
BIOS 760: Solution to Final 2010

1. (a) Note that since the exponential distribution is an exponential family, T̄n ≡ 1
n

∑n
i=1 Ti

is complete and sufficient statistic. Since E(T̄n) = λ, T̄n is the UMVUE. Since the

variance of an exponential variable with rate λ is λ2, we have

Var(T̄n) =
1

n2

n∑
i=1

Var(Ti) =
λ2

n
.

We compute the information for one observation. Since f(t) = λ−1e−t/λ, t > 0, we

have

l(t) = − log λ− t/λ

l̇(t) = −λ−1 + t/λ2 = λ−2(t− λ)

I(λ) = E[l̇2] = λ−4E[(T − λ)2] = λ−4Var(T ) = λ−2

We conclude that In(λ) = n/λ−2, and hence the information bound I−1(λ) = λ2/n,

i.e., the estimator T̄n attains the information bound.

(b) The estimator nT(1) where T(1) = min{T1, . . . , Tn} is unbiased estimator for λ. Note

that the variance of nT(1) is n2Var(T(1)) = λ2. Hence, the variance of nT(1) is n times

larger than the variance of T̄n, and thus T̄n is better.

(c) Since Tn is complete and sufficient statistic, we need to find a function gk(T̄n) such

that E[gk(T̄n)] = λk. In other words, we need to find a function gk(T̄n) such that

1

(n− 1)!

∫ ∞
0

gk(t)t
n−1λ−ne−t/λdt = λk

⇔ 1

(n− 1)!

∫ ∞
0

gk(t)t
n−1λ−n−ke−t/λdt = 1

Substituting gk(t) = tk(n− 1)!/(n+ k − 1)! we have

1

(n− 1)!

∫ ∞
0

gk(t)t
n−1λ−n−ke−t/λdt =

1

(n− 1)!

∫ ∞
0

tk
(n− 1)!

(n+ k − 1)!
tn−1λ−n−ke−t/λdt

=
1

(n+ k − 1)!

∫ ∞
0

tn+k−1λ−n−ke−t/λdt = 1 ,

where the last equality follows since the left hand side is an integral of the gamma

density with parameters n+ k and λ.

2. (a) We start with the likelihood of (zi, di) given λ. Assume first that di = 1, in that case

Ti = zi and the likelihood of that Ti = ti and that Ci ≥ ti, by the independency is

f(ti = zi|λ) · P (C > zi) = λ−1ezi/λ(1−G(zi) .
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Assume now that di = 0, in that case Ci = zi, and Ti > zi. By the independency,

the likelihood of Ti > zi and Ci = zi is given by

λ−1ezi/λ · g(zi) .

Summarizing, the likelihood of (Zi = zi,∆i = di) is given by

(
λ−1e−zi/λ(1−G(zi))

)di
(
e−zi/λg(zi)

)1−di

(b) By the previous question,

l({zi,∆i}|λ) =
n∑
i=1

(∆i(− log λ− zi/λ+ log(1−G(zi))) + (1−∆i)− zi/λ+ log g(zi))

l̇({zi,∆i}|λ) = −1

λ

n∑
i=1

∆i +
1

λ2

n∑
i=1

zi

Hence the MLE is given by

λ̂ =

∑n
i=1 zi∑n
i=1 ∆i

.

(c) By question 2a, after substituting θ = λ−1, for one observation, we obtain

f(z,∆|θ) =
(
θe−zθ(1−G(z))

)∆ (
e−zθg(z)

)1−∆

log f = −θz + log θ∆ + ∆ log(1−G(z)) + (1−∆) log g(z)

l̇ = −z + θ−1∆

l̈ = −θ−2∆

I(θ) = −E[l̈] =
E(∆)

θ2
=
P (T ≤ C)

θ2
.

Since the information bound for λ is (λ̇(θ))2I(θ)−1, we obtain that the information

bound for λ is

I(λ)−1 =
(−1

θ2

)2 θ2

P (T ≤ C)
=

λ2

P (T ≤ C)
.

