BIOS 760 MIDTERM I, 2017: Solution

- 1. Let $U = \alpha' X$ and $V = \beta' X$. Since (U', V')' is a Gaussian random vector, then U and V are independent if and only if $\operatorname{cov}(U, V) = 0$. Since $\operatorname{cov}(U, V) = \alpha' \Sigma \beta$, the desired conclusions follow.
- 2. (a) Since µ is σ-finite, there exists a countable collection of sets A₁, A₂,... ∈ A such that ∪_iA_i = Ω and µ(A_i) < ∞ for all i ≥ 1. Let B_k = {ω : X(ω) ≤ k} for k ranging over the positive integers. Then ∪_{i,k}(A_i ∩ B_k) = Ω and ν(A_i ∩ B_k) ≤ ∫_{A_i} kdµ = kµ(A_i) < ∞, and ν is thus σ-finite. Since λ_n(A) ≤ ν(A) + µ(A) for any A ∈ A, λ_n is also σ-finite. The finite sub-additivity followed by the Caratheodory Extension Theorem now yields that they are both measures.
 - (b) Suppose that $A \in \mathcal{A}$ satisfies $\mu(A) = 0$. Then $\int_A X \int \{X \leq m\} d\mu \leq m\mu(A) = 0$. By the monotone convergence theorem, $\nu(A) = \int_A X d\mu = 0$ also. Since $\lambda_n(A) \leq \nu(A) + \mu(A) = 0$, we obtain that $\lambda_n \prec \prec \mu$. Now suppose $A \in \mathcal{A}$ satisfies $\lambda_n(A) = 0$. Since $\lambda_n(A) \geq \nu(A)$, we also have that $\nu(A) = 0$, and the desired conclusion follows.
 - (c) Existence follows from the previous two parts and the Radon-Nikodym Theorem, and the forms

$$\frac{d\nu}{d\mu} = X, \quad \frac{d\lambda_n}{d\mu} = X + \frac{n\log(1+Y/n)}{1+Y}, \text{ and } \frac{d\nu}{d\lambda_n} = \frac{X}{X + n\log(1+Y/n)/(1+Y)},$$

follow directly from the uniqueness conclusion of the Radon-Nikodym Theorem.

(d) We first need to verify that $u \mapsto u \log(1 + Y/u)$ has strictly positive derivative whenever u, Y > 0. Thus

$$\frac{n\log(1+Y/n)}{1+Y}\uparrow \frac{Y}{1+Y},$$

as $n \to \infty$. Now the monotone convergence theorem gives us the desired result.

(e) By the previous results, we know that for any $A \in \mathcal{A}$, $\rho(A) \ge \lambda_n(A)$ for all $n \ge 1$. Thus $\rho(A) = 0$ forces $\lambda_n(A) = 0$ for all $n \ge 1$. Now by using the hint, we can verify that

$$\frac{n\log(1+Y/n)}{1+Y} \ge \frac{Y}{(1+Y/n)(1+Y)} \ge \frac{Y}{(1+Y)^2}$$

for all $n \ge 1$. Now suppose $\lambda_n(A) = 0$ for some $n \ge 1$. Then

$$\delta(A) = \int_{A} \frac{Y}{(1+Y)^2} d\mu = 0$$
 (1)

also. Suppose now that we also have that

$$\int_{A} \frac{Y}{1+Y} d\mu > 0.$$
(2)

By the monotone convergence theorem, we then have that

$$\int_A \frac{Y}{1+Y} \mathbb{1}\{Y \le m\} d\mu > 0$$

for some $0 < m < \infty$. Equation (1) now implies

$$0 = \int_{A} \frac{Y}{(1+Y)^2} d\mu \ge \int_{A} \frac{Y}{(1+Y)^2} \mathbb{1}\{Y \le m\} d\mu \ge \frac{1}{1+m} \int_{A} \frac{Y}{1+Y} \mathbb{1}\{Y \le m\} d\mu > 0,$$

which is a contradiction. Thus (2) is false, and we have through the linearity of the integral that $\rho \prec \prec \lambda_n$ for all $n \ge 1$.

3. By symmetry, we have that $E[\log(X_i)|X_1X_2X_3X_4]$ is the same for each value of $1 \le i \le 4$. Moreover,

$$\sum_{i=1}^{4} E[\log(X_i)|X_1X_2X_3X_4] = E\left[\sum_{i=1}^{4} \log(X_i) \middle| X_1X_2X_3X_4\right] = \log(X_1X_2X_3X_4),$$

and the desired result follows.