BIOS 760: Solution to Midterm II 2010

. Note that X; = BX,_1+¢; = ... =B 1e; + B 25+ ... + (%;. Hence
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. Note that for odd n, (—1)""*! = —1 for odd i-s and (—1)"~*"! = 1 for even i-s. Subsisting

in Equation 1 for odd n we have
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The proof for even n is similar.

. First note that Fle;| < co. This follows since Ele;| < E[e* + 1] = (6% + p?) + 1. Hence
for every fixed 6 > 0
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. By Equation 1, we have that
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Since ¢; are i.i.d. with mean p, we obtain from the w.l.L.n that
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From the previous question we obtain that
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By Slutsky’s Theorem we conclude that X,, —4 /(1 — ) + 0 which is equivalent to

5. By Equation 1 we can write
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Note that ¢;/(1 — 3) are i.i.d. and have mean ;/(1 — 3) and variance ¢%/(1 — 3)*. Hence
by the CLT we obtain that
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By Question 3, we have that
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and the result follows from Slutsky’s Theorem.

6. By Question 2, for even n = 2k we have
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Note that this is sum of i.i.d. random variables with expectation ;/2 and variance /4.

By the CLT we obtain that
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For odd n = 2k + 1, note that
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Hence,
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and since the first expression is sum of i.i.d. random variables and ST @R D i E2i—1 —p

0 we obtain that /n(X, — p1/2) —4 N(0,0%/2).

7. Write g(t) = t* and note that ¢/(f) = 2t. By the delta method we have that
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8. By Question 7 we see that \/n(X,,)? converges to 0. By Question 5,

(1;@\/@ —4 N(0,1).

Using the continuous mapping theorem we conclude that n(1— 3)%c~2(X,,)? converges to

the square of standard normal, i.e., to x;2.



