Practice Problems for Midterm 2007

1. Let F be an arbitrary distribution function in $(-\infty, \infty)$.
(a) Define a probability measure space $\left(R, \mathcal{B}, \lambda_{F}\right)$ where λ_{F} is the Lebesgue-Stieljes measure generated by F. Show that a function defined on this space $X: R \rightarrow R$ with $X(\omega)=\omega$ is a random variable with distribution function F.
(b) Let $([0,1], \mathcal{B} \cap[0,1], \lambda)$ be another probability measure where λ is the Lebesgue measure. Show that a function defined on this space $X:[0,1] \rightarrow R$ with $X(\omega)=F^{-1}(\omega)$ is a random variable with distribution function F.
2. Let $X_{n}, Y_{n}, A_{n}, B_{n}$ be random variables satisfying

$$
\left(X_{n}, Y_{n}\right) \rightarrow_{d}(X, Y), \quad A_{n} \rightarrow_{p} 0, \quad B_{n} \rightarrow_{p} 0
$$

where $Y>0$. Show

$$
\frac{X_{n}+A_{n}}{Y_{n}+B_{n}} \rightarrow_{d} \frac{X}{Y}
$$

Show by example that if $X_{n} \rightarrow{ }_{d} X$ and $Y_{n} \rightarrow{ }_{d} Y$ with $Y>0$, the above result may not be true.
3. Define $\Omega=\{(x, y): 0<x<1,0<y<1\}$. Let \mathcal{B} denote the Borel σ - field in R^{2} and $\lambda \times \lambda$ be the Lebesgue measure in R^{2}.
(a) Show that $\mathcal{B} \cap \Omega$ is a σ-field and $\lambda \times \lambda$ is a probability measure in Ω.
(b) Define a function Z from Ω to $(-\infty, \infty)$ as $Z(x, y)=y / x$. Show that Z is a measurable function, i.e., a random variable.
(c) What is the induced measure by Z in the real space, denoted by μ_{Z} ? Give the detail of μ_{Z}.
(d) Specify a measure in the real space such that μ_{Z} is absolutely continuous with respect to it and find the density of Z. No justification is necessary.
(e) Use the above density to calculate $E[Z]$.
(f) If we define another random variable W from Ω to $(-\infty, \infty)$ as $W(x, y)=x$, then what is the conditional expectation of Z given $W, E[Z \mid W]$?
4. Assume that X and Y are two normal random variables with mean zeros and variance ones. The correlation coefficient between X and Y is ρ.
(a) Find a constant c so that X and $Y-c X$ are independent.
(b) Use the previous result to calculate $E\left[X^{2} Y^{2}\right]$.
(c) What is the moment generating function of (X, Y) ? Show how to use this function to calculate $E\left[X^{2} Y^{2}\right]$.
5. Let X_{1}, \ldots, X_{n} be i.i.d from $\operatorname{Uniform}(0,1)$, where $n \geq 2$. Denote $X_{(1)}$ and $X_{(n)}$ are the minimum and the maximum of X_{1}, \ldots, X_{n} respectively.
(a) Find the joint distribution of $\left(X_{(1)}, X_{(n)}\right)$.
(b) What is the conditional expectation $E\left[X_{(1)} \mid X_{(n)}\right]$?
(c) What is the distribution of $\left(X_{(n)}-X_{(1)}\right)$?
6. Let X and Y be independent Uniform(0,1) random variables. Define $U=X-Y$ and $V=$ $\max (X, Y)$.
(a) Use the fact that $\max (x, y)=\{|x-y|+x+y\} / 2$. Express X and Y in terms of U and V.
(b) What is the support of (U, V) ? Simplify your answer as much as possible.
(c) Find the joint density of (U, V). (Hint: $d|x| / d x=\operatorname{sign}(x)$)
(d) What is $\operatorname{Cov}(U, V)$? Are U and V independent?
(e) What is the conditional expectation $E\left[U^{2} \mid V=0.5\right]$?
7. Suppose that n pairs of observations $\left(Y_{1}, X_{1}\right), \ldots .,\left(Y_{n}, X_{n}\right)$ are i.i.d generated from the following model:

$$
Y_{i}=\beta_{0} X_{i}+\epsilon_{i}, \quad i=1, \ldots, n
$$

where β_{0} is a constant and (X_{i}, ϵ_{i}) follows a bivariate normal distribution with mean zeros and covariance

$$
\left(\begin{array}{cc}
1 & \rho \sigma \\
\rho \sigma & \sigma^{2}
\end{array}\right) .
$$

Here, ρ is the correlation coefficient for $\left(X_{i}, \epsilon_{i}\right)$ and σ^{2} is the variance of ϵ_{i}. It is well known that the coefficient from Y_{i} regressing on X_{i} should be

$$
\hat{\beta}_{n}=\sum_{i=1}^{n} X_{i} Y_{i} / \sum_{i=1}^{n} X_{i}^{2} .
$$

(a) Define a new random variable $\tilde{\epsilon}_{i}=\epsilon_{i}-c X_{i}$ then the model can be rewritten as

$$
Y_{i}=\left(\beta_{0}+c\right) X_{i}+\tilde{\epsilon}_{i} .
$$

Find a constant c so that $\tilde{\epsilon}_{i}$ is independent of X_{i}.
(b) Calculate the expectation of $\hat{\beta}_{n}$. When is $\hat{\beta}_{n}$ an unbiased estimate of β_{0} ?
(c) What is the distribution of $\hat{\beta}_{n}$?
8. Suppose that (X, Y) is a bivariate random variables defined on a probability measure space (Ω, \mathcal{A}, P). Moreover, X and Y are independent and each follows a standard normal distribution.
(a) What is the (X, Y)-induced measure? This should be a measure for the Borel sets in R^{2}.
(b) Define $Z=\max (X, Y)$. Show that Z is also a measurable function (equivalently, a random variable).
(c) Calculate the conditional expectation $E[X \mid Z]$. You may keep the integration in the final expression.
9. Suppose that X_{1}, X_{2}, \ldots are a sequence of random variables satisfying $E\left[\left|X_{n}\right|\right]=1$. Moreover, X_{n} converges in probability to a random variable X with $E[|X|]=1$. Prove the following convergence:

$$
E\left[\left|X_{n}-X\right|\right] \rightarrow 0 .
$$

(Hint: Apply the Fatou's lemma to $\left|X_{n}\right|+|X|-\left|X_{n}-X\right|$)

