BIOS 760 Midterm 2008

1. Let U and Y be independent, real random variables and let $0<a<\infty$ be a constant. Assume Y has a density with respect to counting measure on the set of non-negative integers with probability mass function $p_{Y}(y)=c_{1} e^{-a y}$ and that U has Lebesgue density $f_{U}(u)=I\{0 \leq u \leq 1\} c_{2} e^{-a u}$, where $0<c_{1}, c_{2}<\infty$ are constants. Please do the following:
(a) (3 points) Show that $c_{1}=1-e^{-a}$ and $c_{2}=a\left(1-e^{-a}\right)^{-1}$.
(b) Derive the cumulative distribution function F_{X} of $X=Y+U$ using the following steps:
i. (2 points) Show that $P(Y+U \leq x)=P(Y=\lfloor x\rfloor, U \leq x-\lfloor x\rfloor)$

$$
+P(Y<\lfloor x\rfloor) \text {, where }\lfloor x\rfloor \text { is the greatest integer } \leq x \text {. }
$$

ii. (4 points) Derive $F_{X}(x)=P(Y+U \leq x)$.
iii. (1 point) What is the name of this distribution?
2. Let X be a real random variable on the probability space (R, \mathcal{B}, P), where R is the set of real numbers, \mathcal{B} is the Borel σ-field on R, and P is the standard normal probability measure (in other words, X has a standard normal distribution). Define the sets $A_{1}=$ $(-\infty, 0], A_{2}=(0,1]$ and $A_{3}=(1, \infty)$. Do the following:
(a) (3 points) Construct the field \mathcal{C} generated by A_{1}, A_{2} and A_{3} viewed as subsets of R. Argue briefly why \mathcal{C} is also a σ-field.
(b) (2 points) Show that the random quantity $Y=\sum_{j=1}^{3} \mu_{j} I_{A_{j}}(X)$ is measurable with respect to \mathcal{C} for any choice of real constants μ_{1}, μ_{2} and μ_{3}.
(c) (2 points) Show that the conditional expectation $E[X \mid \mathcal{C}]$ has the form Y.
(d) (3 points) Derive the values of μ_{1}, μ_{2} and μ_{3} that make Y equal to $E[X \mid \mathcal{C}]$.
3. Let X_{n}, Y_{n} and Z_{n} be sequences of real random variables (not necessarily independent) which satisfy $\lim _{n \rightarrow \infty} E\left[X_{n}^{2}\right]=0, \lim \sup _{n \rightarrow \infty} E\left[Y_{n}^{4}\right]<\infty$ and $\lim _{\sup }^{n \rightarrow \infty}$ $E\left[Z_{n}^{4}\right]<\infty$. Do the following:
(a) (5 points) Show that for any measurable functions f, g, h and measure μ,

$$
\int|f g h| d \mu \leq\left(\int|f|^{p} d \mu\right)^{1 / p}\left(\int|g|^{q}\right)^{1 / q}\left(\int|h|^{r}\right)^{1 / r}
$$

for any $p, q, r>1$ with $1 / p+1 / q+1 / r=1$.
(b) (5 points) Show that $\lim _{n \rightarrow \infty} E\left|X_{n} Y_{n} Z_{n}\right|=0$.

