BIOS 760 MIDTERM II, 2017

1. (5 points) Let X_1, \ldots, X_n be i.i.d. real random variables with finite mean μ and finite variance σ^2 . Shoe that

$$n^{-1} \sum_{i=1}^{n} (X_i - \bar{X}_n)^2 \to \sigma^2$$

almost surely, as $n \to \infty$.

2. Assume the pairs of real random variables $(X_1, Y_1), \ldots, (X_n, Y_n)$ are i.i.d., with $EX_1 = \mu_x$, $EY_1 = \mu_y$, $\operatorname{var}(X_1) = \sigma_x^2$, $\operatorname{var}(Y_1) = \sigma_y^2$, and $\operatorname{cov}(X_1, Y_1) = v$, with $E(X_1 - \mu_x)^4 < \infty$ and $E(Y_1 - \mu_y)^4 < \infty$. Define

$$U_n = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \frac{(X_i - X_j)(Y_i - Y_j)}{2}$$

Do the following:

(a) (5 points) Explain why U_n is a second order U-statistic with kernel

$$h((X_1, Y_1), (X_2, Y_2)) = \frac{(X_1 - X_2)(Y_1 - Y_2)}{2},$$

and verify that $Eh^{2}((X_{1}, Y_{1}), (X_{2}, Y_{2})) < \infty$.

(b) (5 points) Verify that $\sqrt{n}(U_n - v) \rightarrow_d N(0, \tau^2)$, where

$$\tau^{2} = 4 \operatorname{cov} \left[h((X_{1}, Y_{1}), (X_{2}, Y_{2})), h((X_{1}, Y_{1}), (\tilde{X}_{2}, \tilde{Y}_{2})) \right],$$

where the pair $(\tilde{X}_2, \tilde{Y}_2)$ has the same joint distribution as (X_1, Y_1) but is independent of both (X_1, Y_1) and (X_2, Y_2) .

(c) (5 extra credit points) Assume now that X_i and Y_i are independent for all $i \ge 1$, and define $S_x^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$ and $S_y^2 = n^{-1} \sum_{i=1}^n (Y_i - \bar{Y}_n)^2$. Show that

$$\frac{\sqrt{n}U_n}{S_x S_y} \to_d N(0,1),$$

as $n \to \infty$.

3. (5 points) Let Z_1, Z_2, \ldots be i.i.d. N(0, 1). Define $X_1 = [(1 + Z_1)^3 - 1]/3$ and, for all $n \ge 1$, also define $X_{n+1} = [(X_n + Z_{n+1})^3 - X_n^3]/3$. Let $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that (X_n, \mathcal{F}_n) is a martingale and that $EX_n = 1$ for all $n \ge 1$.