SOLUTION TO BIOS 760 MIDTERM I, 2011

1. (a) After setting the derivative to zero, we obtain $\hat{\beta}_{w}=\sum_{i=1}^{n} w_{i} Y_{i} X_{i} / \sum_{i=1}^{n} w_{i} X_{i}^{2}$.
(b) Since $E\left[\hat{\beta}_{w} \mid X_{1}, \ldots, X_{n}\right]=\beta, \operatorname{Var}\left(\hat{\beta}_{W}\right)=E\left[\operatorname{Var}\left(\hat{\beta}_{w} \mid X_{1}, \ldots, X_{n}\right)\right]$. It suffices to show that $w_{1}=\ldots=w_{n}=1$ minimizes $\operatorname{Var}\left(\hat{\beta}_{w} \mid X_{1}, \ldots, X_{n}\right)=\sigma^{2} \sum_{i=1}^{n} w_{i}^{2} X_{i}^{2} /\left(\sum_{i=1}^{n} w_{i} X_{i}^{2}\right)^{2}$. Note that this term is invariant if w 's are scaled by a positive factor. Thus, we assume $\sum_{i=1}^{n} w_{i} X_{i}^{2}=1$ and aim to minimize $\sum_{i=1}^{n} w_{i}^{2} X_{i}^{2}$. Using the Lagrange multiplier, we obtain that $w_{1}=\ldots=w_{n}$. Thus, the conclusion holds.
(c) First,

$$
\hat{\beta}_{w}=\beta+\sum_{i=1}^{n} \epsilon_{i} X_{i} / \sum_{i=1}^{n} X_{i}^{2}=\beta+\frac{\sum_{i=1}^{n} \epsilon_{i} X_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}} \frac{1}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}} .
$$

Since the conditional distribution of $\frac{\sum_{i=1}^{n} \epsilon_{i} X_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}$ given X_{1}, \ldots, X_{n} is $\sigma N(0,1)$, which is independent of X_{1}, \ldots, X_{n}, we conclude $\frac{\sum_{i=1}^{n} \epsilon_{i} X_{i}}{\sqrt{\sum_{i=1}^{n} X_{i}^{2}}}$ follows $\sigma N(0,1)$ and is independent of X_{1}, \ldots, X_{n}. On the other hand, $X_{1}^{1}+\ldots+X_{n}^{2} \sim \chi_{n}^{2}$. Thus

$$
\hat{\beta}_{w} \sim \beta+\frac{\sigma}{\sqrt{n}} t_{(n)} .
$$

2. (a) Clearly, $\nu(\phi)=0$. If A_{1}, A_{2}, \ldots are disjoint sets in \mathcal{A}, then

$$
\begin{aligned}
& \nu\left(\cup_{i} A_{i}\right)=\int X(\omega) \sum_{i=1}^{\infty} I_{A_{i}}(\omega) d P(\omega)=\int \lim _{n} \sum_{i=1}^{n} X(\omega) I_{A_{i}}(\omega) d P(\omega) \\
= & \lim _{n} \int \sum_{i=1}^{n} X(\omega) I_{A_{i}}(\omega) d P(\omega)=\sum_{i=1}^{\infty} \int X(\omega) I_{A_{i}}(\omega) d P(\omega)=\sum_{i} \nu\left(A_{i}\right),
\end{aligned}
$$

where we apply the MCT. Thus, ν is a measure.
(b) Clearly, $P(A)=0$ implies $\nu(A)=0$. The definition of ν gives $d \nu / d P(w)=X(w)$.
(c) If $P_{X}(B)=0$ for a Borel set B, then $P\left(X^{-1}(B)\right)=0$ so $\nu\left(X^{-1}(B)\right)=0$. The last gives $\nu_{X}(B)=0$. Thus, $\nu_{X} \prec \prec P_{X}$. Furthermore,

$$
\begin{gathered}
\nu_{X}(B)=\int_{X^{-1}(B)} X(\omega) d P(\omega)=\int X(\omega) I(X(\omega) \in B) d P(\omega) \\
=\int x I(x \in B) d P_{X}(x)=\int_{B} x d P_{X}(x) .
\end{gathered}
$$

Hence, $d \nu_{X} / d P_{X}(x)=x$.

