BIOS 760 Final Exam (Fall, 2016)

Consider n i.i.d random vectors $(Y_i, X_i), i = 1, ..., n$, and they satisfy

$$Y_i = \beta X_i + \epsilon_i, \quad X_i \sim N(0, 1),$$

where ϵ_i is independent of X_i and follows distribution N(0, 1). Only β is an unknown parameter. Due to non-responses, some Y_i 's are not observed and we use R_i to indicate whether Y_i is observable ($R_i = 1$: Y_i is observed; otherwise, $R_i = 0$). Therefore, the observed data can be expressed as

$$(R_i Y_i, R_i, X_i), \quad i = 1, ..., n.$$

- 1. We assume $P(R_i = 1 | Y_i, X_i) = p$ for a known constant $p \in (0, 1)$.
 - (a) (1 point) What is the missing mechanism?
 - (b) (2 point) Write down the joint likelihood of the observed data.
 - (c) (2 point) Treat X₁, ..., X_n as fixed values. Identify a complete and sufficient statistic for β.
 - (d) (2 point) Treat $X_1, ..., X_n$ as fixed values. Derive the UMVUE for β .
 - (e) (3 point) Treat $X_1, ..., X_n$ as fixed values. Calculate the Cramér-Rao lower bound for β based on these *n* observations. Does the UMVUE achieve this lower bound?
- 2. ¹ The missingness, R_i , depends on (Y_i, X_i, W_i) where W_i is some other observed random variable and may be correlated with (Y_i, X_i) . Assume that $P(R_i = 1 | Y_i, X_i, W_i) = p(W_i)$ for a known function p(w) satisfying $0 < m < p(W_i)$ for a constant m.
 - (a) (1 point) What is the missing mechanism?

1

(Continued on the other side)

(b) (2 point) Show that

$$\sum_{i=1}^{n} \frac{R_i}{p(W_i)} X_i (Y_i - \beta X_i) = 0$$

is an estimating equation for β .

- (c) (2 point) What is the asymptotic distribution of the estimator that solves the above equation? You don't have to simplify the final variance expression.
- 3. Now assume that subject i does not respond if and only if $Y_i > c$ for some known value c.
 - (a) (1 point) What is the missing mechanism?
 - (b) (2 point) Write down the joint likelihood of the observed data.
 - (c) (2 point) We use the EM algorithm to calculate the MLE for β . Give the details of the EM algorithm. You can leave integrations in the expressions.