
Solution to BIOS 760 Final 2008

1. (a) i. By using change of variables U = log(1/X), we obtain that U is exponential

with mean (α+ 1)−1. Thus −E log(X) = (α+ 1)−1 and var(logX1) = (α+ 1)−2.

Clearly, g0(m0(α)) = α.

ii. Note that for any t ≥ 0,
∫ 1

0 u
t(α + 1)uαdu = (α + 1)(α + t + 1)−1. Hence

E(X) = (α+1)(α+2)−1. Also E(X2) = (α+1)(α+3)−1. Simple algebra yields

that g1(m1(α)) = α and var(X) = (α + 1)(α + 2)−2(α+ 3)−1.

(b) The law of large numbers yields that both M0n →p m0(α) and M1n →p m1(α). Since

u−1 is continuous except at u = 0, g0(M0n)→p α by the continuous mapping theorem

for convergence in probability. A similar argument establishes g1(M1n)→p α.

(c) i. First
√
n(M0n − m0(α)) →d N(0, (α + 1)−2) by the central limit theorem and

results on moments from Part 1.(a)i. Now the derivative of g0 is ġ0(u) = −u−2

which, evaluated at u = (1 + α)−1 is −(α + 1)2. Hence the delta method yields

the desired result.

ii. The arguments are almost the same except that M1n and m1(α) replace M0n

and m0, respectively. The derivative of g1 is (1−u)−2 which, when evaluated at

u = (α + 1)(α+ 2)−1, is (α + 2)2. Thus σ2
1(α) = (α + 2)4var(X) = (α + 1)(α +

2)2(α + 3)−1

(d) From above,

r(α) =
(α + 2)2

(α + 1)(α + 3)
.

i. Let ν = α + 1. Since r(α) = r̃(ν) = 1 + ν−1(ν + 2)−1 and ν > 0, r(α) > 1.

Cleary, as ν ↓ 0, r̃(ν)→∞.

ii. The above statement means that g0(M0n) is always asymptotically more precise

that g1(M1n) for estimating α and that this relative precision can be arbitrarily

bad for g1(M1n).

2. (a) By Taylor expansion,
√
n(Tn − α) = ġ0(m̃)

√
n(M0n − m0(α)) for some m̃ on the

line segment between M0n and m0(α). Thus m̃ →p m0(α). Since ġ0 is continuous,

ġ0(m̃) →p −(α + 1)2. Thus by Slutsky’s theorem [(ġ0(m̃) + (α+ 1)2]
√
n(M0n −

m0(α)) = oP (1). This means that

√
n(Tn − α) = −(α + 1)2

√
n(M0n −m0(α)) + oP (1),

and the desired result follows.
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(b) The score ˙̀
α(X) for α is logX + (α+ 1)−1 which has mean zero. Since the variance

of logX is (α+1)−2 and since the information Iα is equal to E( ˙̀2
α(X)) = var(logX),

we have that the efficient influence function I−1
α

˙̀
α(X) is precisely Hα(X).

(c) This is Proposition 4.7 (which does not need to be remembered). What needs to be

remembered is that this is one of the main dogmas of efficiency theory.

(d) If we use α̂n = α̃n + I−1
α̃n n

−1∑n
i=1

˙̀
α̃n(Xi), then, for some α∗ on the line segment

between α̃n and α,

√
n(α̂n − α) =

√
n(α̃n − α) + I−1

α̃n n
−1/2

n∑

i=1

[
˙̀
α(Xi) + ῭

α∗(Xi)(α̃n − α)
]

= I−1
α n−1/2

n∑

i=1

˙̀
α(Xi) + oP (1),

since Iα is continuous in α, and where somewhat careful analysis is needed to verify

that n−1∑n
i=1

῭
α∗(Xi) = −Iα + oP (1).

3. (a) Note that the given joint density is kα(δ, y) = I{0 ≤ y ≤ 1}f 1−δ
α (y)/2. If we now

sum kα(δ, y) over δ = 0, 1, we obtain the desired result.

(b) Note that

E(∆|Y = y, α) = pr(∆ = 1|Y = y, α)

=
kα(1, y)

∑
δ=0,1 kα(δ, y)

= (1 + fα(y))−1.

(c) When we take logarithms of the likelihood, we can ignore the indicator part since

it will be true for all observations in the sample. The result now follows since

log(kα(δ, Y )) = − log(2) + (1− δ) (α log(Y ) + log(α+ 1)).

(d) Let q(δ, y) be a measurable function of (δ, y). By independence,

E
[
q(∆i, Yi)|Y1, . . . , Yn, α

(k)
]

= E
[
q(∆i, Yi)|Yi, α(k)

]
,

for i = 1, . . . , n. This gives us that

E [`n(α)|Y1, . . . , Yn, α] = −n log(2) +
n∑

i=1

(1− E(∆i|Yi, α)) ˙̀
α(Yi),

and the desired result now follows from Part (b) above.

(e) This follows from Part (d) and a little algebra and calculus.
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4. (a) A complete statistic T for the parameter θ satisfies the condition: If, for a measurable

function g, Eθg(T ) = 0 for all θ, then g = 0.

(b) A martingale is a sequence of random variables Y1, Y2, . . . associated with a sequenct

of increasing σ-fields F1, F2, . . . such that (i) Yj is measurable with respect to Fj and

(ii) E[Yj+1|Fj] = Yj, j = 1, 2, . . ..
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