BIOS 760 MIDTERM II, 2014: Solution

1. (a) For any $r>0$,

$$
E\left[X^{r}\right]=2 \theta^{-2} \int_{0}^{\theta} x^{1+r} d x=\frac{2 \theta^{2+r}}{\theta^{2}(r+2)}=\frac{2 \theta^{r}}{r+2}
$$

and thus

$$
\sigma^{2}(\theta)=\frac{9}{4}\left[\frac{2 \theta^{2}}{4}-\left(\frac{2}{3} \theta\right)^{2}\right]=\frac{\theta^{2}}{8}
$$

and the remaining conclusions follow for the CLT.
(b) For any $0<u<n$,

$$
\begin{aligned}
P\left[n\left(\theta-X_{(n)}\right)>u\right] & =P\left[X_{(n)}<\theta-u / n\right] \\
& =\left(P\left[X_{1}<\theta-u / n\right]\right)^{n} \\
& =\theta^{-2 n}\left(\theta-\frac{u}{n}\right)^{2 n} \\
& =\left(1-\frac{u}{\theta n}\right)^{2 n} \\
& \rightarrow \exp (-2 u / \theta),
\end{aligned}
$$

as $n \rightarrow \infty$. For $u \leq 0, P\left[n\left(\theta-X_{(n)}\right)>u\right]=1$ for all $n \geq 1$.
(c) By (b) above, $\sqrt{n}\left(\hat{\theta}_{2}-\theta\right)=o_{P}(1)$. Thus

$$
\sqrt{n}\left[\left(\hat{\theta}_{1}+\hat{\theta}_{2}\right) / 2-\theta\right]=(1 / 2) \sqrt{n}\left(\hat{\theta}_{1}-\theta\right)+o_{P}(1)
$$

and the remaining conclusions follow from (a) and Slutsky's Theorem.
(d) Since, by $(\mathrm{c}), \sqrt{n}\left(\hat{\theta}_{2}-\theta\right) \rightarrow_{d} N(0,0)$, we have that $\hat{\theta}_{2}$ is the most precise since, at the root- n rate, it has an asymptotic limiting variance of zero, which is stricly less than the corresponding asymptotic limiting variances of either $\sqrt{n}\left(\hat{\theta}_{1}-\theta\right)$ or $\sqrt{n}\left(\hat{\theta}_{3}-\theta\right)$.
(e) For the first one, we use the delta method via the map $\theta \mapsto g(\theta)=1 / \theta$. Since $\dot{g}(\theta)=-1 / \theta^{2}$, we obtain from (b) that

$$
n\left(\frac{1}{\hat{\theta}_{2}}-\frac{1}{\theta}\right) \rightarrow_{d}-\frac{1}{\theta^{2}} \times-U=\frac{U}{\theta^{2}}
$$

and thus its limiting distibution is exponential with mean $(2 \theta)^{-1}$. For the second one, we use (b) and the fact that $P(-U=0)=0$, combined with the extended continuous mapping theorem for the map $u \mapsto f(u)=1 / u$, to obtain that the asymptotic limiting distribution is $-1 / U$, where U is as defined in (b).
2. (a) Since X_{n} given \mathcal{F}_{n-1} is Poisson $\left(\lambda X_{n-1}\right)$, for $n>1$, we have $E\left[X_{n} \mid \mathcal{F}_{n-1}\right]=\lambda X_{n-1}$ and $E X_{1}=\lambda$, and thus, by induction, we obtain the desired result.
(b) First, it is clear that Y_{n} is adapted to \mathcal{F}_{n}, for all $n \geq 1$, and $\mathcal{F}_{1} \subset \mathcal{F}_{2} \subset \cdots$. In addition,

$$
E\left[Y_{n} \mid \mathcal{F}_{n-1}\right]=\lambda^{-n} E\left[X_{n} \mid \mathcal{F}_{n-1}\right]=\lambda^{-n} \lambda X_{n-1}=Y_{n-1}
$$

(c) Since $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale, it is also a submartingale. It is also easy to verify from (a) that $E\left|Y_{n}\right|=E Y_{n}=1$ for all $n \geq 1$. Thus, by the martingale convergence theorem, $Y_{n} \rightarrow_{a . s .} Y$, where $E Y \leq \sup _{n} E\left|Y_{n}\right|=1$.

