Solution to BIOS 760 Final 2008

- 1. (a) i. By using change of variables $U = \log(1/X)$, we obtain that U is exponential with mean $(\alpha + 1)^{-1}$. Thus $-E \log(X) = (\alpha + 1)^{-1}$ and $\operatorname{var}(\log X_1) = (\alpha + 1)^{-2}$. Clearly, $g_0(m_0(\alpha)) = \alpha$.
 - ii. Note that for any $t \ge 0$, $\int_0^1 u^t (\alpha + 1) u^\alpha du = (\alpha + 1)(\alpha + t + 1)^{-1}$. Hence $E(X) = (\alpha + 1)(\alpha + 2)^{-1}$. Also $E(X^2) = (\alpha + 1)(\alpha + 3)^{-1}$. Simple algebra yields that $g_1(m_1(\alpha)) = \alpha$ and $\operatorname{var}(X) = (\alpha + 1)(\alpha + 2)^{-2}(\alpha + 3)^{-1}$.
 - (b) The law of large numbers yields that both $M_{0n} \to_p m_0(\alpha)$ and $M_{1n} \to_p m_1(\alpha)$. Since u^{-1} is continuous except at u = 0, $g_0(M_{0n}) \to_p \alpha$ by the continuous mapping theorem for convergence in probability. A similar argument establishes $g_1(M_{1n}) \to_p \alpha$.
 - (c) i. First $\sqrt{n}(M_{0n} m_0(\alpha)) \rightarrow_d N(0, (\alpha + 1)^{-2})$ by the central limit theorem and results on moments from Part 1.(a)i. Now the derivative of g_0 is $\dot{g}_0(u) = -u^{-2}$ which, evaluated at $u = (1 + \alpha)^{-1}$ is $-(\alpha + 1)^2$. Hence the delta method yields the desired result.
 - ii. The arguments are almost the same except that M_{1n} and $m_1(\alpha)$ replace M_{0n} and m_0 , respectively. The derivative of g_1 is $(1-u)^{-2}$ which, when evaluated at $u = (\alpha + 1)(\alpha + 2)^{-1}$, is $(\alpha + 2)^2$. Thus $\sigma_1^2(\alpha) = (\alpha + 2)^4 \operatorname{var}(X) = (\alpha + 1)(\alpha + 2)^2(\alpha + 3)^{-1}$
 - (d) From above,

$$r(\alpha) = \frac{(\alpha+2)^2}{(\alpha+1)(\alpha+3)}.$$

- i. Let $\nu = \alpha + 1$. Since $r(\alpha) = \tilde{r}(\nu) = 1 + \nu^{-1}(\nu + 2)^{-1}$ and $\nu > 0$, $r(\alpha) > 1$. Cleary, as $\nu \downarrow 0$, $\tilde{r}(\nu) \to \infty$.
- ii. The above statement means that $g_0(M_{0n})$ is always asymptotically more precise that $g_1(M_{1n})$ for estimating α and that this relative precision can be arbitrarily bad for $g_1(M_{1n})$.
- 2. (a) By Taylor expansion, $\sqrt{n}(T_n \alpha) = \dot{g}_0(\tilde{m})\sqrt{n}(M_{0n} m_0(\alpha))$ for some \tilde{m} on the line segment between M_{0n} and $m_0(\alpha)$. Thus $\tilde{m} \to_p m_0(\alpha)$. Since \dot{g}_0 is continuous, $\dot{g}_0(\tilde{m}) \to_p -(\alpha + 1)^2$. Thus by Slutsky's theorem $[(\dot{g}_0(\tilde{m}) + (\alpha + 1)^2]\sqrt{n}(M_{0n} m_0(\alpha)) = o_P(1)$. This means that

$$\sqrt{n}(T_n - \alpha) = -(\alpha + 1)^2 \sqrt{n}(M_{0n} - m_0(\alpha)) + o_P(1),$$

and the desired result follows.

