BIOS760: 2011 FALL SEMESTER MIDTERM EXAM II

1. Suppose that X_{n} and Y_{n} are independent random variables. Moreover, $X_{n} \rightarrow_{d} X$ and $Y_{n} \rightarrow_{d} Y$ for some random variables X and Y.
(a) (3 points) Give one example that $X_{n}+Y_{n}$ does not converge to $X+Y$ in distribution.
(b) (5 points) If we further assume that X and Y are independent, then show that $\left(X_{n}, Y_{n}\right) \rightarrow_{d}(X, Y)$. From this result, show that $X_{n}+Y_{n} \rightarrow_{d} X+Y$.
2. Let $Y_{i}=x_{i} \beta+\sqrt{x_{i}} \epsilon_{i}, i=1, . ., n$, where $\epsilon_{1}, \ldots, \epsilon_{n}$ are i.i.d from some distribution with mean zero and variance 1 , and x_{i} is a positive constant.
(a) (3 points) Show that for any positive constants $\left(w_{1}, \ldots, w_{n}\right)$ such that $\sum_{i=1}^{n} w_{i}=1$, $\sum_{i=1}^{n} w_{i} Y_{i} / x_{i}$ is an unbiased estimator for β.
(b) (3 points) Find constants $\left(w_{1}, \ldots, w_{n}\right)$ to minimize the variance of the above estimator.
(c) (6 points) Assume

$$
\frac{\max _{i=1}^{n} x_{i}}{\sum_{i=1}^{n} x_{i}} \rightarrow 0 .
$$

Derive the asymptotic distribution of the estimator in (b) after proper normalization and justify your result.

