^{-1}(B)^{c}=Y^{-1}\left(B^{c}\right) \in \mathcal{C}$ and $\cup_{n} Y^{-1}\left(B_{n}\right)=$ $Y^{-1}\left(\cup_{n} B_{n}\right) \in \mathcal{C}, \mathcal{C}$ is a σ-field.
(b) Clearly, $\mu\left(Y^{-1}(B)\right) \geq 0$. Since $Y^{-1}(R)=\Omega, \mu(\phi)=\mu\left(Y^{-1}(\phi)\right)=\lambda(\phi)=0$. Moreover, we note that if $Y^{-1}\left(B_{1}\right) \cap Y^{-1}\left(B_{2}\right)=\phi$, then $Y^{-1}\left(B_{1} \cap B_{2}\right)=\phi$ so $B_{1} \cap$ $B_{2}=\phi$. Thus, for any countable and disjoint sets in \mathcal{C}, say, $Y^{-1}\left(B_{1}\right), Y^{-1}\left(B_{2}\right), \ldots$, we have B_{1}, B_{2}, \ldots are disjoint sets in R. As the result,

$$
\mu\left(\cup_{n} Y^{-1}\left(B_{n}\right)\right)=\mu\left(Y^{-1}\left(\cup_{n} B_{n}\right)\right)=\lambda\left(\cup_{n} B_{n}\right)=\sum_{n} \lambda\left(B_{n}\right)=\sum_{n} \mu\left(Y^{-1}\left(B_{n}\right)\right) .
$$

Thus, μ is a measure in \mathcal{C}.
(c) Note $P\left(Y^{-1}(B)\right)=P(Y \in B)=\int_{B} d \mu_{Y}(y)=\int_{B} f(y) d \lambda(y)$. Thus, if $\mu\left(Y^{-1}(B)\right)=$ 0 , i.e., $\lambda(B)=0$, then $P\left(Y^{-1}(B)\right)=0$. By definition, P is denominated by μ.
(d) To find the derivative, we need determine a measurable function $g(\omega)$ in (ω, \mathcal{C}) such that

$$
\begin{equation*}
P\left(Y^{-1}(B)\right)=\int_{Y^{-1}(B)} g(\omega) d \mu(\omega) . \tag{1}
\end{equation*}
$$

Note

$$
P\left(Y^{-1}(B)\right)=\int_{B} f(y) d \lambda(y) .
$$

For any simple function $g(\omega)=\sum x_{i} I_{Y^{-1}\left(A_{i}\right)}(\omega)$,
$\int_{Y^{-1}(B)} g(\omega) d \mu(\omega)=\sum_{i} x_{i} \lambda\left(A_{i} \cap B\right)=\int_{B} \sum_{i} x_{i} I_{A_{i}}(y) d \lambda(y)=\int_{B} g\left(Y^{-1}(y)\right) d \lambda(y)$.
Using the simple function to approximate any positive measurable function, we obtain that for any positive measurable function g,

$$
\int_{Y^{-1}(B)} g(\omega) d \mu(\omega)=\int_{B} g\left(Y^{-1}(y)\right) d \lambda(y)
$$

From equation (1), we conclude

$$
\frac{d P(\omega)}{d \mu}=f(Y(\omega))
$$