- (b) The score $\dot{\ell}_{\alpha}(X)$ for α is $\log X + (\alpha + 1)^{-1}$ which has mean zero. Since the variance of $\log X$ is $(\alpha + 1)^{-2}$ and since the information I_{α} is equal to $E(\dot{\ell}_{\alpha}^2(X)) = \operatorname{var}(\log X)$, we have that the efficient influence function $I_{\alpha}^{-1}\dot{\ell}_{\alpha}(X)$ is precisely $H_{\alpha}(X)$.
- (c) This is Proposition 4.7 (which does not need to be remembered). What needs to be remembered is that this is one of the main dogmas of efficiency theory.
- (d) If we use $\hat{\alpha}_n = \tilde{\alpha}_n + I_{\tilde{\alpha}_n}^{-1} n^{-1} \sum_{i=1}^n \dot{\ell}_{\tilde{\alpha}_n}(X_i)$, then, for some α^* on the line segment between $\tilde{\alpha}_n$ and α ,

$$\sqrt{n}(\hat{\alpha}_{n} - \alpha) = \sqrt{n}(\tilde{\alpha}_{n} - \alpha) + I_{\tilde{\alpha}_{n}}^{-1} n^{-1/2} \sum_{i=1}^{n} \left[\dot{\ell}_{\alpha}(X_{i}) + \ddot{\ell}_{\alpha^{*}}(X_{i})(\tilde{\alpha}_{n} - \alpha) \right] \\
= I_{\alpha}^{-1} n^{-1/2} \sum_{i=1}^{n} \dot{\ell}_{\alpha}(X_{i}) + o_{P}(1),$$

since I_{α} is continuous in α , and where somewhat careful analysis is needed to verify that $n^{-1} \sum_{i=1}^{n} \ddot{\ell}_{\alpha^*}(X_i) = -I_{\alpha} + o_P(1).$

- 3. (a) Note that the given joint density is $k_{\alpha}(\delta, y) = I\{0 \le y \le 1\} f_{\alpha}^{1-\delta}(y)/2$. If we now sum $k_{\alpha}(\delta, y)$ over $\delta = 0, 1$, we obtain the desired result.
 - (b) Note that

$$E(\Delta|Y = y, \alpha) = \operatorname{pr}(\Delta = 1|Y = y, \alpha)$$
$$= \frac{k_{\alpha}(1, y)}{\sum_{\delta = 0, 1} k_{\alpha}(\delta, y)}$$
$$= (1 + f_{\alpha}(y))^{-1}.$$

- (c) When we take logarithms of the likelihood, we can ignore the indicator part since it will be true for all observations in the sample. The result now follows since $\log(k_{\alpha}(\delta, Y)) = -\log(2) + (1 - \delta)(\alpha \log(Y) + \log(\alpha + 1)).$
- (d) Let $q(\delta, y)$ be a measurable function of (δ, y) . By independence,

$$E\left[q(\Delta_i, Y_i)|Y_1, \dots, Y_n, \alpha^{(k)}\right] = E\left[q(\Delta_i, Y_i)|Y_i, \alpha^{(k)}\right],$$

for $i = 1, \ldots, n$. This gives us that

$$E\left[\ell_n(\alpha)|Y_1,\ldots,Y_n,\alpha\right] = -n\log(2) + \sum_{i=1}^n \left(1 - E(\Delta_i|Y_i,\alpha)\right)\dot{\ell}_\alpha(Y_i),$$

and the desired result now follows from Part (b) above.

(e) This follows from Part (d) and a little algebra and calculus.

- 4. (a) A complete statistic T for the parameter θ satisfies the condition: If, for a measurable function g, $E_{\theta}g(T) = 0$ for all θ , then g = 0.
 - (b) A martingale is a sequence of random variables Y₁, Y₂,... associated with a sequenct of increasing σ-fields F₁, F₂,... such that (i) Y_j is measurable with respect to F_j and (ii) E[Y_{j+1}|F_j] = Y_j, j = 1, 2,