BIOS 760 MIDTERM I, 2014: Solution

1. (a) $E[X \mid \sigma(Y, Z)]=$

$$
\begin{aligned}
& \Sigma_{x, y z} \Sigma_{y z}^{-1}\binom{Y}{Z}\left.=\frac{(a,}{} 0\right)\left(\begin{array}{cc}
1 & -b \\
-b & 1
\end{array}\right)\binom{Y}{Z} \\
& 1-b^{2} \\
&=\frac{a Y-a b Z}{1-b^{2}}
\end{aligned}
$$

(b) $Y \mid \sigma(Z) \sim N\left(b Z, 1-b^{2}\right)$ which implies $E\left[Y^{2} \mid \sigma(Z)\right]=b^{2} Z^{2}+1-b^{2}$.
(c) $E\left[X Y Z^{2}\right]=E\left[Y Z^{2} E[X \mid \sigma(Y, Z)]\right]$

$$
\begin{aligned}
& =E\left[\frac{Y Z^{2}(a Y-a b Z)}{1-b^{2}}\right] \\
& =\frac{a E\left[Y^{2} Z^{2}\right]-a b E\left[Y Z^{3}\right]}{1-b^{2}} \\
& =\frac{a E\left[Z^{2} E\left[Y^{2} \mid Z\right]\right]-a b E\left[Z^{3} E[Y \mid Z]\right]}{1-b^{2}} \\
& =\frac{a E\left[b^{2} Z^{4}+\left(1-b^{2}\right) Z^{2}\right]-a b^{2} E Z^{4}}{1-b^{2}} \\
& =a .
\end{aligned}
$$

2. Suppose $\exists A \in \mathcal{A}: \mu(A)=0$ but $\int_{A} X d \mu>0$. Then \exists a sequence of simple functions $0 \leq X_{n} \uparrow X$ such that $\int_{A} X_{n} d \mu \rightarrow \int_{A} Z d \mu$. But this implies, for some $\delta>0$ and integer $n<\infty$,

$$
\delta \leq \int_{A} X_{n} d \mu=\sum_{j=1}^{k_{n}} x_{j n} \mu\left(A \cap B_{j n}\right)=0
$$

which is a contradiction! Thus the desired result holds.
3. (a) Showing ν is measurable follows from its easy-to-verify additivity on finite disjoint sets combined with the Caratheodory Extension Theorem. Now we will show that it is also σ-finite. Since μ is σ-finite, \exists a countable collection $A_{1}, A_{2}, \ldots \in \mathcal{A}$ such that $\bigcup_{j \geq 1} A_{j}=\Omega$ and $\mu\left(A_{j}\right)<\infty$ for all j. Now consider the countable collection of sets $\left\{A_{j} \cap B_{k}: j, k \geq 1\right\}$, and note that the union of these sets is Ω. Moreover, $\int_{A_{j} \cap B_{k}} Y d \mu \leq k \mu\left(A_{j}\right)<\infty$. Similar arguments verify that λ is also a σ-finite measure.
(b) Suppose $\mu(A)=0$. Then $\nu(A)=0$ by the result of Problem 2. Also, if $\nu(A)=0$, then $\lambda(A)=\int_{A} X d \nu=0$ by reapplication of the Problem 2 result.
(c) Existence follows from μ, ν and λ all being σ-finite measures (although we only need σ-finiteness for μ and ν at this point but will need it for λ later). The forms are $\frac{d \nu}{d \mu}=Y, \frac{d \lambda}{d \mu}=X Y$, and $\frac{d \lambda}{d \nu}=X$.
(d) i. Suppose $\lambda(A)=0$. Then

$$
\begin{aligned}
\nu(A) & =\int_{A} Y d \mu \\
& =\int_{A \cap C} Y d \mu=\int_{A \cap B \cap C} Y d \mu+\int_{A \cap B^{c} \cap C} Y d \mu \\
& =\int_{A \cap B \cap C} Y d \mu,
\end{aligned}
$$

since $\int_{A \cap B^{c} \cap C} Y d \mu=0$ from the fact that $\mu\left(B^{c} \cap C\right)=0$ and the result of Problem 2. However,

$$
\int_{A \cap B \cap C} Y d \mu=\int_{A \cap B} Y d \mu=\int_{A}\left[X^{-1} 1\{X>0\}\right] X Y d \mu=\int_{A} U d \lambda,
$$

where $U=X^{-1} 1\{X>0\}$ is measurable. Now $\int_{A} U d \lambda=0$ by reapplication of the Problem 2 result. Thus $\nu \prec \prec \lambda$.
ii. Since λ is σ-finite by part 3.(a), we have that $\frac{d \nu}{d \lambda}$ exists and equals $X^{-1} 1\{X>$ $0\}$.

