BIOS 760 MIDTERM I, 2014: Solution

1. (a) $E[X|\sigma(Y,Z)] =$

$$\Sigma_{x,yz} \Sigma_{yz}^{-1} \begin{pmatrix} Y \\ Z \end{pmatrix} = \frac{\begin{pmatrix} a, & 0 \end{pmatrix} \begin{pmatrix} 1 & -b \\ -b & 1 \end{pmatrix} \begin{pmatrix} Y \\ Z \end{pmatrix}}{1 - b^2} \\ = \frac{aY - abZ}{1 - b^2}.$$

- (b) $Y|\sigma(Z) \sim N(bZ, 1-b^2)$ which implies $E[Y^2|\sigma(Z)] = b^2Z^2 + 1 b^2$.
- (c) $E[XYZ^2] = E[YZ^2E[X|\sigma(Y,Z)]]$

$$= E\left[\frac{YZ^{2}(aY - abZ)}{1 - b^{2}}\right]$$

= $\frac{aE[Y^{2}Z^{2}] - abE[YZ^{3}]}{1 - b^{2}}$
= $\frac{aE[Z^{2}E[Y^{2}|Z]] - abE[Z^{3}E[Y|Z]]}{1 - b^{2}}$
= $\frac{aE[b^{2}Z^{4} + (1 - b^{2})Z^{2}] - ab^{2}EZ^{4}}{1 - b^{2}}$
= $a.$

2. Suppose $\exists A \in \mathcal{A} : \mu(A) = 0$ but $\int_A X d\mu > 0$. Then \exists a sequence of simple functions $0 \leq X_n \uparrow X$ such that $\int_A X_n d\mu \to \int_A Z d\mu$. But this implies, for some $\delta > 0$ and integer $n < \infty$,

$$\delta \leq \int_A X_n d\mu = \sum_{j=1}^{k_n} x_{jn} \mu(A \cap B_{jn}) = 0,$$

which is a contradiction! Thus the desired result holds.

3. (a) Showing ν is measurable follows from its easy-to-verify additivity on finite disjoint sets combined with the Caratheodory Extension Theorem. Now we will show that it is also σ-finite. Since μ is σ-finite, ∃ a countable collection A₁, A₂, ... ∈ A such that ⋃_{j≥1} A_j = Ω and μ(A_j) < ∞ for all j. Now consider the countable collection of sets {A_j ∩ B_k : j, k ≥ 1}, and note that the union of these sets is Ω. Moreover, ∫<sub>A_j∩B_k Ydμ ≤ kμ(A_j) < ∞. Similar arguments verify that λ is also a σ-finite measure.
</sub>

- (b) Suppose $\mu(A) = 0$. Then $\nu(A) = 0$ by the result of Problem 2. Also, if $\nu(A) = 0$, then $\lambda(A) = \int_A X d\nu = 0$ by reapplication of the Problem 2 result.
- (c) Existence follows from μ , ν and λ all being σ -finite measures (although we only need σ -finiteness for μ and ν at this point but will need it for λ later). The forms are $\frac{d\nu}{d\mu} = Y$, $\frac{d\lambda}{d\mu} = XY$, and $\frac{d\lambda}{d\nu} = X$.
- (d) i. Suppose $\lambda(A) = 0$. Then

$$\begin{split} \nu(A) &= \int_{A} Y d\mu \\ &= \int_{A \cap C} Y d\mu = \int_{A \cap B \cap C} Y d\mu + \int_{A \cap B^{c} \cap C} Y d\mu \\ &= \int_{A \cap B \cap C} Y d\mu, \end{split}$$

since $\int_{A \cap B^c \cap C} Y d\mu = 0$ from the fact that $\mu(B^c \cap C) = 0$ and the result of Problem 2. However,

$$\int_{A\cap B\cap C} Yd\mu = \int_{A\cap B} Yd\mu = \int_A \left[X^{-1} \mathbb{1}\{X > 0\} \right] XYd\mu = \int_A Ud\lambda,$$

where $U = X^{-1} \{X > 0\}$ is measurable. Now $\int_A U d\lambda = 0$ by reapplication of the Problem 2 result. Thus $\nu \prec \prec \lambda$.

ii. Since λ is σ -finite by part 3.(a), we have that $\frac{d\nu}{d\lambda}$ exists and equals $X^{-1}1\{X > 0\}$.