Solution to BIOS760 Midterm 2008

1. (a) $\sum_{y=0}^{\infty} e^{-a y}=\sum_{y=0}^{\infty}\left(e^{-a}\right)^{y}=\left(1-e^{-a}\right)^{-1}$. Thus $c_{1}=1-e^{-a}$. Since $\int_{0}^{1} e^{-a u} d u=$ $a^{-1}\left(1-e^{-a}\right), c_{2}=a\left(1-e^{-a}\right)^{-1}$.
i. Note that

$$
\begin{aligned}
P(X \leq x) & =P(Y>\lfloor x\rfloor, X \leq x)+P(Y=\lfloor x\rfloor, X \leq x)+P(Y<\lfloor x\rfloor, X \leq x) \\
& =b_{1}+b_{2}+b_{3}
\end{aligned}
$$

Since $P(Y>\lfloor x\rfloor)=P(Y \geq\lfloor x\rfloor+1)$ and $P(U=0)=0$, we have $b_{1}=0$. Since $P(Y<\lfloor x\rfloor, X \leq x)=P(Y \leq\lfloor x\rfloor-1, U \leq 1)$ and $P(U \leq 1)=1$, $b_{3}=P(Y<\lfloor x\rfloor)$. Finally, since $b_{2}=P(Y=\lfloor x\rfloor, X \leq x)=P(Y=\lfloor x\rfloor, Y+U \leq$ $x)=P(Y=\lfloor x\rfloor, U \leq x-\lfloor x\rfloor)$, the desired conclusion follows.
ii. By independence of U and $Y, P(Y=\lfloor x\rfloor, U \leq x-\lfloor x\rfloor)=I\{x \geq 0\} c_{1} e^{-a\lfloor x\rfloor} c_{2}$ $\times \int_{0}^{x-\lfloor x\rfloor} e^{-a u} d u=I\{x \geq 0\} c_{1} c_{2} e^{-a\lfloor x\rfloor} a^{-1}\left(1-e^{-a x+a\lfloor x\rfloor}\right)=I\{x \geq 0\}\left(e^{-a\lfloor x\rfloor}-e^{-a x}\right)$.
Since also

$$
\begin{aligned}
P(Y<\lfloor x\rfloor) & =c_{1} I\{x \geq 1\} \sum_{y=0}^{\lfloor x\rfloor-1} e^{-a y} \\
& =c_{1} I\{x \geq 0\} \frac{1-e^{-\lfloor x\rfloor}}{1-e^{-a}} \\
& =I\{x \geq 0\}\left(1-e^{-a\lfloor x\rfloor}\right),
\end{aligned}
$$

we obtain that $P(X \leq x)=I\{x \geq 0\}\left(1-e^{-a x}\right)$.
iii. This is the exponential distribution.
2. (a) The field \mathcal{C} consists of all possible sets obtained from finite set operations on A_{1}, A_{2} and A_{3}. Since these sets are disjoint, we obtain that

$$
\mathcal{C}=\left\{\emptyset, A_{1}, A_{2}, A_{3}, A_{1} \cup A_{2}, A_{1} \cup A_{3}, A_{2} \cup A_{3}, R\right\}
$$

Since a finite field is a σ-field because it is closed under countable set operations, \mathcal{C} is also a σ-field.
(b) Since Y is a simple function of sets in \mathcal{C}, it is measurable with respect to \mathcal{C}.
(c) The conditional expectation $E[X \mid \mathcal{C}]$ is defined as the unique quantity that is (i) measurable with respect to \mathcal{C} and (ii) satisfies $\int_{G} E[X \mid \mathcal{C}] d P=\int_{G} X d P$ for all $G \in \mathcal{C}$.

That Y satisfies (i) follows from part (b) above. For (ii), if we can find μ_{j} such that $\int_{A_{j}} \mu_{j} I_{A_{j}} d P=\int_{A_{j}} X d P$, we are done. But this just requires

$$
\mu_{j}=\frac{\int_{A_{j}} X d P}{\int_{A_{j}} d P}
$$

which is well defined for the normal distribution.
(d) Since X is standard normal, we have for any $0 \leq a \leq b \leq \infty$,

$$
\int_{a}^{b} x d P=\frac{1}{\sqrt{2 \pi}} \int_{a}^{b} x e^{-x^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} \int_{a^{2} / 2}^{b^{2} / 2} e^{-u} d u=\frac{e^{-a^{2} / 2}-e^{-b^{2} / 2}}{\sqrt{2 \pi}}
$$

Thus, letting Φ be the cumulative distribution function for a standard normal, we have

$$
\begin{aligned}
\mu_{1} & =\frac{-1}{\sqrt{2 \pi} \Phi(0)}=\frac{-2}{\sqrt{2 \pi}} \\
\mu_{2} & =\frac{1-e^{-1 / 2}}{\sqrt{2 \pi}(\Phi(1)-\Phi(0))} \\
\mu_{3} & =\frac{e^{-1 / 2}}{\sqrt{2 \pi}(1-\Phi(1))}
\end{aligned}
$$

3. (a) By Hölder's inequality, we have for any $p>1$ and $a=p /(p-1)$ that

$$
\int|f g h| d \mu \leq\left(\int|f|^{p} d \mu\right)^{1 / p}\left(\int|g h|^{a} d \mu\right)^{1 / a}
$$

Also, for $s=q(p-1) / p$ and $v=r(p-1) / p$, we have by reapplication of Hölder's inequality that

$$
\int|g h|^{a} d \mu \leq\left(\int|g|^{a s} d \mu\right)^{1 / s}\left(\int|h|^{a v} d \mu\right)^{1 / v}
$$

since

$$
\frac{1}{s}+\frac{1}{v}=\frac{p}{q(p-1)}+\frac{p}{r(p-1)}=\frac{p}{p-1}\left(\frac{1}{q}+\frac{1}{r}\right)=1 .
$$

The desired result now follows since $a s=q$ and $a v=r$.
(b) Using the above with $p=2$ and $q=r=4$, we obtain that

$$
E\left|X_{n} Y_{n} Z_{n}\right| \leq\left(E\left[X_{n}^{2}\right]\right)^{1 / 2}\left(E\left[Y_{n}^{4}\right]\right)^{1 / 4}\left(E\left[Z_{n}^{4}\right]\right)^{1 / 4}
$$

The desired result now follows.

