BIOS 760 MIDTERM II, 2012

1. Let X_1, \ldots, X_n be i.i.d., non-negative real random variables with density

$$f(x;\alpha) = \alpha(x+1)^{-\alpha-1}I\{x \ge 0\}, \ 0 < \alpha < \infty,$$

and let $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ and $\bar{U}_n = n^{-1} \sum_{i=1}^n \log(1 + X_i)$. Do the following:

(a) (2 points) Show that for every $0 < r < \infty$,

$$E(X_1+1)^r = \begin{cases} \infty, \text{ if } \alpha \le r, \\ \frac{\alpha}{\alpha - r}, \text{ if } \alpha > r. \end{cases}$$

- (b) (2 points) Show that if $\alpha > 1$, $\overline{X}_n \to_{a.s.} (\alpha 1)^{-1}$.
- (c) (4 points) Show that $\sqrt{n} (g(\bar{X}_n) \alpha) \to_d N(0, h(\alpha))$, when $\alpha > 2$, for $h(\alpha) = \alpha(\alpha 1)^2/(\alpha 2)$ and some real function g(u), and give the form of g(u).
- (d) (2 points) Show that for all $\alpha > 0$ and every integer $r \ge 0$, $E \left[\log(1 + X_1) \right]^r = \alpha^{-r} r!$.
- (e) (3 points) Show that $\sqrt{n}(k(\bar{U}_n) \alpha) \rightarrow_d N(0, \alpha^2)$, for all $\alpha > 0$ and some real function k(u), and give the form of k(u).
- (f) (2 points) Show that for $\alpha > 2$, $h(\alpha)/\alpha^2 > 1$. What happens when $\alpha \le 2$? What does this say about the relative performances of $g(\bar{X}_n)$ and $k(\bar{U}_n)$?
- 2. (2 points) Let X_1, \ldots, X_n be i.i.d. N(0,1), and define $Y_n = (\prod_{i=1}^n X_i)^2$ and $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Show that (Y_n, \mathcal{F}_n) is a martingale.
- 3. (3 points) Suppose that X_n and Y_n are positive sequences of real random variables with X_n →_d X and Y_n →_d y, where X is a positive random variable and y is a positive and finite constant. Show that X^{Y_n}_n →_d X^y.
- 4. (5 bonus points) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be an i.i.d. sequence of pairs of random variables where $E(X_1) = E(Y_1) = \mu$, $\operatorname{var}(X_1) = \operatorname{var}(Y_1) = \sigma^2$, the correlation between X_1 and Y_1 is $\rho \in [-1, 1]$, and where $|\mu| < \infty$ and $\sigma^2 < \infty$. Let $\overline{X}_n = n^{-1} \sum_{i=1}^n X_i$ and $\overline{Y}_n = n^{-1} \sum_{i=1}^n Y_i$. Show that $\sqrt{n}(\overline{X}_n \wedge \overline{Y}_n - \mu)/\sigma \rightarrow_d Z_1 \wedge Z_2$, where $a \wedge b$ denotes the minimum of a and b and where (Z_1, Z_2) is bivariate normal with $E(Z_1) = E(Z_2) = 0$, $\operatorname{var}(Z_1) = \operatorname{var}(Z_2) = 1$, and with correlation ρ . Hint: Observe that for any increasing function $g(u), g(a \wedge b) = g(a) \wedge g(b)$.