
Solution to Practice Problems for Midterm 2007

1. (a) Only need to show {ω : X(ω) ≤ x} ∈ B for any x and µF ({ω : X(ω) ≤ x}) = F (x). They
are easy to verify.

(b) Verify the same conditions. Use the property of the quantile function.

2. Clearly, (An, Bn) →p (0, 0). From the Slutsky’s theorem,

(Xn, Yn) + (An, Bn) →d (X, Y ).

I.e., (Xn + An, Yn + Bn) →d (X,Y ). Apply the continuous mapping theorem to g(x, y) = x/y.
Since Y > 0, we obtain the result. The counter example is as follows: let Xn = X and Yn = X
where X has a chi-square distribution. Let X̃ be another random variable indepdent of X but
with the same distribution. Set An = Bn = 0. Then Xn →d X and Yn →d X̃ but

Xn

Yn
= 1 does not converge in distribution to

X

X̃
.

3. (a) The proof that B∩Ω is closed under complement and countable union is as follows: if B∩Ω
is in the class, then

(B ∩ Ω)c[note this is the complement in Ω] = Bc ∩ Ω

is also in since Bc ∈ B; if B1 ∩ Ω, B2 ∩ Ω, ... are in the class, then

∪n {Bn ∩ Ω} = {∪nBn} ∩ Ω

is in since ∪nBn ∈ B. Obviously, λ× λ(Ω) = 1.
(b) For any z ∈ R,

{(x, y) : Z(x, y) ≤ z} = {(x, y) : y/x ≤ z} ∩ Ω.

Since {(x, y) : y/x ≤ z} is in B, {(x, y) : Z(x, y) ≤ z} is in B ∩ Ω. Thus, Z is measurable.
(c) µZ is the Lebesgue-Stieljes measure generated by the distribution function of Z, FZ(z).

Note that for z ≤ 0, FZ(z) = 0; for z > 0,

FZ(z) = λ× λ {(x, y) : y ≤ xz, (x, y) ∈ Ω} =
∫ 1

0

∫ 1

0
I(y ≤ xz)dydx =

∫ 1

0
min(1, xz)dx.

The latter is equal to z/2 if z ≤ 1 and is equal to 1− 1/(2z) if z > 1.
(d) Since FZ has no discontinuous point, the dominating measure is the Lebesgue measure (this

requires verifying the condition of absolute continuity). The density is

fZ(z) =
1
2
I(0 < z ≤ 1) +

1
2z2

I(z > 1).

(e) From the density, we obtain

E[Z] =
∫ 1

0

z

2
dz +

∫ ∞

1

1
2z

dz = ∞.

(f) Define a new random variable Y as Y (x, y) = y. One can easily check that Y and W are
independent and both have uniform distribution in [0, 1]. Clearly, Z = Y/W . Thus,

E[Z|W ] = E[Y/W |W ] = E[Y |W ]/W = E[Y ]/W = 1/(2W ).

An alternative way is to find the joint density of (W,Z) then compute the conditional
expectation.
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4. (a) Since Cov(X,Y − cX) = Cov(X,Y ) − cCov(X,X) = ρ − c, we conclude that if c = ρ, X
and Y − ρX are independent.

(b) Let Z = Y − ρX.The calculation is the following:

E[X2Y 2] = E[X2(ρX + Z)2] = ρ2E[X4] + 2ρE[X3Z] + E[X2Z2].

Since X and Z are independent and with normal distributions with mean zeros, moreover,
Z’s variance is equal to (1− ρ2), we obtain

E[X2Y 2] = 3ρ2 + (1− ρ2) = 1 + 2ρ2.

(c) The MGF of (X, Y ) is given by

m(t, s) = exp
{

(t, s)
(

1 ρ
ρ 1

)
(t, s)′/2

}
= exp

{
t2/2 + s2/2 + ρts

}
.

By differentiation, the coefficient of t2s2/(2!)2 in the Taylor expansion of m(t, s) is given by
(1 + 2ρ2).

5. (a) The joint distribution is as follows: for x, y ∈ (0, 1) and x ≤ y,

P (X(1) > x, X(n) ≤ y) = P (x < X1 ≤ y, ..., x < Xn ≤ y) = (y − x)n.

Thus the joint density is equal to n(n− 1)(y − x)n−2I(0 < x < 1, x ≤ y < 1).

(b) E[X(1)|X(n) = y] =
∫
x x(y− x)n−2I(0 < x < 1, x ≤ y < 1)dx/

∫
x(y− x)n−2I(0 < x < 1, x ≤

y < 1)dx = y/n.

(c) Using the transformation from (X(1), X(n)) to (X(1) = x, X(n) −X(1) = z), we obtain that
the latter has a joint density

n(n− 1)zn−2I(0 < x < 1, 0 ≤ z < 1− x).

After integrating out x, the density of (X(n) −X(1)) is equal to n(n − 1)zn−2(1 − z)I(0 ≤
z < 1), i.e., Beta-distribution Beta(n− 1, 2).

6. (a) Since V = {|U |+ X + Y }/2, we obtain

X = V + (−|U |+ U)/2, Y = V + (−|U | − U)/2.

