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BIOS 760: Solution to Final 2010

Note that since the exponential distribution is an exponential family, T, = 711 r T
is complete and sufficient statistic. Since E(T,,) = X, T,, is the UMVUE. Since the
variance of an exponential variable with rate X is A2, we have

)\2

Var =3 Z Var(T; -

We compute the information for one observation. Since f(t) = A"le™* ¢ > 0, we

have

I(t) = —logA—t/A
(t) = At/ NE=X2(t-))
I(\) = E[]=X*E[(T - ))?* = Xx"*Var(T) = A2
We conclude that I,,(\) = n/A72, and hence the information bound I71(\) = \?/n,
i.e., the estimator T}, attains the information bound.

The estimator n7{;y where T(;y = min{77,...,7T,} is unbiased estimator for A. Note
that the variance of nT(;) is n Var(T(l)) = A\2. Hence, the variance of nl(1) is n times

larger than the variance of T,,, and thus 7}, is better.

Since T;, is complete and sufficient statistic, we need to find a function g (7},) such

that Elgr(T,)] = AF. In other words, we need to find a function g (7;,) such that

1 o9
Gy e = X
1 0o
(:)(n—l)'/o GOt TINTTReT A = 1

Substituting gx(t) = t*(n — 1)!/(n + k — 1)! we have

1 o0 1 oo n—1)!
(n - 1)' /O gk<t)tn—1)\—n—k€—t/)\dt _ (n - 1) / tk (n(_'_ A _)1) tn—l)\—n—k’e—t/)\dt
_ n+k—1 n—=k —t/)\ o 1
(n+ k —1)! / ! A at =

where the last equality follows since the left hand side is an integral of the gamma

density with parameters n + k£ and \.

We start with the likelihood of (z;, d;) given A. Assume first that d; = 1, in that case
T; = z; and the likelihood of that T; = t; and that C; > t;, by the independency is

fti=z]\) - P(C > z) = XMl — G(z).
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Assume now that d; = 0, in that case C; = z;, and T; > z;. By the independency,
the likelihood of T; > z; and C; = z; is given by

Ates A g(z).
Summarizing, the likelihood of (Z; = z;, A; = d;) is given by
1—d;

(e A1 = G) " (e ()

(b) By the previous question,

M=

[({zi, AA) = D (Ai(=log A — z/A +1og(1 — G(z))) + (1 — Aj) — zi/A + log g(2:))

n 1 n
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[({z, AN =

.

Hence the MLE is given by
A = i1 Zi

i .
WAV

(c) By question 2a, after substituting # = A~!, for one observation, we obtain

FA0) = (01 = G) (o)

logf = —60z+1loghA + Alog(l — G(2)) + (1 — A)log g(2)
| = —z4+07'A
[ = —672A

1(0) = —E[l] = Eéf) = P(T; Q)

Since the information bound for X is (A(8))2I(8)~", we obtain that the information
bound for A is

-1 2 92 /\2
)" = () _ .

02) P(T<C) PT<C)
(d) Note that §# = A! is the MLE for . By the MLE theory,

V(0 —0) —4 N (o, P(Ti(])) .

Denote ¢(f) = 1/6. Hence, ¢'(6) = —1/072. Let V ber.v. distributed N (O L).

' P(T<C)
Using the delta-method, we obtain

VA= 2) = V6(0) = 60) =4 SOV ~ N (0. 5 )



3. (a) Note that when d; = 1, this means that ¢; equals z;. However, when d; = 0,
t; > z; and given z;, using the memoryless property of exponential we have that

t Z; s = = 4 ummarlzm we nave
f(ti|zi,di = 0,0) = A te~(tim=)/A S g we h
Ftilzi, diy ) = dilgmay + (1 — di)1gsap A te” G0/,

(b) First note that
f(tis zi, dilA) = f(zi, di| N) f(til i, diN) -
f(zi, d;|\) is given by question 2a. f(t;|z;, d;\) is given by previous question. Multi-
plying, we obtain

dilg. _,. , s 1—d)1pp .
f(tuzz,dz‘)\) _ (Aflefti/)\(l _ G(tﬁ)) {z=t;} (6722//\)\71€(tzsz)//\g(Zi>)( Mt;>23

= ()\_le_ti/)‘)l{tizzi}(l — G(ti))dil{ziZii}g(zi)(1_di)1{ti>zi}

The result follows by taking log.

(c) The E-step of an E-M algorithm consists on computing E[>", log f(t;, zi, di) \)|A®), {2, d;}].

Noting that for each expression log f(t;, z;, d;|\), the expectation is with respect to
the density f(t;|A*, z;, d;). Hence we can write

E[Zlogf<ti72iadi’)‘)|>‘(k)v{Ziadi}] = Z/logf(tiaZiadil)‘>f<ti’)‘(k),ziadi)dt-
-1

i=1

Substituting we have

[logf(Yl)\)P\ Yops| = Z/logf(tiaZiadip\)f(tip\(k)aZiadi)dt
i=1

= Enj (dilog(1 — G(z)) + (1 —d;)g(z)) — nlog A — f:dﬁ;

A =1
P(L=di) (b= 24 20) (a0
B Z _ /ZZ NG e dt;

i=1

_ i log(1 — ())+<1—dz->g<zi>>—nlogk‘idiii

(d) Taking derivative of E[log f(Y|\)|A®), Y], that was obtained in the previous ques-
tion, with respect to A\, and equating to zero, we obtain
n 1 )

=1 =1

= 1



The algorithm consists on choosing an inial value A for A. Then iterating between
calculating the E-step as in the previous question based on the estimated A*), and
then finding A**1. The algorithm stops when the difference in the likelihood of A(®)

and A\#*D is less than a given criterion.
Substituting A = A®) = A\*+1 e obtain that

n
i=1 i

= X
n ’:

)=

Note that for each A*) that is not a maximum of the likelihood, the iteration of
the EM algorithm increases the observed likelihood function. Thus, since in a fixed

point the likelihood does not increase, the fixed point is a maximum point of the

likelihood.



