BIOS 760 Midterm Exam I (Fall, 2016)

1. Assume $X \sim M N(0, \Sigma)$ where Σ is a $d \times d$ positive definite matrix. Let α and β be two $d \times 1$ constant vectors and both are non-zeros. We aim to derive the distribution of $\left(\alpha^{\prime} X\right) /\left|\beta^{\prime} X\right|$.
(a) (2 points) Find what is the joint distribution of $\left(\alpha^{\prime} X, \beta^{\prime} X\right)$.
(b) (3 points) Show that $\alpha^{\prime} X=a\left(\beta^{\prime} X\right)+Z$, where Z is independent of $\beta^{\prime} X$ and a is a scale. Determine a and Z 's distribution. Thus,

$$
\frac{\alpha^{\prime} X}{\left|\beta^{\prime} X\right|}=a+\frac{Z}{\left|\beta^{\prime} X\right|}
$$

(c) (5 points) Give the exact distribution of $\alpha^{\prime} X /\left|\beta^{\prime} X\right|$.
2. Let $\Omega_{1}=\{1,2, \ldots\}$ and $\Omega_{2}=R$. Consider the product measure space

$$
\left\{\Omega_{1} \times \Omega_{2}, \mu \times \lambda_{F}, 2^{\Omega_{1}} \times \mathcal{B}\right\}
$$

where μ is a probability measure with $\mu(\{k\})=2^{-k}, \mathcal{B}$ is the Borel- σ field, and λ_{F} is the LS-measure generated by distribution function $F(x)=\left\{1-e^{-x}\right\} I(x>0)$.
(a) (1 point) Show that this product measure space is a probability measure space.
(b) (3 points) Define a function on $\Omega_{1} \times \Omega_{2}$ as $X\left(w_{1}, w_{2}\right)=I\left(w_{2} \in\left[w_{1}, w_{1}+1\right)\right)$. Show that X is a measurable function so it is a random variable from (a).
(c) (3 points) Use Fubin's theorem to calculate $E[X]=\int_{\Omega_{1} \times \Omega_{2}} X\left(\omega_{1}, \omega_{2}\right) d\left(\mu \times \lambda_{F}\right)$..
(d) (2 points) Define another two functions $Y\left(w_{1}, w_{2}\right)=w_{1}$ and $Z\left(w_{1}, w_{2}\right)=w_{2}$. Show that Y and Z are two independent random variables.
(e) (3 points) What are the density functions of Y and Z ? Specific the dominating measures in the real space so that the densities exist.
(f) (3 points) Clearly, $X=I(Z \in[Y, Y+1))$. Use the joint distribution of (Y, Z) to calculate $E[X]$.