(d) Note that θ̂ = λ̂−1 is the MLE for θ. By the MLE theory,

√
n(θ̂ − θ)→d N

(
0,

θ2

P (T ≤ C)

)
.

Denote φ(θ) = 1/θ. Hence, φ′(θ) = −1/θ−2. Let V be r.v. distributed N
(
0, θ2

P (T≤C)

)
.

Using the delta-method, we obtain

√
n(λ̂− λ) =

√
n(φ(θ̂)− φ(θ))→d φ

′(θ)V ∼ N

(
0,

λ2

P (T ≤ C)

)
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3. (a) Note that when di = 1, this means that ti equals zi. However, when di = 0,

ti > zi and given zi, using the memoryless property of exponential we have that

f(ti|zi, di = 0, λ) = λ−1e−(ti−zi)/λ. Summarizing we have

f(ti|zi, di, λ) = di1{ti=zi} + (1− di)1{ti>zi}λ
−1e−(ti−zi)/λ.

(b) First note that

f(ti, zi, di|λ) = f(zi, di|λ)f(ti|zi, diλ) .

f(zi, di|λ) is given by question 2a. f(ti|zi, diλ) is given by previous question. Multi-

plying, we obtain

f(ti, zi, di|λ) =
(
λ−1e−ti/λ(1−G(ti))

)di1{zi=ti}
(
e−zi/λλ−1e(ti−zi)/λg(zi)

)(1−di)1{ti>zi}

= (λ−1e−ti/λ)1{ti≥zi}(1−G(ti))
di1{zi=ti}g(zi)

(1−di)1{ti>zi}

The result follows by taking log.

(c) The E-step of an E-M algorithm consists on computing E[
∑n
i=1 log f(ti, zi, di|λ)|λ(k), {zi, di}].

Noting that for each expression log f(ti, zi, di|λ), the expectation is with respect to

the density f(ti|λ(k), zi, di). Hence we can write

E[
n∑
i=1

log f(ti, zi, di|λ)|λ(k), {zi, di}] =
n∑
i=1

∫
log f(ti, zi, di|λ)f(ti|λ(k), zi, di)dt .

Substituting we have

E[log f(Y |λ)|λ(k), Yobs] =
n∑
i=1

∫
log f(ti, zi, di|λ)f(ti|λ(k), zi, di)dt

=
n∑
i=1

(di log(1−G(zi)) + (1− di)g(zi))− n log λ−
n∑
i=1

di
zi
λ

−
n∑
i=1

(1− di)
λ

∫ ∞
zi

(ti − zi + zi)

λ(k)
e(ti−zi)/λ

(k)

dti

=
n∑
i=1

(di log(1−G(zi)) + (1− di)g(zi))− n log λ−
n∑
i=1

di
zi
λ

−λ
(k)

λ

n∑
i=1

(1− di)−
n∑
i=1

(1− di)
zi
λ
.

(d) Taking derivative of E[log f(Y |λ)|λ(k), Yobs], that was obtained in the previous ques-

tion, with respect to λ, and equating to zero, we obtain

−n
λ

+
1

λ2

n∑
i=1

zi +
λ(k)

λ2

n∑
i=1

(1− di) = 0

⇔ λ(k+1) =
1

n

n∑
i=1

zi +
λ(k)

n

n∑
i=1

(1− di) .
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The algorithm consists on choosing an inial value λ(1) for λ. Then iterating between

calculating the E-step as in the previous question based on the estimated λ(k), and

then finding λ(k+1). The algorithm stops when the difference in the likelihood of λ(k)

and λ(k+1) is less than a given criterion.

(e) Substituting λ = λ(k) = λ(k+1), we obtain that

λ̃ =

∑n
i=1 zi∑n
i=1 ∆i

= λ̂, .

Note that for each λ(k) that is not a maximum of the likelihood, the iteration of

the EM algorithm increases the observed likelihood function. Thus, since in a fixed

point the likelihood does not increase, the fixed point is a maximum point of the

likelihood.
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