BIOS 760 MIDTERM II, 2012

1. Let X_{1}, \ldots, X_{n} be i.i.d., non-negative real random variables with density

$$
f(x ; \alpha)=\alpha(x+1)^{-\alpha-1} I\{x \geq 0\}, \quad 0<\alpha<\infty
$$

and let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $\bar{U}_{n}=n^{-1} \sum_{i=1}^{n} \log \left(1+X_{i}\right)$. Do the following:
(a) (2 points) Show that for every $0<r<\infty$,

$$
E\left(X_{1}+1\right)^{r}=\left\{\begin{array}{l}
\infty, \text { if } \alpha \leq r \\
\frac{\alpha}{\alpha-r}, \text { if } \alpha>r
\end{array}\right.
$$

(b) (2 points) Show that if $\alpha>1, \bar{X}_{n} \rightarrow_{a . s .}(\alpha-1)^{-1}$.
(c) (4 points) Show that $\sqrt{n}\left(g\left(\bar{X}_{n}\right)-\alpha\right) \rightarrow_{d} N(0, h(\alpha))$, when $\alpha>2$, for $h(\alpha)=$ $\alpha(\alpha-1)^{2} /(\alpha-2)$ and some real function $g(u)$, and give the form of $g(u)$.
(d) (2 points) Show that for all $\alpha>0$ and every integer $r \geq 0, E\left[\log \left(1+X_{1}\right)\right]^{r}=\alpha^{-r} r$!.
(e) (3 points) Show that $\sqrt{n}\left(k\left(\bar{U}_{n}\right)-\alpha\right) \rightarrow_{d} N\left(0, \alpha^{2}\right)$, for all $\alpha>0$ and some real function $k(u)$, and give the form of $k(u)$.
(f) (2 points) Show that for $\alpha>2, h(\alpha) / \alpha^{2}>1$. What happens when $\alpha \leq 2$? What does this say about the relative performances of $g\left(\bar{X}_{n}\right)$ and $k\left(\bar{U}_{n}\right)$?
2. (2 points) Let X_{1}, \ldots, X_{n} be i.i.d. $N(0,1)$, and define $Y_{n}=\left(\prod_{i=1}^{n} X_{i}\right)^{2}$ and $\mathcal{F}_{n}=$ $\sigma\left(X_{1}, \ldots, X_{n}\right)$. Show that $\left(Y_{n}, \mathcal{F}_{n}\right)$ is a martingale.
3. (3 points) Suppose that X_{n} and Y_{n} are positive sequences of real random variables with $X_{n} \rightarrow_{d} X$ and $Y_{n} \rightarrow_{d} y$, where X is a positive random variable and y is a positive and finite constant. Show that $X_{n}^{Y_{n}} \rightarrow_{d} X^{y}$.
4. (5 bonus points) Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)$ be an i.i.d. sequence of pairs of random variables where $E\left(X_{1}\right)=E\left(Y_{1}\right)=\mu, \operatorname{var}\left(X_{1}\right)=\operatorname{var}\left(Y_{1}\right)=\sigma^{2}$, the correlation between X_{1} and Y_{1} is $\rho \in[-1,1]$, and where $|\mu|<\infty$ and $\sigma^{2}<\infty$. Let $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{n}=n^{-1} \sum_{i=1}^{n} Y_{i}$. Show that $\sqrt{n}\left(\bar{X}_{n} \wedge \bar{Y}_{n}-\mu\right) / \sigma \rightarrow_{d} Z_{1} \wedge Z_{2}$, where $a \wedge b$ denotes the minimum of a and b and where $\left(Z_{1}, Z_{2}\right)$ is bivariate normal with $E\left(Z_{1}\right)=E\left(Z_{2}\right)=0$, $\operatorname{var}\left(Z_{1}\right)=\operatorname{var}\left(Z_{2}\right)=1$, and with correlation ρ. Hint: Observe that for any increasing function $g(u), g(a \wedge b)=g(a) \wedge g(b)$.