(b) The support for (X,Y ) is {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Thus, the support of (U, V ) is

0 ≤ v + (−|u|+ u)/2 ≤ 1, 0 ≤ v + (−|u| − u)/2 ≤ 1.

Clearly, |u| ≤ 1. Then if u < 0, the above inequalities give −u ≤ v ≤ 1; if u ≥ 0, we obtain
u ≤ v ≤ 1. Hence, the support of (U, V ) should be {(u, v) : |u| ≤ v ≤ 1}.

(c) Note V = {|X − Y |+ (X + Y )} /2. Thus, the Jacobian of (U, V ) with respect to (X, Y ) is
given by ∣∣∣

(
1 −1

(sgn(x− y) + 1)/2 (−sgn(x− y) + 1)/2

) ∣∣∣ = 1.

Then the Jacobian ∂(X,Y )/∂(U, V ) is equal to 1. From the previous support calculation,
we conclude that the joint density of (U, V ) is equal to

f(u, v) = I {|u| ≤ v ≤ 1} .
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(d) Obviously, U and V are not independent but since E[U |V ] = 0,

Cov(U, V ) = E[UV ]− E[U ]E[V ] = 0.

(e) The marginal density of V is equal to 2vI(0 ≤ v ≤ 1). Thus,

E[U2|V = 0.5] =
∫
u u2I {|u| ≤ 1, |u| ≤ v ≤ 1}

2vI(0 ≤ v ≤ 1)
du

∣∣∣
v=0.5

=
1
12

.

7. (a) From Cov(ε̃i, Xi) = ρσ − c, we conclude that if c = ρσ, ε̃i is independent of Xi.

(b) The expectation β̂n is β0 + ρσ. This is from the following calculation

E[β̂n] = E

[∑n
i=1 Xi((β0 + ρσ)Xi + ε̃i)∑n

i=1 X2
i

]
= E

[
β0 + ρσ +

∑n
i=1 Xiε̃i∑n
i=1 X2

i

]

= β0 + ρσ + E

[
E

[∑n
i=1 Xiε̃i∑n
i=1 X2

i

∣∣∣X1, ..., Xn

]]
= β0 + ρσ.

Clearly, β̂n is an unbiased estimate of β0 if and only if ρσ = 0, i.e., Xi and εi are independent.

(c) From the previous part, we know

β̂n = β0 + ρσ +
∑n

i=1 Xiε̃i∑n
i=1 X2

i

≡ β0 + ρσ +
Qn√
Pn

,

where

Qn =
∑n

i=1 Xiε̃i√∑n
i=1 X2

i

, Pn =
n∑

i=1

X2
i .

Note that conditional on X1, ..., Xn,

Qn =
∑n

i=1 Xiε̃i√∑n
i=1 X2

i

∼ N(0, (1− ρ2)σ2).

Thus, Qn is independent of (X1, ..., Xn) so is independent of Pn. Moreover, Pn has a
Chi-square distribution with n degrees of freedom. Then

Qn

Pn
∼

√
(1− ρ2)σ2

n
t(n)

where t(n) denotes the t-distribution with n degrees of freedom. Hence,

β̂n ∼ β0 + ρσ +

√
(1− ρ2)σ2

n
t(n),

which is a shifted and scaled t-distribution with n degrees of freedom.

8. (a) The (X, Y )-induced measure, µ(X,Y ), is the Lebesgue-Stieltjes measure generated by the
joint distribution of (X, Y ). The joint distribution function of (X, Y ) is the given by
Φ(x)Φ(y), where Φ is the cumulative normal distribution function. Specifically, for any
Borel set B in R2,

µ(X,Y )(B) =
∫

(x,y)∈B
φ(x)φ(y)dλ(x)dλ(y).
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(b) Since {Z ≤ z} = {X ≤ z} ∩ {Y ≤ z}, the conclusion is clear.

(c) Denote E[X|Z] = g(Z). From the equation

E[I(Z ≤ z)g(Z)] = E[I(Z ≤ z)X] = E[XI(X ≤ z)I(Y ≤ z)],

we obtain ∫ z

−∞
g(z)fZ(z)dz =

∫ z

−∞
xφ(x)dxΦ(z),

where fZ(z) is the density of Z given by d/dz(Φ(z)2). Differentiating both sides with
respect to z, we have

g(z) =
zφ(z)Φ(z) +

∫ z
−∞ xφ(x)dxφ(z)

2φ(z)Φ(z)

=
z

2
+

1
2

∫ z
−∞ xφ(x)dx

Φ(z)
.

9. It suffices to show that for any subsequence of Xn, there exists a further subsequence such
that E[|Xn − X|] → 0. First, since Xn →p X, there exists a further subsequence such that
Xn →a.s. X, still denoted as Xn. Apply the Fatou’e lemma to |Xn| + |X| − |Xn −X| then we
obtain

E
[
lim inf

n
{|Xn|+ |X| − |Xn −X|}

]
≤ lim inf

n
{E[|Xn|] + E[|X|]− E[|Xn −X|]} .

The left-hand side is equal 2E[|X|] while the right-hand side is equal to 2E[|X|]−lim supn E[|Xn−
X|]. Thus,

lim sup
n

E[|Xn −X|] ≤ 0.

The conclusion holds.
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