Solution to Practice Problems for Midterm 2007

1. (a) Only need to show $\{\omega: X(\omega) \leq x\} \in \mathcal{B}$ for any x and $\mu_{F}(\{\omega: X(\omega) \leq x\})=F(x)$. They are easy to verify.
(b) Verify the same conditions. Use the property of the quantile function.
2. Clearly, $\left(A_{n}, B_{n}\right) \rightarrow_{p}(0,0)$. From the Slutsky's theorem,

$$
\left(X_{n}, Y_{n}\right)+\left(A_{n}, B_{n}\right) \rightarrow_{d}(X, Y)
$$

I.e., $\left(X_{n}+A_{n}, Y_{n}+B_{n}\right) \rightarrow_{d}(X, Y)$. Apply the continuous mapping theorem to $g(x, y)=x / y$. Since $Y>0$, we obtain the result. The counter example is as follows: let $X_{n}=X$ and $Y_{n}=X$ where X has a chi-square distribution. Let \tilde{X} be another random variable indepdent of X but with the same distribution. Set $A_{n}=B_{n}=0$. Then $X_{n} \rightarrow_{d} X$ and $Y_{n} \rightarrow_{d} \tilde{X}$ but

$$
\frac{X_{n}}{Y_{n}}=1 \text { does not converge in distribution to } \frac{X}{\tilde{X}}
$$

3. (a) The proof that $\mathcal{B} \cap \Omega$ is closed under complement and countable union is as follows: if $B \cap \Omega$ is in the class, then

$$
(B \cap \Omega)^{c}[\text { note this is the complement in } \Omega]=B^{c} \cap \Omega
$$

is also in since $B^{c} \in \mathcal{B}$; if $B_{1} \cap \Omega, B_{2} \cap \Omega, \ldots$ are in the class, then

$$
\cup_{n}\left\{B_{n} \cap \Omega\right\}=\left\{\cup_{n} B_{n}\right\} \cap \Omega
$$

is in since $\cup_{n} B_{n} \in \mathcal{B}$. Obviously, $\lambda \times \lambda(\Omega)=1$.
(b) For any $z \in R$,

$$
\{(x, y): Z(x, y) \leq z\}=\{(x, y): y / x \leq z\} \cap \Omega
$$

Since $\{(x, y): y / x \leq z\}$ is in $\mathcal{B},\{(x, y): Z(x, y) \leq z\}$ is in $\mathcal{B} \cap \Omega$. Thus, Z is measurable.
(c) μ_{Z} is the Lebesgue-Stieljes measure generated by the distribution function of $Z, F_{Z}(z)$. Note that for $z \leq 0, F_{Z}(z)=0$; for $z>0$,

$$
F_{Z}(z)=\lambda \times \lambda\{(x, y): y \leq x z,(x, y) \in \Omega\}=\int_{0}^{1} \int_{0}^{1} I(y \leq x z) d y d x=\int_{0}^{1} \min (1, x z) d x
$$

The latter is equal to $z / 2$ if $z \leq 1$ and is equal to $1-1 /(2 z)$ if $z>1$.
(d) Since F_{Z} has no discontinuous point, the dominating measure is the Lebesgue measure (this requires verifying the condition of absolute continuity). The density is

$$
f_{Z}(z)=\frac{1}{2} I(0<z \leq 1)+\frac{1}{2 z^{2}} I(z>1)
$$

(e) From the density, we obtain

$$
E[Z]=\int_{0}^{1} \frac{z}{2} d z+\int_{1}^{\infty} \frac{1}{2 z} d z=\infty
$$

(f) Define a new random variable Y as $Y(x, y)=y$. One can easily check that Y and W are independent and both have uniform distribution in $[0,1]$. Clearly, $Z=Y / W$. Thus,

$$
E[Z \mid W]=E[Y / W \mid W]=E[Y \mid W] / W=E[Y] / W=1 /(2 W)
$$

An alternative way is to find the joint density of (W, Z) then compute the conditional expectation.
4. (a) Since $\operatorname{Cov}(X, Y-c X)=\operatorname{Cov}(X, Y)-c \operatorname{Cov}(X, X)=\rho-c$, we conclude that if $c=\rho, X$ and $Y-\rho X$ are independent.
(b) Let $Z=Y-\rho X$. The calculation is the following:

$$
E\left[X^{2} Y^{2}\right]=E\left[X^{2}(\rho X+Z)^{2}\right]=\rho^{2} E\left[X^{4}\right]+2 \rho E\left[X^{3} Z\right]+E\left[X^{2} Z^{2}\right]
$$

