BIOS 760 MIDTERM II, 2017

1. (5 points) Let X_{1}, \ldots, X_{n} be i.i.d. real random variables with finite mean μ and finite variance σ^{2}. Shoe that

$$
n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2} \rightarrow \sigma^{2}
$$

almost surely, as $n \rightarrow \infty$.
2. Assume the pairs of real random variables $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ are i.i.d., with $E X_{1}=$ $\mu_{x}, E Y_{1}=\mu_{y}, \operatorname{var}\left(X_{1}\right)=\sigma_{x}^{2}, \operatorname{var}\left(Y_{1}\right)=\sigma_{y}^{2}$, and $\operatorname{cov}\left(X_{1}, Y_{1}\right)=v$, with $E\left(X_{1}-\mu_{x}\right)^{4}<\infty$ and $E\left(Y_{1}-\mu_{y}\right)^{4}<\infty$. Define

$$
U_{n}=\frac{2}{n(n-1)} \sum_{1 \leq i<j \leq n} \frac{\left(X_{i}-X_{j}\right)\left(Y_{i}-Y_{j}\right)}{2}
$$

Do the following:
(a) (5 points) Explain why U_{n} is a second order U-statistic with kernel

$$
h\left(\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right)=\frac{\left(X_{1}-X_{2}\right)\left(Y_{1}-Y_{2}\right)}{2}
$$

and verify that $E h^{2}\left(\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right)<\infty$.
(b) (5 points) Verify that $\sqrt{n}\left(U_{n}-v\right) \rightarrow_{d} N\left(0, \tau^{2}\right)$, where

$$
\tau^{2}=4 \operatorname{cov}\left[h\left(\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right)\right), h\left(\left(X_{1}, Y_{1}\right),\left(\tilde{X}_{2}, \tilde{Y}_{2}\right)\right)\right]
$$

where the pair $\left(\tilde{X}_{2}, \tilde{Y}_{2}\right)$ has the same joint distribution as $\left(X_{1}, Y_{1}\right)$ but is independent of both $\left(X_{1}, Y_{1}\right)$ and $\left(X_{2}, Y_{2}\right)$.
(c) (5 extra credit points) Assume now that X_{i} and Y_{i} are independent for all $i \geq 1$, and define $S_{x}^{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$ and $S_{y}^{2}=n^{-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$. Show that

$$
\frac{\sqrt{n} U_{n}}{S_{x} S_{y}} \rightarrow_{d} N(0,1)
$$

as $n \rightarrow \infty$.
3. (5 points) Let Z_{1}, Z_{2}, \ldots be i.i.d. $N(0,1)$. Define $X_{1}=\left[\left(1+Z_{1}\right)^{3}-1\right] / 3$ and, for all $n \geq 1$, also define $X_{n+1}=\left[\left(X_{n}+Z_{n+1}\right)^{3}-X_{n}^{3}\right] / 3$. Let $\mathcal{F}_{n}=\sigma\left(X_{1}, \ldots, X_{n}\right)$. Show that $\left(X_{n}, \mathcal{F}_{n}\right)$ is a martingale and that $E X_{n}=1$ for all $n \geq 1$.

