BIOS 760: Solution to Midterm I 2010

1. Let $X=\left(X_{1}, X_{2}\right)$ be a bivariate random variable with density function

$$
f\left(x_{1}, x_{2}\right)=2, \quad 0<x_{1}<x_{2}<1
$$

(a) Note that $F_{X}(a, b)=0$ if either $a<0$ or $b<0$.

Assume that $0<a, b<1$, then

$$
\begin{aligned}
F_{X}(a, b) & =\int_{0}^{b} \int_{0}^{a} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=\int_{0}^{b} \int_{0}^{\min \left(a, x_{2}\right)} 2 d x_{1} d x_{2} \\
& =\int_{0}^{b} 2 \min \left(a, x_{2}\right) d x_{2}=\int_{0}^{b}\left(2 x_{2}-2\left(x_{2}-a\right)_{+}\right) d x_{2} \\
& =b^{2}-(b-a)_{+}^{2}
\end{aligned}
$$

For $a \geq 1$ we have $F_{X}(a, b)=F_{X}(1, b)$ and similarly for $b \geq 1$ we have $F_{X}(a, b)=$ $F_{X}(a, 1)$
(b) For $0<x_{1}<1$,

$$
f\left(x_{1}\right)=\int f\left(x_{1}, x_{2}\right) d x_{2}=\int_{x_{1}}^{1} 2 d x_{2}=2\left(1-x_{1}\right) .
$$

For $0<x_{2}<1$,

$$
f\left(x_{2}\right)=\int f\left(x_{1}, x_{2}\right) d x_{1}=\int_{0}^{x_{2}} 2 d x_{1}=2 x_{2} .
$$

(c) No, since $f\left(x_{1}, x_{2}\right) \neq f\left(x_{1}\right) f\left(x_{2}\right)$ we conclude that X_{1} and X_{2} are dependent.
(d) For $0<x_{1}<x_{2}$,

$$
f\left(x_{1} \mid x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f\left(x_{2}\right)}=\frac{2}{2 x_{2}}=\frac{1}{x_{2}} .
$$

Hence

$$
E\left[X_{1} \mid X_{2}\right]=\int_{0}^{x_{2}} \frac{x_{1}}{x_{2}} d x_{1}=\frac{x_{2}}{2}
$$

2. Let $X=\left(X_{1}, X_{2}\right)$ be as in Question 1 .

Define the function $u\left(x_{1}, x_{2}\right)=\left(\frac{x_{1}}{x_{2}}, x_{2}\right)$ and denote $Y=\left(Y_{1}, Y_{2}\right)=u\left(X_{1}, X_{2}\right)$.
(a) The Jacobian matrix is the matrix of first-order partial derivatives.

$$
J_{u}=\frac{\partial\left(y_{1}, y_{2}\right)}{\partial\left(x_{1}, x_{2}\right)}=\left(\begin{array}{cc}
1 / x_{2} & -1 /\left(x_{2}\right)^{2} \\
0 & 1
\end{array}\right) .
$$

The Jacobian is the determinant of the Jacobian matrix and it equals $1 / x_{2}$.
(b) The density of Y can be computed from the density of X as follows:

$$
f_{Y}\left(y_{1}, y 2\right)=f_{X}\left(u^{-1}\left(y_{1}, y_{2}\right)\right) J_{u}^{-1}
$$

Note that $x_{2}=y_{2}$ and $x_{1}=y_{1} y_{2}$ and $J_{u}^{-1}=x_{2}=y_{2}$. Hence,

$$
f_{Y}\left(y_{1}, y 2\right)=2 y_{2} 1_{\left\{0<y_{1} y_{2}<y_{2}<1\right\}} .
$$

Since $0<y_{1} y_{2}<y_{2} \Leftrightarrow 0<y_{1}<1$, we can write

$$
f_{Y}\left(y_{1}, y 2\right)=2 y_{2} 1_{\left\{0<y_{1}, y_{2}<1\right\}} .
$$

(c) Yes, Y_{1} is independent of Y_{2}. To see that note that for $0<y_{1}, y_{2}<1$,

$$
\begin{aligned}
& f\left(y_{1}\right)=\int_{0}^{1} f\left(y_{1}, y_{2}\right) d y_{2}=\int_{0}^{1} 2 y_{2} d y_{2}=1 \\
& f\left(y_{2}\right)=\int_{0}^{1} f\left(y_{1}, y_{2}\right) d y_{1}=\int_{0}^{1} 2 y_{2} d y_{1}=2 y_{2}
\end{aligned}
$$

