BIOS 760 MIDTERM I, 2017: Solution

1. Let $U=\alpha^{\prime} X$ and $V=\beta^{\prime} X$. Since $\left(U^{\prime}, V^{\prime}\right)^{\prime}$ is a Gaussian random vector, then U anc V are independent if and only if $\operatorname{cov}(U, V)=0$. Since $\operatorname{cov}(U, V)=\alpha^{\prime} \Sigma \beta$, the desired conclusions follow.
2. (a) Since μ is σ-finite, there exists a countable collection of sets $A_{1}, A_{2}, \ldots \in \mathcal{A}$ such that $\cup_{i} A_{i}=\Omega$ and $\mu\left(A_{i}\right)<\infty$ for all $i \geq 1$. Let $B_{k}=\{\omega: X(\omega) \leq k\}$ for k ranging over the positive integers. Then $\cup_{i, k}\left(A_{i} \cap B_{k}\right)=\Omega$ and $\nu\left(A_{i} \cap B_{k}\right) \leq \int_{A_{i}} k d \mu=$ $k \mu\left(A_{i}\right)<\infty$, and ν is thus σ-finite. Since $\lambda_{n}(A) \leq \nu(A)+\mu(A)$ for any $A \in \mathcal{A}, \lambda_{n}$ is also σ-finite. The finite sub-additivity followed by the Caratheodory Extension Theorem now yields that they are both measures.
(b) Suppose that $A \in \mathcal{A}$ satisfies $\mu(A)=0$. Then $\int_{A} X \int\{X \leq m\} d \mu \leq m \mu(A)=0$. By the monotone convergence theorem, $\nu(A)=\int_{A} X d \mu=0$ also. Since $\lambda_{n}(A) \leq$ $\nu(A)+\mu(A)=0$, we obtain that $\lambda_{n} \prec \prec \mu$. Now suppose $A \in \mathcal{A}$ satisfies $\lambda_{n}(A)=0$. Since $\lambda_{n}(A) \geq \nu(A)$, we also have that $\nu(A)=0$, and the desired conclusion follows.
(c) Existence follows from the previous two parts and the Radon-Nikodym Theorem, and the forms

$$
\frac{d \nu}{d \mu}=X, \quad \frac{d \lambda_{n}}{d \mu}=X+\frac{n \log (1+Y / n)}{1+Y}, \quad \text { and } \quad \frac{d \nu}{d \lambda_{n}}=\frac{X}{X+n \log (1+Y / n) /(1+Y)},
$$

follow directly from the uniqueness conclusion of the Radon-Nikodym Theorem.
(d) We first need to verify that $u \mapsto u \log (1+Y / u)$ has strictly positive derivative whenever $u, Y>0$. Thus

$$
\frac{n \log (1+Y / n)}{1+Y} \uparrow \frac{Y}{1+Y},
$$

as $n \rightarrow \infty$. Now the monotone convergence theorem gives us the desired result.
(e) By the previous results, we know that for any $A \in \mathcal{A}, \rho(A) \geq \lambda_{n}(A)$ for all $n \geq 1$. Thus $\rho(A)=0$ forces $\lambda_{n}(A)=0$ for all $n \geq 1$. Now by using the hint, we can verify that

$$
\frac{n \log (1+Y / n)}{1+Y} \geq \frac{Y}{(1+Y / n)(1+Y)} \geq \frac{Y}{(1+Y)^{2}}
$$

for all $n \geq 1$. Now suppose $\lambda_{n}(A)=0$ for some $n \geq 1$. Then

$$
\begin{equation*}
\delta(A)=\int_{A} \frac{Y}{(1+Y)^{2}} d \mu=0 \tag{1}
\end{equation*}
$$

also. Suppose now that we also have that

$$
\begin{equation*}
\int_{A} \frac{Y}{1+Y} d \mu>0 \tag{2}
\end{equation*}
$$

By the monotone convergence theorem, we then have that

$$
\int_{A} \frac{Y}{1+Y} 1\{Y \leq m\} d \mu>0
$$

for some $0<m<\infty$. Equation (1) now implies
$0=\int_{A} \frac{Y}{(1+Y)^{2}} d \mu \geq \int_{A} \frac{Y}{(1+Y)^{2}} 1\{Y \leq m\} d \mu \geq \frac{1}{1+m} \int_{A} \frac{Y}{1+Y} 1\{Y \leq m\} d \mu>0$,
which is a contradiction. Thus (2) is false, and we have through the linearity of the integral that $\rho \prec \prec \lambda_{n}$ for all $n \geq 1$.
3. By symmetry, we have that $E\left[\log \left(X_{i}\right) \mid X_{1} X_{2} X_{3} X_{4}\right]$ is the same for each value of $1 \leq i \leq 4$. Moreover,

$$
\sum_{i=1}^{4} E\left[\log \left(X_{i}\right) \mid X_{1} X_{2} X_{3} X_{4}\right]=E\left[\sum_{i=1}^{4} \log \left(X_{i}\right) \mid X_{1} X_{2} X_{3} X_{4}\right]=\log \left(X_{1} X_{2} X_{3} X_{4}\right)
$$

and the desired result follows.

