BIOS 760: Solution to Final 2010

1. (a) Note that since the exponential distribution is an exponential family, $\bar{T}_{n} \equiv \frac{1}{n} \sum_{i=1}^{n} T_{i}$ is complete and sufficient statistic. Since $E\left(\bar{T}_{n}\right)=\lambda, \bar{T}_{n}$ is the UMVUE. Since the variance of an exponential variable with rate λ is λ^{2}, we have

$$
\operatorname{Var}\left(\bar{T}_{n}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \operatorname{Var}\left(T_{i}\right)=\frac{\lambda^{2}}{n} .
$$

We compute the information for one observation. Since $f(t)=\lambda^{-1} e^{-t / \lambda}, t>0$, we have

$$
\begin{aligned}
l(t) & =-\log \lambda-t / \lambda \\
\dot{l}(t) & =-\lambda^{-1}+t / \lambda^{2}=\lambda^{-2}(t-\lambda) \\
I(\lambda) & =E\left[i^{2}\right]=\lambda^{-4} E\left[(T-\lambda)^{2}\right]=\lambda^{-4} \operatorname{Var}(T)=\lambda^{-2}
\end{aligned}
$$

We conclude that $I_{n}(\lambda)=n / \lambda^{-2}$, and hence the information bound $I^{-1}(\lambda)=\lambda^{2} / n$, i.e., the estimator \bar{T}_{n} attains the information bound.
(b) The estimator $n T_{(1)}$ where $T_{(1)}=\min \left\{T_{1}, \ldots, T_{n}\right\}$ is unbiased estimator for λ. Note that the variance of $n T_{(1)}$ is $n^{2} \operatorname{Var}\left(T_{(1)}\right)=\lambda^{2}$. Hence, the variance of $n T_{(1)}$ is n times larger than the variance of \bar{T}_{n}, and thus \bar{T}_{n} is better.
(c) Since T_{n} is complete and sufficient statistic, we need to find a function $g_{k}\left(\bar{T}_{n}\right)$ such that $E\left[g_{k}\left(\bar{T}_{n}\right)\right]=\lambda^{k}$. In other words, we need to find a function $g_{k}\left(\bar{T}_{n}\right)$ such that

$$
\begin{aligned}
\frac{1}{(n-1)!} \int_{0}^{\infty} g_{k}(t) t^{n-1} \lambda^{-n} e^{-t / \lambda} d t & =\lambda^{k} \\
\Leftrightarrow \frac{1}{(n-1)!} \int_{0}^{\infty} g_{k}(t) t^{n-1} \lambda^{-n-k} e^{-t / \lambda} d t & =1
\end{aligned}
$$

Substituting $g_{k}(t)=t^{k}(n-1)!/(n+k-1)$! we have

$$
\begin{aligned}
\frac{1}{(n-1)!} \int_{0}^{\infty} g_{k}(t) t^{n-1} \lambda^{-n-k} e^{-t / \lambda} d t & =\frac{1}{(n-1)!} \int_{0}^{\infty} t^{k} \frac{(n-1)!}{(n+k-1)!} t^{n-1} \lambda^{-n-k} e^{-t / \lambda} d t \\
& =\frac{1}{(n+k-1)!} \int_{0}^{\infty} t^{n+k-1} \lambda^{-n-k} e^{-t / \lambda} d t=1
\end{aligned}
$$

where the last equality follows since the left hand side is an integral of the gamma density with parameters $n+k$ and λ.
2. (a) We start with the likelihood of $\left(z_{i}, d_{i}\right)$ given λ. Assume first that $d_{i}=1$, in that case $T_{i}=z_{i}$ and the likelihood of that $T_{i}=t_{i}$ and that $C_{i} \geq t_{i}$, by the independency is

$$
f\left(t_{i}=z_{i} \mid \lambda\right) \cdot P\left(C>z_{i}\right)=\lambda^{-1} e^{z_{i} / \lambda}\left(1-G\left(z_{i}\right) .\right.
$$

Assume now that $d_{i}=0$, in that case $C_{i}=z_{i}$, and $T_{i}>z_{i}$. By the independency, the likelihood of $T_{i}>z_{i}$ and $C_{i}=z_{i}$ is given by

$$
\lambda^{-1} e^{z_{i} / \lambda} \cdot g\left(z_{i}\right)
$$

Summarizing, the likelihood of $\left(Z_{i}=z_{i}, \Delta_{i}=d_{i}\right)$ is given by

$$
\left(\lambda^{-1} e^{-z_{i} / \lambda}\left(1-G\left(z_{i}\right)\right)\right)^{d_{i}}\left(e^{-z_{i} / \lambda} g\left(z_{i}\right)\right)^{1-d_{i}}
$$

