Suppose that $\varepsilon_{1}, \varepsilon_{2}, \ldots$ are i.i.d. random variables with mean μ and variance σ^{2}. Define X_{n} as the autoregressive model sequence $X_{1}=\varepsilon_{1}$, and for $n \geq 2$,

$$
X_{n}=\beta X_{n-1}+\varepsilon_{n},
$$

where $-1 \leq \beta<1$.

1. (4 points) Denote $\bar{X}_{n} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i}$. Use change of order in the summation to show that

$$
\begin{equation*}
\bar{X}_{n}=\frac{1}{n(1-\beta)} \sum_{i=1}^{n} \varepsilon_{i}-\frac{1}{n(1-\beta)} \sum_{i=1}^{n} \varepsilon_{i} \beta^{n-i+1} . \tag{1}
\end{equation*}
$$

Hint: First, show that $X_{i}=\varepsilon_{i}+\beta \varepsilon_{i-1}+\ldots+\beta^{i-1} \varepsilon_{1}$.
2. (3 points) Conclude that for $\beta=-1$: $\bar{X}_{n}=n^{-1}\left(\varepsilon_{1}+\varepsilon_{3}+\ldots+\varepsilon_{n}\right)$ for odd n, and $\bar{X}_{n}=$ $n^{-1}\left(\varepsilon_{2}+\varepsilon_{4}+\ldots+\varepsilon_{n}\right)$ for even n.
3. (5 bonus points) For $-1<\beta<1$, show that

$$
\frac{1}{n(1-\beta)} \sum_{i=1} \varepsilon_{i} \beta^{n-i}=o_{p}\left(n^{-\alpha}\right),
$$

for every $0 \leq \alpha<1$. Hint: You can use the Markov inequality.
4. (5 points) For $-1<\beta<1$, show that $\bar{X}_{n} \rightarrow_{p} \frac{\mu}{(1-\beta)}$. Hint: Use Equation (1), the previous question, and the fact that $o_{p}\left(n^{-\alpha}\right)=o_{p}(1)$ for every $\alpha \geq 0$.
5. (4 points) For $-1<\beta<1$, show that

$$
\sqrt{n}\left(\bar{X}_{n}-\frac{\mu}{1-\beta}\right) \rightarrow_{d} N\left(0, \tau^{2}\right)
$$

and derive τ^{2}.
6. (5 bonus points) For $\beta=-1$, show that

$$
\sqrt{n}\left(\bar{X}_{n}-\frac{\mu}{2}\right) \rightarrow_{d} N\left(0, \nu^{2}\right),
$$

and derive ν^{2}. Hint: Use Question 2. Note the difference between odd and even n. Try first to show for even n.
7. (4 points) For $-1<\beta<1$, derive the asymptotic distribution of

$$
\sqrt{n}\left(\left(\overline{X_{n}}\right)^{2}-\frac{\mu^{2}}{(1-\beta)^{2}}\right) .
$$

8. (5 points) For $-1<\beta<1$, when $\mu=0$, show that $\sqrt{n}\left(\overline{X_{n}}\right)^{2} \rightarrow{ }_{d} 0$ but

$$
n \frac{(1-\beta)^{2}\left(\overline{X_{n}}\right)^{2}}{\sigma^{2}} \rightarrow_{d} \chi_{1}{ }^{2}
$$

Hint: Use the continuous mapping theorem.