Since X and Z are independent and with normal distributions with mean zeros, moreover, Z 's variance is equal to $\left(1-\rho^{2}\right)$, we obtain

$$
E\left[X^{2} Y^{2}\right]=3 \rho^{2}+\left(1-\rho^{2}\right)=1+2 \rho^{2}
$$

(c) The MGF of (X, Y) is given by

$$
m(t, s)=\exp \left\{(t, s)\left(\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right)(t, s)^{\prime} / 2\right\}=\exp \left\{t^{2} / 2+s^{2} / 2+\rho t s\right\}
$$

By differentiation, the coefficient of $t^{2} s^{2} /(2!)^{2}$ in the Taylor expansion of $m(t, s)$ is given by $\left(1+2 \rho^{2}\right)$.
5. (a) The joint distribution is as follows: for $x, y \in(0,1)$ and $x \leq y$,

$$
P\left(X_{(1)}>x, X_{(n)} \leq y\right)=P\left(x<X_{1} \leq y, \ldots, x<X_{n} \leq y\right)=(y-x)^{n}
$$

Thus the joint density is equal to $n(n-1)(y-x)^{n-2} I(0<x<1, x \leq y<1)$.
(b) $E\left[X_{(1)} \mid X_{(n)}=y\right]=\int_{x} x(y-x)^{n-2} I(0<x<1, x \leq y<1) d x / \int_{x}(y-x)^{n-2} I(0<x<1, x \leq$ $y<1) d x=y / n$
(c) Using the transformation from $\left(X_{(1)}, X_{(n)}\right)$ to $\left(X_{(1)}=x, X_{(n)}-X_{(1)}=z\right)$, we obtain that the latter has a joint density

$$
n(n-1) z^{n-2} I(0<x<1,0 \leq z<1-x)
$$

After integrating out x, the density of $\left(X_{(n)}-X_{(1)}\right)$ is equal to $n(n-1) z^{n-2}(1-z) I(0 \leq$ $z<1$), i.e., Beta-distribution $\operatorname{Beta}(n-1,2)$.
6. (a) Since $V=\{|U|+X+Y\} / 2$, we obtain

$$
X=V+(-|U|+U) / 2, \quad Y=V+(-|U|-U) / 2
$$

(b) The support for (X, Y) is $\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$. Thus, the support of (U, V) is

$$
0 \leq v+(-|u|+u) / 2 \leq 1, \quad 0 \leq v+(-|u|-u) / 2 \leq 1
$$

Clearly, $|u| \leq 1$. Then if $u<0$, the above inequalities give $-u \leq v \leq 1$; if $u \geq 0$, we obtain $u \leq v \leq 1$. Hence, the support of (U, V) should be $\{(u, v):|u| \leq v \leq 1\}$.
(c) Note $V=\{|X-Y|+(X+Y)\} / 2$. Thus, the Jacobian of (U, V) with respect to (X, Y) is given by

$$
\left|\left(\begin{array}{cc}
1 & -1 \\
(\operatorname{sgn}(x-y)+1) / 2 & (-\operatorname{sgn}(x-y)+1) / 2
\end{array}\right)\right|=1
$$

Then the Jacobian $\partial(X, Y) / \partial(U, V)$ is equal to 1 . From the previous support calculation, we conclude that the joint density of (U, V) is equal to

$$
f(u, v)=I\{|u| \leq v \leq 1\}
$$

(d) Obviously, U and V are not independent but since $E[U \mid V]=0$,

$$
\operatorname{Cov}(U, V)=E[U V]-E[U] E[V]=0
$$

(e) The marginal density of V is equal to $2 v I(0 \leq v \leq 1)$. Thus,

$$
E\left[U^{2} \mid V=0.5\right]=\left.\frac{\int_{u} u^{2} I\{|u| \leq 1,|u| \leq v \leq 1\}}{2 v I(0 \leq v \leq 1)} d u\right|_{v=0.5}=\frac{1}{12}
$$

7. (a) From $\operatorname{Cov}\left(\tilde{\epsilon}_{i}, X_{i}\right)=\rho \sigma-c$, we conclude that if $c=\rho \sigma, \tilde{\epsilon}_{i}$ is independent of X_{i}.
(b) The expectation $\hat{\beta}_{n}$ is $\beta_{0}+\rho \sigma$. This is from the following calculation

$$
\begin{aligned}
E\left[\hat{\beta}_{n}\right] & =E\left[\frac{\sum_{i=1}^{n} X_{i}\left(\left(\beta_{0}+\rho \sigma\right) X_{i}+\tilde{\epsilon}_{i}\right)}{\sum_{i=1}^{n} X_{i}^{2}}\right]=E\left[\beta_{0}+\rho \sigma+\frac{\sum_{i=1}^{n} X_{i} \tilde{\epsilon}_{i}}{\sum_{i=1}^{n} X_{i}^{2}}\right] \\
& =\beta_{0}+\rho \sigma+E\left[E\left[\left.\frac{\sum_{i=1}^{n} X_{i} \tilde{\epsilon}_{i}}{\sum_{i=1}^{n} X_{i}^{2}} \right\rvert\, X_{1}, \ldots, X_{n}\right]\right]=\beta_{0}+\rho \sigma
\end{aligned}
$$