(b) By the previous question,
$l\left(\left\{z_{i}, \Delta_{i}\right\} \mid \lambda\right)=\sum_{i=1}^{n}\left(\Delta_{i}\left(-\log \lambda-z_{i} / \lambda+\log \left(1-G\left(z_{i}\right)\right)\right)+\left(1-\Delta_{i}\right)-z_{i} / \lambda+\log g\left(z_{i}\right)\right)$
$\dot{l}\left(\left\{z_{i}, \Delta_{i}\right\} \mid \lambda\right)=-\frac{1}{\lambda} \sum_{i=1}^{n} \Delta_{i}+\frac{1}{\lambda^{2}} \sum_{i=1}^{n} z_{i}$
Hence the MLE is given by

$$
\hat{\lambda}=\frac{\sum_{i=1}^{n} z_{i}}{\sum_{i=1}^{n} \Delta_{i}} .
$$

(c) By question 2a, after substituting $\theta=\lambda^{-1}$, for one observation, we obtain

$$
\begin{aligned}
f(z, \Delta \mid \theta) & =\left(\theta e^{-z \theta}(1-G(z))\right)^{\Delta}\left(e^{-z \theta} g(z)\right)^{1-\Delta} \\
\log f & =-\theta z+\log \theta \Delta+\Delta \log (1-G(z))+(1-\Delta) \log g(z) \\
\dot{l} & =-z+\theta^{-1} \Delta \\
\ddot{l} & =-\theta^{-2} \Delta \\
I(\theta) & =-E[\ddot{l}]=\frac{E(\Delta)}{\theta^{2}}=\frac{P(T \leq C)}{\theta^{2}} .
\end{aligned}
$$

Since the information bound for λ is $(\dot{\lambda}(\theta))^{2} I(\theta)^{-1}$, we obtain that the information bound for λ is

$$
I(\lambda)^{-1}=\left(\frac{-1}{\theta^{2}}\right)^{2} \frac{\theta^{2}}{P(T \leq C)}=\frac{\lambda^{2}}{P(T \leq C)}
$$

(d) Note that $\hat{\theta}=\hat{\lambda}^{-1}$ is the MLE for θ. By the MLE theory,

$$
\sqrt{n}(\hat{\theta}-\theta) \rightarrow_{d} N\left(0, \frac{\theta^{2}}{P(T \leq C)}\right)
$$

Denote $\phi(\theta)=1 / \theta$. Hence, $\phi^{\prime}(\theta)=-1 / \theta^{-2}$. Let V be r.v. distributed $N\left(0, \frac{\theta^{2}}{P(T \leq C)}\right)$.
Using the delta-method, we obtain

$$
\sqrt{n}(\hat{\lambda}-\lambda)=\sqrt{n}(\phi(\hat{\theta})-\phi(\theta)) \rightarrow_{d} \phi^{\prime}(\theta) V \sim N\left(0, \frac{\lambda^{2}}{P(T \leq C)}\right)
$$

3. (a) Note that when $d_{i}=1$, this means that t_{i} equals z_{i}. However, when $d_{i}=0$, $t_{i}>z_{i}$ and given z_{i}, using the memoryless property of exponential we have that $f\left(t_{i} \mid z_{i}, d_{i}=0, \lambda\right)=\lambda^{-1} e^{-\left(t_{i}-z_{i}\right) / \lambda}$. Summarizing we have

$$
f\left(t_{i} \mid z_{i}, d_{i}, \lambda\right)=d_{i} 1_{\left\{t_{i}=z_{i}\right\}}+\left(1-d_{i}\right) 1_{\left\{t_{i}>z_{i}\right\}} \lambda^{-1} e^{-\left(t_{i}-z_{i}\right) / \lambda}
$$

(b) First note that

$$
f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right)=f\left(z_{i}, d_{i} \mid \lambda\right) f\left(t_{i} \mid z_{i}, d_{i} \lambda\right) .
$$

$f\left(z_{i}, d_{i} \mid \lambda\right)$ is given by question 2a. $f\left(t_{i} \mid z_{i}, d_{i} \lambda\right)$ is given by previous question. Multiplying, we obtain

$$
\begin{aligned}
f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right) & =\left(\lambda^{-1} e^{-t_{i} / \lambda}\left(1-G\left(t_{i}\right)\right)\right)^{d_{i} 1_{\left\{z_{i}=t_{i}\right\}}}\left(e^{-z_{i} / \lambda} \lambda^{-1} e^{\left(t_{i}-z_{i}\right) / \lambda} g\left(z_{i}\right)\right)^{\left(1-d_{i}\right) 1_{\left\{t_{i}>z_{i}\right\}}} \\
& =\left(\lambda^{-1} e^{-t_{i} / \lambda}\right)^{1_{\left\{t_{i} \geq z_{i}\right\}}}\left(1-G\left(t_{i}\right)\right)^{d_{i} 1_{\left\{z_{i}=t_{i}\right\}}} g\left(z_{i}\right)^{\left(1-d_{i}\right) 1_{\left\{t_{i}>z_{i}\right\}}}
\end{aligned}
$$

