BIOS 760 MIDTERM I, 2017

- 1. (5 points) Let X be a mean zero p-variate Gaussian random variable with positive semidefinite covariance matrix Σ . Let $\alpha, \beta \in \mathbb{R}^p$, and show that $\alpha' X$ and $\beta' X$ are independent if and only if $\alpha' \Sigma \beta = 0$.
- 2. Let $X, Y \ge 0$ be measurable functions on a measure space $(\Omega, \mathcal{A}, \mu)$ with $\mu \sigma$ -finite and $X, Y < \infty$ almost everywhere. For any $A \in \mathcal{A}$, define the set functions $\nu(A) = \int_A X d\mu$ and

$$\lambda_n(A) = \int_A \left(X + \frac{n \log(1 + Y/n)}{1 + Y} \right) d\mu,$$

for all integers $n \ge 1$. Do the following:

- (a) (5 extra credit points) Show that ν and λ_n are σ -finite measures for all $n \ge 1$.
- (b) (5 points) Show that $\nu \prec \prec \lambda_n \prec \prec \mu$ for all $n \ge 1$.
- (c) (5 points) Verify existence and derive the form of the Radon-Nikodym derivatives $\frac{d\nu}{d\mu}, \frac{d\lambda_n}{d\mu}, \text{ and } \frac{d\nu}{d\lambda_n}, \text{ for all } n \geq 1.$
- (d) (5 points) Show that, for each $A \in \mathcal{A}$,

$$\lambda_n(A) \to \rho(A) = \int_A \left(X + \frac{Y}{1+Y}\right) d\mu,$$

as $n \to \infty$.

(e) (5 take home extra credit points) Show that $\lambda_n \prec \prec \rho$ and $\rho \prec \prec \lambda_n$ for all $n \ge 1$. Hint: it may be helpful to use the fact that

$$\frac{u}{1+u} < \log(1+u) < u,$$

for all u > 0.

3. (5 points) Let X_1, X_2, X_3, X_4 be i.i.d., positive and finite random variables. Show that

$$E\left[\log(X_1)\left|\prod_{i=1}^{4} X_i\right] = \frac{\sum_{i=1}^{4} \log(X_i)}{4}\right]$$