Clearly, $\hat{\beta}_{n}$ is an unbiased estimate of β_{0} if and only if $\rho \sigma=0$, i.e., X_{i} and ϵ_{i} are independent.
(c) From the previous part, we know

$$
\hat{\beta}_{n}=\beta_{0}+\rho \sigma+\frac{\sum_{i=1}^{n} X_{i} \tilde{\epsilon}_{i}}{\sum_{i=1}^{n} X_{i}^{2}} \equiv \beta_{0}+\rho \sigma+\frac{Q_{n}}{\sqrt{P_{n}}}
$$

where

$$
Q_{n}=\frac{\sum_{i=1}^{n} X_{i} \tilde{\epsilon}_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}, \quad P_{n}=\sum_{i=1}^{n} X_{i}^{2}
$$

Note that conditional on X_{1}, \ldots, X_{n},

$$
Q_{n}=\frac{\sum_{i=1}^{n} X_{i} \tilde{\epsilon}_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}} \sim N\left(0,\left(1-\rho^{2}\right) \sigma^{2}\right)
$$

Thus, Q_{n} is independent of $\left(X_{1}, \ldots, X_{n}\right)$ so is independent of P_{n}. Moreover, P_{n} has a Chi-square distribution with n degrees of freedom. Then

$$
\frac{Q_{n}}{P_{n}} \sim \sqrt{\frac{\left(1-\rho^{2}\right) \sigma^{2}}{n}} t(n)
$$

where $t(n)$ denotes the t-distribution with n degrees of freedom. Hence,

$$
\hat{\beta}_{n} \sim \beta_{0}+\rho \sigma+\sqrt{\frac{\left(1-\rho^{2}\right) \sigma^{2}}{n}} t(n)
$$

which is a shifted and scaled t-distribution with n degrees of freedom.
8. (a) The (X, Y)-induced measure, $\mu_{(X, Y)}$, is the Lebesgue-Stieltjes measure generated by the joint distribution of (X, Y). The joint distribution function of (X, Y) is the given by $\Phi(x) \Phi(y)$, where Φ is the cumulative normal distribution function. Specifically, for any Borel set B in R^{2},

$$
\mu_{(X, Y)}(B)=\int_{(x, y) \in B} \phi(x) \phi(y) d \lambda(x) d \lambda(y) .
$$

(b) Since $\{Z \leq z\}=\{X \leq z\} \cap\{Y \leq z\}$, the conclusion is clear.
(c) Denote $E[X \mid Z]=g(Z)$. From the equation

$$
E[I(Z \leq z) g(Z)]=E[I(Z \leq z) X]=E[X I(X \leq z) I(Y \leq z)],
$$

we obtain

$$
\int_{-\infty}^{z} g(z) f_{Z}(z) d z=\int_{-\infty}^{z} x \phi(x) d x \Phi(z)
$$

where $f_{Z}(z)$ is the density of Z given by $d / d z\left(\Phi(z)^{2}\right)$. Differentiating both sides with respect to z, we have

$$
\begin{aligned}
g(z)= & \frac{z \phi(z) \Phi(z)+\int_{-\infty}^{z} x \phi(x) d x \phi(z)}{2 \phi(z) \Phi(z)} \\
& =\frac{z}{2}+\frac{1}{2} \frac{\int_{-\infty}^{z} x \phi(x) d x}{\Phi(z)} .
\end{aligned}
$$

9. It suffices to show that for any subsequence of X_{n}, there exists a further subsequence such that $E\left[\left|X_{n}-X\right|\right] \rightarrow 0$. First, since $X_{n} \rightarrow_{p} X$, there exists a further subsequence such that $X_{n} \rightarrow_{\text {a.s. }} X$, still denoted as X_{n}. Apply the Fatou'e lemma to $\left|X_{n}\right|+|X|-\left|X_{n}-X\right|$ then we obtain

$$
E\left[\lim \inf _{n}\left\{\left|X_{n}\right|+|X|-\left|X_{n}-X\right|\right\}\right] \leq \lim \inf _{n}\left\{E\left[\left|X_{n}\right|\right]+E[|X|]-E\left[\left|X_{n}-X\right|\right]\right\}
$$

The left-hand side is equal $2 E[|X|]$ while the right-hand side is equal to $2 E[|X|]-\lim \sup _{n} E\left[\mid X_{n}-\right.$ $X \mid]$. Thus,

$$
\lim \sup _{n} E\left[\left|X_{n}-X\right|\right] \leq 0
$$

The conclusion holds.