The result follows by taking log.
(c) The E-step of an E-M algorithm consists on computing $E\left[\sum_{i=1}^{n} \log f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right) \mid \lambda^{(k)},\left\{z_{i}, d_{i}\right\}\right]$. Noting that for each expression $\log f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right)$, the expectation is with respect to the density $f\left(t_{i} \mid \lambda^{(k)}, z_{i}, d_{i}\right)$. Hence we can write

$$
E\left[\sum_{i=1}^{n} \log f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right) \mid \lambda^{(k)},\left\{z_{i}, d_{i}\right\}\right]=\sum_{i=1}^{n} \int \log f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right) f\left(t_{i} \mid \lambda^{(k)}, z_{i}, d_{i}\right) d t
$$

Substituting we have

$$
\begin{aligned}
E\left[\log f(Y \mid \lambda) \mid \lambda^{(k)}, Y_{o b s}\right]= & \sum_{i=1}^{n} \int \log f\left(t_{i}, z_{i}, d_{i} \mid \lambda\right) f\left(t_{i} \mid \lambda^{(k)}, z_{i}, d_{i}\right) d t \\
= & \sum_{i=1}^{n}\left(d_{i} \log \left(1-G\left(z_{i}\right)\right)+\left(1-d_{i}\right) g\left(z_{i}\right)\right)-n \log \lambda-\sum_{i=1}^{n} d_{i} \frac{z_{i}}{\lambda} \\
& -\sum_{i=1}^{n} \frac{\left(1-d_{i}\right)}{\lambda} \int_{z_{i}}^{\infty} \frac{\left(t_{i}-z_{i}+z_{i}\right)}{\lambda^{(k)}} e^{\left(t_{i}-z_{i}\right) / \lambda^{(k)}} d t_{i} \\
= & \sum_{i=1}^{n}\left(d_{i} \log \left(1-G\left(z_{i}\right)\right)+\left(1-d_{i}\right) g\left(z_{i}\right)\right)-n \log \lambda-\sum_{i=1}^{n} d_{i} \frac{z_{i}}{\lambda} \\
& -\frac{\lambda^{(k)}}{\lambda} \sum_{i=1}^{n}\left(1-d_{i}\right)-\sum_{i=1}^{n}\left(1-d_{i}\right) \frac{z_{i}}{\lambda}
\end{aligned}
$$

(d) Taking derivative of $E\left[\log f(Y \mid \lambda) \mid \lambda^{(k)}, Y_{o b s}\right]$, that was obtained in the previous question, with respect to λ, and equating to zero, we obtain

$$
\begin{aligned}
-\frac{n}{\lambda}+\frac{1}{\lambda^{2}} \sum_{i=1}^{n} z_{i}+\frac{\lambda^{(k)}}{\lambda^{2}} \sum_{i=1}^{n}\left(1-d_{i}\right) & =0 \\
\Leftrightarrow \lambda^{(k+1)} & =\frac{1}{n} \sum_{i=1}^{n} z_{i}+\frac{\lambda^{(k)}}{n} \sum_{i=1}^{n}\left(1-d_{i}\right)
\end{aligned}
$$

The algorithm consists on choosing an inial value $\lambda^{(1)}$ for λ. Then iterating between calculating the E-step as in the previous question based on the estimated $\lambda^{(k)}$, and then finding $\lambda^{(k+1)}$. The algorithm stops when the difference in the likelihood of $\lambda^{(k)}$ and $\lambda^{(k+1)}$ is less than a given criterion.
(e) Substituting $\lambda=\lambda^{(k)}=\lambda^{(k+1)}$, we obtain that

$$
\tilde{\lambda}=\frac{\sum_{i=1}^{n} z_{i}}{\sum_{i=1}^{n} \Delta_{i}}=\hat{\lambda}, .
$$

Note that for each $\lambda^{(k)}$ that is not a maximum of the likelihood, the iteration of the EM algorithm increases the observed likelihood function. Thus, since in a fixed point the likelihood does not increase, the fixed point is a maximum point of the likelihood.

