BIOS760: 2009 FALL SEMESTER MIDTERM EXAM II

Assume that $(X_i, Y_i), i = 1, ..., n$, are i.i.d observations satisfying

$$E[|X_i|^6] < \infty, \quad Y_i = \beta X_i + \epsilon_i,$$

where $\epsilon_1, ..., \epsilon_n$ are i.i.d with mean zeros and finite fourth moments and they are independent of $X_1, ..., X_n$. Let $\hat{\beta}$ be the least square estimator of β , i.e.,

$$\hat{\beta} = \frac{\sum_{i=1}^{n} X_i Y_i}{\sum_{i=1}^{n} X_i^2}.$$

- 1. (5 points) Show that $\hat{\beta} \rightarrow_{a.s.} \beta$.
- 2. (5 points) Derive the asymptotic distribution of $\hat{\beta}$ after a proper normalization.
- 3. (5 points) Let

$$T_n = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\beta} X_i)^2 - \frac{1}{n} \sum_{i=1}^n (Y_i - \beta X_i)^2.$$

Find the asymptotic distribution of T_n after a proper normalization.

- 4. Now assume that β is known to be non-negative a priori. We define a new estimator $\tilde{\beta} = \max(\hat{\beta}, 0)$.
 - (a) (5 points) Show that $\tilde{\beta} \to_{a.s.} \beta$.
 - (b) (5 points) If $\beta > 0$, derive the asymptotic distribution of $\tilde{\beta}$ after a proper normalization.
 - (c) (5 points) If $\beta = 0$, what is the asymptotic distribution of $\tilde{\beta}$ after a proper normalization?
- 5. (This is a take-home question due 11 A. M. November 11th). We want to obtain the following conditional central limit theorem: condition on $X_1, X_2, ...$ (i.e., $X_1, X_2, ...$ are held as fixed), $\sqrt{n}(\hat{\beta} \beta)$ converges to the same limiting distribution of (2). To prove it, please verify the following steps.
 - (a) (5 points) Let $F(\cdot)$ be the distribution function of $|X_1|$. Show

$$1 - F(x) \le \frac{E[X_1^6]}{x^6}$$

using the Markov's inequality.

(b) (5 points) For any constant $\delta > 0$, write down the probability $P(\max_{i=1}^{n} |X_i| \ge \delta\sqrt{n})$ in terms of F and using the previous result to show

$$\sum_{n=1}^{\infty} P(\max_{i=1}^{n} |X_i| \ge \delta \sqrt{n}) < \infty.$$

- (c) (2 points) Cite the name of one lemma/theorem to conclude $\max_{i=1}^{n} |X_i|/\sqrt{n} \to 0$ almost surely.
- (d) (8 points) Use the previous results to verify that the Lindeberg-Feller condition holds, then conclude the conditional central limit theorem for $\sqrt{n}(\hat{\beta} \beta)$.