BIOS 760 Midterm 2008

- 1. Let U and Y be independent, real random variables and let $0 < a < \infty$ be a constant. Assume Y has a density with respect to counting measure on the set of non-negative integers with probability mass function $p_Y(y) = c_1 e^{-ay}$ and that U has Lebesgue density $f_U(u) = I\{0 \le u \le 1\}c_2 e^{-au}$, where $0 < c_1, c_2 < \infty$ are constants. Please do the following:
 - (a) (3 points) Show that $c_1 = 1 e^{-a}$ and $c_2 = a(1 e^{-a})^{-1}$.
 - (b) Derive the cumulative distribution function F_X of X = Y + U using the following steps:
 - i. (2 points) Show that $P(Y + U \le x) = P(Y = \lfloor x \rfloor, U \le x \lfloor x \rfloor)$ + $P(Y < \lfloor x \rfloor)$, where $\lfloor x \rfloor$ is the greatest integer $\le x$.
 - ii. (4 points) Derive $F_X(x) = P(Y + U \le x)$.
 - iii. (1 point) What is the name of this distribution?
- 2. Let X be a real random variable on the probability space (R, \mathcal{B}, P) , where R is the set of real numbers, \mathcal{B} is the Borel σ -field on R, and P is the standard normal probability measure (in other words, X has a standard normal distribution). Define the sets $A_1 =$ $(-\infty, 0], A_2 = (0, 1]$ and $A_3 = (1, \infty)$. Do the following:
 - (a) (3 points) Construct the field C generated by A_1 , A_2 and A_3 viewed as subsets of R. Argue briefly why C is also a σ -field.
 - (b) (2 points) Show that the random quantity $Y = \sum_{j=1}^{3} \mu_j I_{A_j}(X)$ is measurable with respect to \mathcal{C} for any choice of real constants μ_1 , μ_2 and μ_3 .
 - (c) (2 points) Show that the conditional expectation $E[X|\mathcal{C}]$ has the form Y.
 - (d) (3 points) Derive the values of μ_1 , μ_2 and μ_3 that make Y equal to $E[X|\mathcal{C}]$.
- 3. Let X_n , Y_n and Z_n be sequences of real random variables (not necessarily independent) which satisfy $\lim_{n\to\infty} E[X_n^2] = 0$, $\limsup_{n\to\infty} E[Y_n^4] < \infty$ and $\limsup_{n\to\infty} E[Z_n^4] < \infty$. Do the following:
 - (a) (5 points) Show that for any measurable functions f, g, h and measure μ ,

$$\int |fgh|d\mu \leq \left(\int |f|^p d\mu\right)^{1/p} \left(\int |g|^q\right)^{1/q} \left(\int |h|^r\right)^{1/r},$$

for any p, q, r > 1 with 1/p + 1/q + 1/r = 1.

(b) (5 points) Show that $\lim_{n\to\infty} E|X_nY_nZ_n| = 0.$