Solution to BIOS760 Midterm 2007

1. (a) Note

$$
\operatorname{Cov}\left(Z_{1}-\rho Z_{2}, Z_{2}\right)=0 .
$$

Thus, $Z_{1}-\rho Z_{2}$ is independent of Z_{2}. Moreover, since $Z_{2} \sim N\left(0, \sigma^{2}\right)$ and

$$
Z_{1}-\rho Z_{2} \sim N\left(0,\left(1-\rho^{2}\right) \sigma^{2}\right) .
$$

Hence,

$$
\frac{Z_{2}}{\sqrt{\left(Z_{1}-\rho Z_{2}\right)^{2}}} \sim \frac{1}{\sqrt{1-\rho^{2}}} t(1) .
$$

(b) The density is

$$
\exp \left\{-\frac{Z_{1}^{2}}{2\left(1-\rho^{2}\right) \sigma^{2}}+\frac{Z_{1} Z_{2} \rho}{\left(1-\rho^{2}\right) \sigma^{2}}-\frac{Z_{2}^{2}}{2\left(1-\rho^{2}\right) \sigma^{2}}-\log \left(\sqrt{1-\rho^{2}} \sigma^{2}\right)\right\} / 2 \pi
$$

It is a 2-parameter exponential family. Let

$$
\eta_{1}=-\frac{1}{2\left(1-\rho^{2}\right) \sigma^{2}}, \quad \eta_{2}=\frac{\rho}{\left(1-\rho^{2}\right) \sigma^{2}} .
$$

Then the density can be rewritten as

$$
\exp \left\{\eta_{1}\left(Z_{1}^{2}+Z_{2}^{2}\right)+\eta_{2} Z_{1} Z_{2}+\frac{1}{2} \log \left(4 \eta_{1}^{2}-\eta_{2}^{2}\right)\right\} / 2 p i
$$

(c) Treating η_{2} as the only parameter, we obtain the moment generating function for $Z_{1} Z_{2}$ is

$$
\exp \left\{-\frac{1}{2} \log \left(4 \eta_{1}^{2}-\left(\eta_{2}+t\right)^{2}\right)+\frac{1}{2} \log \left(4 \eta_{1}^{2}-\eta_{2}^{2}\right)\right\}=\sqrt{\frac{4 \eta_{1}^{2}-\eta_{2}^{2}}{4 \eta_{1}^{2}-\left(\eta_{2}+t\right)^{2}}} .
$$

Its second derivative at $t=0$ is

$$
\left(1+2 \rho^{2}\right) \sigma^{4}
$$

Thus, $E\left[Z_{1}^{2} Z_{2}^{2}\right]$ is $\left(1+2 \rho^{2}\right) \sigma^{4}$.
2. (a) Note $\lambda_{F}(\{0\})=0$ but $\lambda_{G}(\{0\})=1$ and $\lambda_{F}((0,1])=1-e^{-1}$ but $\lambda_{G}((0,1])=0$.
(b) Clearly $\mu(\emptyset)=0$ and $\mu(R)=1$. Since λ_{F} and λ_{G} both satisfy countable additivity, so is μ.
(c) For any $x_{0}>0$,

$$
\left\{x: f(x) \leq x_{0}\right\}=\left\{x: x \leq 2 \log x_{0}\right\} \in \mathcal{B}
$$

for any $x_{0} \leq 0,\left\{x: f(x) \leq x_{0}\right\}=\emptyset \in \mathcal{B}$. Thus, $f(x)$ is a random variable.

$$
\begin{gathered}
E[f]=\frac{1}{2} \int f(x) d \lambda_{F}(x)+\frac{1}{2} \int f(x) d \lambda_{G}(x) \\
=\frac{1}{2} \int e^{x / 2} e^{-x} I(x \geq 0) d x+\frac{1}{2} f(0)=\frac{3}{2} .
\end{gathered}
$$

3. (a) For any $\epsilon>0$,

$$
P\left(\left|X_{n}\right|>\epsilon\right) \leq P(|X|>n) \leq \frac{E[|X|]}{n} \rightarrow 0 .
$$

(b) Since $\left|X_{n}\right| \leq|X|$ and $X_{n} \rightarrow_{p} 0$, by DCT, $E\left[X_{n}\right] \rightarrow 0$.
(c) Since $n\left|X_{n}\right|=n|X| I(|X|>n) \leq|X|^{2} I(|X|>n) \leq|X|^{2}$ and the same argument as in (a) gives $n X_{n} \rightarrow_{p} 0$, by DCT, $n E\left[X_{n}\right] \rightarrow 0$.