Since $f_{Y}\left(y_{1}, y_{2}\right)=f\left(y_{1}\right) f\left(y_{2}\right)$ we conclude that Y_{1} is independent of Y_{2}.
3. Let X_{1}, X_{2}, X_{3} be random variables on some probability space.
(a) Note that since $E[E(X \mid Y)]=E[X]$, we have

$$
E\left[X_{1} E\left(X_{2} \mid X_{3}\right)\right]=E\left[E\left[X_{1} E\left(X_{2} \mid X_{3}\right)\right] \mid X_{3}\right]
$$

Since $E\left(X_{2} \mid X_{3}\right)$ is measurable with respect to the σ-field generated by X_{3},

$$
E\left[E\left[X_{1} E\left(X_{2} \mid X_{3}\right)\right] \mid X_{3}\right]=E\left[E\left(X_{2} \mid X_{3}\right) E\left(X_{1} \mid X_{3}\right)\right]
$$

Similarly, $E\left[X_{2} E\left(X_{1} \mid X_{3}\right)\right]=E\left[E\left(X_{2} \mid X_{3}\right) E\left(X_{1} \mid X_{3}\right)\right]$, and we obtain the required equality.
(b) Let

$$
\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right) \sim N_{3}\left(\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad\left(\begin{array}{lll}
\Sigma_{11} & \Sigma_{12} & \Sigma_{13} \\
\Sigma_{21} & \Sigma_{22} & \Sigma_{23} \\
\Sigma_{31} & \Sigma_{32} & \Sigma_{33}
\end{array}\right)\right)
$$

Note that

$$
\begin{aligned}
& E\left[E\left(X_{1} \mid X_{2}\right) \mid X_{3}\right]=E\left[\Sigma_{12} \Sigma_{22}^{-1} X_{2} \mid X_{3}\right]=\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{23} \Sigma_{33}^{-1} X_{3} \\
& E\left[E\left(X_{2} \mid X_{1}\right) \mid X_{3}\right]=E\left[\Sigma_{21} \Sigma_{11}^{-1} X_{1} \mid X_{3}\right]=\Sigma_{21} \Sigma_{11}^{-1} \Sigma_{13} \Sigma_{33}^{-1} X_{3}
\end{aligned}
$$

Thus when $\Sigma_{22}^{-1} \Sigma_{23} \neq \Sigma_{11}^{-1} \Sigma_{13}$, we also have $\left.E\left(X_{1} \mid X_{2}\right) \mid X_{3}\right] \neq E\left[E\left(X_{2} \mid X_{1}\right) \mid X_{3}\right]$.
(c) Assume that X_{1}, X_{2}, X_{3} are i.i.d. and that $E\left[\left|X_{1}\right|\right]<\infty$.

$$
E\left[X_{1} \mid X_{1}+X_{2}+X_{3}\right]=\frac{X_{1}+X_{2}+X_{3}}{3}
$$

Since X_{1}, X_{2}, X_{3} are i.i.d., $E\left[X_{1} \mid X_{1}+X_{2}+X_{3}\right]=E\left[X_{2} \mid X_{1}+X_{2}+X_{3}\right]=E\left[X_{3} \mid X_{1}+\right.$ $\left.X_{2}+X_{3}\right]$. Thus

$$
\begin{aligned}
E\left[X_{1} \mid X_{1}+X_{2}+X_{3}\right] & =\frac{\sum_{i=1}^{3} E\left[X_{i} \mid X_{1}+X_{2}+X_{3}\right]}{3} \\
& =\frac{E\left[X_{1}+X_{2}+X_{3} \mid X_{1}+X_{2}+X_{3}\right]}{3} \\
& =\frac{X_{1}+X_{2}+X_{3}}{3},
\end{aligned}
$$

where the last inequality follows since $X_{1}+X_{2}+X_{3}$ is measurable with respect to the σ-field generated by itself.

